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1 Overview
I study the problems of optimizing a range of stochastic
processes occurring in networks, such as the information
spreading process in a social network [Kempe et al., 2003;
Chen et al., 2010], species migration processes in land-
scape network [Sheldon et al., 2010; Wu et al., 2013; 2014a;
2014b], virus spreading process in human contact network.
In the typical network design framework, the planner can
take a set of management actions, such as adding edges, re-
moving nodes and so on, to construct a network in order to
benefit the activities occurring in the networks. The set of
actions being taken is called a policy. To characterize and
measure the properties of the constructed network, a func-
tion is defined to map each possible policy to a real value.
The goal is to select a least costly policy so that the value of
the policy is greater or equal to certain value. Well known
network design problems are Steiner tree problem [Hwang et
al., 1992], maximum spanning tree problem [Kruskal, 1956],
survival network design [Nemhauser et al., 1993] and so on.
Over the last decades, substantial research has been done on
both the theoretical and algorithmic aspects of these prob-
lems [Gupta and Könemann, 2011]. However, the standard
network design framework fails to capture certain types of
practical problems in which (1) the planner can take much
richer set of management actions, such as raising the proba-
bilities of certain edge being present or select the source that
triggers the stochastic process; and (2) the function that maps
each policy to a real value may be defined using probability
and expectation. Some of these aspects have been addressed
in recent applications, such as maximizing the spread of an
endangered species called Red-Cockaded Woodpecker [Shel-
don et al., 2010; Kumar et al., 2012]. However, existing solu-
tion techniques are not general-purpose frameworks and can-
not model a broad class of network design problems. More-
over, the existing techniques that attempt to find high qual-
ity policies such as standard mixed integer program (MIP)
solver, greedy algorithms or heuristic based methods suffer
from limited scalability or poor performance.

My thesis contributes to both modeling and algorithm de-
velopment. My first goal is to define a unifying network
design framework called stochastic network design (SND)
to model a broad class of network design problems under
stochas- ticity. My second goal, which is my major focus,
is to design effective and scalable general-purpose approxi-

mate algorithms to solve problems that can be formulated by
the SND framework.

2 Stochastic Network Design Framework
The input is a (directed) graphG = (V,E) where V is a set of
vertices and E is a set of edges. Each edge is associated with
a probability puv that the edge will be present in the network.
Namely, it defines a distribution of networks G′ = (V,E′)
with E′ ⊆ E. The probability of G′ is simply equal to the
product of probabilities of all edges being present or absent.

To define the management actions in my framework,
I first define a set of non-overlapping domains Ξ =
{χ1, χ2, ..., χ|Ξ|} with χi ⊆ E. For each domain, a finite
set Aχof candidate management actions are available, each
having certain cost, to change the probabilities of all edges in
the domain. Namely, after taking an action a ∈ Aχ, the new
probability of any edge in χ becomes pe|a. To unify nota-
tions, I let each action set to contain a zero cost ”noop” action
a0 represents the case that no action is taken and probabilities
remains unchanged. A policy π chooses exact one action for
each domain. The cost of a policy is the total cost of cho-
sen actions. A policy defines a new stochastic network with
changed probabilities on edges.

To define the objective of the optimization framework,
each pair of vertices is associated with a reward rs,t that
encodes the importance to connect this pair. Then, we use
z(π) =

∑
s,t∈V P (s  t|π)r(s, t) to measure how well the

vertices in the network are connected to each other in expecta-
tion, where P (s t|π) is the probability that s is connected
to t under policy π. The decision making problem is to find a
policy that maximizes z(π) subject to a budget b limiting the
total cost of actions being taken, that is, the optimal policy
is π∗ ∈ arg max{π|c(π)≤b} z(π). It has been shown that the
problem is at least #P in general graph [Valiant, 1979], so
my goal is to develop efficient approximate algorithms.

3 Approximate Algorithms Overview
So far, I created algorithms for SND problem in two aspects.

1. For tree structured networks, I created fully polynomial-
time approximation schemes for SND problem under
certain assumptions [Wu et al., 2014a; 2014b].
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2. For networks being directed graphs, I created sampling
based approximate algorithms which perform well in
practice.

3.1 For Tree Structured Networks
In this case, I create FPTAS for two problems:

1. barrier removal in river network to maximize the spread
of fish from a unique location, for instance the entrance
of the river network, which is similar to the influence
maximization problem in social network [Kempe et al.,
2003] except that the actions here are to remove barriers
but not select sources.

2. barrier removal to maximize the connectivity of river
segments, in which the difficulty is the need to consider
all pairs of vertices while optimizing the connectivity.

These two problems essentially are correlated such that I can
derive FPTAS for both of them using the same techniques.
The basic idea is to first create a pseudocode polynomial-time
algorithm using dynamic programming technique. Then, a
rounding strategy is used to convert it into an FPTAS. The-
oretically, the runtime of first problem is O(n

2

ε2 ) and of the
second problem is O(n

8

ε6 ). Empirically, two algorithms can
be implemented very efficiently (especially for the second
problem) which outperform the existing techniques both in
solution quality and runtime.

3.2 For Directed Graphs
For directed graph, the dynamic program technique is not
applicable, so we use the sample average approximation
(SAA) scheme to convert the stochastic optimization prob-
lem into a discrete optimization problem and then develop
efficient approximate algorithms to solve it. Previously, the
SAA scheme has been used to solve a spatial conservation
planning problem called Red-Cockaded Woodpecker (RCW)
problem [Sheldon et al., 2010] where the management ac-
tions are to purchase land parcels or vertices in the network. I
extended it to solve barrier removal problem where the ac-
tions can be taken to increase the passage probabilities of
barriers [Wu et al., 2013]. However, the existings methods
to solve the converted discrete optimization problem are stan-
dard integer programming solver or greedy algorithms, which
either appear unscalable on large networks or perform poorly.
Recently, to solve the resulted discrete problem, we develped
a much faster combinatorial algorithm based on Lagrangian
relaxation and primal-dual techniques. We apply the algo-
rithm to the RCW problem and show that the algorithm pro-
duces near optimal solution efficiently.

4 Futher Work
One future work will extend my combinatorial algorithm to
solve more complex problems, for example the predisaster
preparation for road network. Since SAA algorithm usually
requires many samples to guarantee the near optimality and
the complexity of the discrete problem increases rapidly with
the number of samples, another interesting futuer work is to
create efficient sequential sampling algorithms, where only a
few samples are used in each iteration to update the solution
and eventually the solution converges to a near optimal one.
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