Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Inference and Learning for Probabilistic Description Logics

Riccardo Zese
Dipartimento di Ingegneria — University of Ferrara
Via Saragat 1, 44122, Ferrara, Italy
riccardo.zese @unife.it

The last years have seen an exponential increase in the in-
terest for the development of methods for combining proba-
bility with Description Logics (DLs). These methods are very
useful to model real world domains, where incompleteness
and uncertainty are common. This combination has become
a fundamental component of the Semantic Web.

Our work started with the development of a probabilistic
semantics for DL, called DISPONTE (”DlIstribution Seman-
tics for Probabilistic ONTologiEs*, Spanish for ”get ready®).
DISPONTE applies the distribution semantics [Sato, 1995]
to DLs. The distribution semantics is one of the most ef-
fective approaches in logic programming and is exploited by
many languages, such as Independent Choice Logic, Proba-
bilistic Horn Abduction, PRISM, pD, Logic Programs with
Annotated Disjunctions, CP-logic, and ProbLog. Under
DISPONTE we annotate axioms of a theory with a prob-
ability, that can be interpreted as an epistemic probability,
i.e., as the degree of our belief in the corresponding axiom,
and we assume that each axiom is independent of the others.
DISPONTE, like the distribution semantics, defines a proba-
bility distribution over regular knowledge bases (also called
worlds). To create a world, we decide whether to include
or not each probabilistic axiom, then we multiply the prob-
ability of the choices done to compute the probability of the
world. The probability of a query is then obtained from the
joint probability of the worlds and the query by marginaliza-
tion. Consider the Knowledge Base (KB) below:

0.5 JhasAnimal.Pet T NatureLover (1)
0.6 Cat C Pet (2)
tom : Cat (kevin,tom) : hasAnimal
fluffy : Cat (kevin, fluffy) : hasAnimal

It indicates that the individuals that own an animal which is a
pet are nature lovers with a 50% probability and cats are pets
with a 60% probability. Moreover, kevin owns the animals
fluffy and tom which are both cats. The KB has four possible
worlds: {{(1), (2)}, {(1)}. {(2)}, {}} and the query axiom
Q = kevin : NatureLover is true in the first of them, while
in the remaining ones it is false. The probability of the query
is P(Q) =0.5-0.6 =0.3.

Several algorithms have been proposed for supporting the
development of the Semantic Web. Efficient DL reasoners,
such us Pellet, RacerPro, and HermiT, are able to extract
implicit information from the modeled ontologies. Despite
the availability of many DL reasoners, the number of prob-

4411

abilistic reasoners is quite small, we can cite, for example,
PRONTO, developed by the same authors of Pellet, which
follows a semantics that defines probabilistic interpretations
instead of a single probabilistic distribution over theories. In
order to provide a tool able to manage DISPONTE proba-
bilistic KBs, we developed BUNDLE, a reasoner based on
Pellet [Sirin er al., 2007] that allows to compute the proba-
bility of queries. BUNDLE, like most DL reasoners, exploits
an imperative language for implementing its reasoning algo-
rithm. This algorithm has to return the set of the explanations
for the given query. An explanation is a subset of the KB
which is sufficient for entailing the query. The explanations
are then used for computing the probability of the query fol-
lowing the DISPONTE semantics. Nonetheless, usually rea-
soning algorithms use non-deterministic operators for doing
inference. One of the most used approaches for doing reason-
ing is the tableau algorithm which applies a set of consistency
preserving expansion rules to a tableau, that is an ABox.
Some tableau expansion rules are non-deterministic, forcing
the implementation of a search strategy in an or-branching
search space. In addition, to compute all explanations for
the given query, the exploration of all the non-deterministic
choices done by the tableau algorithm is necessary.

In order to manage this non-determinism, we developed
the system TRILL (“Tableau Reasoner for descrlption Log-
ics in Prolog®) which performs inference over DISPONTE
DLs. It implements the tableau algorithm in the declarative
Prolog language, whose search strategy is exploited for tak-
ing into account the non-determinism of the reasoning pro-
cess. TRILL uses the Thea2! library for translating OWL
KBs into Prolog facts. Both BUNDLE and TRILL imple-
ment the tableau algorithm for finding the set of explanations
and use the inference techniques developed for probabilistic
logic programs under the distribution semantics for comput-
ing the probability of the queries. They encode the expla-
nations into a Boolean formula in Disjunctive Normal Form
(DNF) in which each Boolean variable corresponds to an ax-
iom of the KB. Then the formula is translated into a Binary
Decision Diagram (BDD), from which the probability of the
queries can be computed in time linear in the size of the di-
agram. A BDD for a Boolean formula is a rooted graph that
has one level for each Boolean variable of the formula. Each

'http://www.semanticweb.gr/thea/

node represents a variable and has two children correspond-
ing to the 1 value and to the O value of the variable. The
leaves store either 1 or 0. We did several experiments for
testing the performances of our reasoning algorithms. These
tests show that Prolog is a viable language for implement-
ing DL reasoning algorithms and that the performances of
TRILL are comparable with those of a state-of-art reasoner,
like BUNDLE. Encouraged by these results, we made TRILL
available also via a web service, so that we can reach out to
a wider audience and popularize the Probabilistic Semantic
Web. The web service is called “TRILL on SWISH” and is
available at http://trill.lamping.unife.it. We exploited SWISH
[Lager and Wielemaker, 2014], a recently proposed web
framework for logic programming that is based on various
features and packages of SWI-Prolog. We modified it in or-
der to manage OWL KBs. Moreover, we developed a second
version of TRILL, called TRILL”. Differently from TRILL
and BUNDLE, which search for the set of explanations and
translate it into a DNF formula, TRILL” builds directly
a monotone Boolean formula during the inference process,
called ““pinpointing formula” by Baader and Pefialoza [2010a;
2010b]. This formula compactly encodes the set of all expla-
nations and can be directly translated into a BDD. In this way
we avoid the step in which the set of explanations is translated
into a DNF formula.

One of the problems of probabilistic KBs is that the pa-
rameters are difficult to set. It is thus necessary to develop
systems which automatically learn the value of probabilities
starting from the information available in the KB. For solv-
ing this problem, we presented EDGE (“Em over bDds for
description loGics paramEter learning”) that learns the pa-
rameters of a DISPONTE KB from the information available
in the domain. It takes as input the KB and a set of ex-
amples of instances and non-instances of concepts and, for
each example, executes BUNDLE for building the BDD rep-
resenting its explanations. The parameters are then tuned us-
ing an Expectation-Maximization (EM) algorithm in which
the required expectations are computed directly on the BDDs
in an efficient way by repeatedly executing Expectation and
Maximization steps until the log-likelihood of the examples
reaches a local maximum. We compared EDGE with Gold-
miner? which extracts concept and role memberships infor-
mation from a KB by means of SPARQL queries and exploits
the apriori algorithm to find the relative Association Rules
(ARs). Each AR is a probabilistic subclass axiom where the
probability is the corresponding confidence. The comparison
between the parameters learned by the two systems showed
that EDGE can learn more accurate parameters than ARs.
Starting from these results, we developed LEAP (“LEArning
Probabilistic description logics™), an algorithm that combines
EDGE with the learning system CELOE. The latter stands for
“Class Expression Learning for Ontology Engineering” and is
available in the Java open-source framework DL-Learner? for
OWL and DLs. It provides a method for learning the structure
of a KB which builds new (equivalence and subsumption) ax-
ioms. EDGE is used first to compute the initial log-likelihood

2https://code.google.com/p/gold-miner/
3http://dl-learner.org/Projects/DLLearner

4412

of the (probabilistic) KB and then, during the execution of
LEAP’s learning algorithm, to learn the parameters of the re-
finements. For each axiom built by CELOE, LEAP creates
a probabilistic subsumption axiom, where the probability is
initialized to the accuracy returned by CELOE. Then LEAP
adds the axioms one at a time to the KB and executes EDGE
on the new KB to learn the new parameters and to choose
whether these updates will be kept or discarded.

The main objective is to apply the developed algorithms
to Big Data. In particular, the Semantic Web paved the way
to the creation of Linked Open Data, where all the informa-
tion is structured and linked together. Nonetheless, the size
of the data requires the implementation of algorithms able to
handle it. It is thus necessary to exploit approaches based on
the parallelization and on cloud computing. Nowadays, we
are working to improve EDGE in order to parallelize the pro-
cess of building the BDDs and computing the expectations.
The main idea is to divide the examples given to EDGE in
chunks and assign one or more of them to each processor of
each machine. Building a BDD for an example is indepen-
dent from building it for each other examples. In this way,
the number of examples we can handle increases and the ex-
ecution time decreases. We also divide the expectation and
the maximization phases so that the expectation step will be
computed by slave processes, while the maximization step
will be computed by the master process. The slave processes
keep the BDDs in main memory through the iterations of the
EM algorithm, execute the Expectation procedure and wait
for the master, which sends a signal after the execution of the
Maximization procedure that indicates whether to continue
the EM cycle or not. The communication between the pro-
cesses exploits the MPI protocol. We are implementing these
modifications without altering the interface to EDGE. In this
way, we can directly apply this new version to LEAP for re-
ducing the running time spent for executing EDGE. Finally,
we plan to test these new optimizations and also to study dif-
ferent scheduling approaches for assigning the examples to
the slave processes, in order to choose which are the best and
to evaluate the improvements.

References

[Baader and Pefialoza, 2010a] Franz Baader and Rafael
Pefialoza. Automata-based axiom pinpointing. J. Autom.
Reasoning, 45(2):91-129, 2010.

[Baader and Pefialoza, 2010b] Franz Baader and Rafael
Pefialoza. Axiom pinpointing in general tableaux. J. Log.
Comput., 20(1):5-34, 2010.

[Lager and Wielemaker, 2014] Torbjorn Lager and Jan
Wielemaker. Pengines: Web logic programming made
easy. TPLP, 14(4-5):539-552, 2014.

[Sato, 1995] Taisuke Sato. A statistical learning method for
logic programs with distribution semantics. In Proceed-
ings of ICLP, pages 715-729, Tokyo, 13-16 June 1995.
MIT Press, Cambridge, MA.

[Sirin et al., 2007] E. Sirin, B. Parsia, B. Cuenca-Grau,
A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. J. Web Sem., 5(2):51-53, 2007.

