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Abstract 

A model of the design process is developed 
in two stages, corresponding to the task environ 
ment of design and the activity of posing and 
solving design problems. Use of the model with 
top-down and bottom-up disciplines is discussed. 
An example of the design of an object using a 
semi-automated design system based on the model 
is presented. Several issues raised by the 
model's qualitative aspects, its suitability to 
automated design, and lines for iurther develop-
ment are discussed. 

Introduction 

We wish to understand "the process oi devis­
ing artifacts to attain goals," as Herbert Simon 
(19) recently characterized design. Our inter­
ests include the design of programming and com­
puter systems, the intellectual processes that 
constitute designing, and the actual processes 
used by humans in designing. 

Informal knowledge about design is abundant. 
Entire professions--engineering, programming and 
architecture--take design as a central profes­
sional aim. However, l itt le reliable information 
exists about how design is accomplished. Most 
works, e.g. (3), exposit design methodology to 
instruct the novice, being based on informal 
observation of design and participation in its 
practice, overlaid with attempts to rationalize 
i.ts methodology. These works provide a useful 
initial approximation. We learn strategies such 
as top-down and bottom-up, that careful specifi­
cation of design goals is a must, and that care­
ful evaluation is equally important. But this 
provides only a beginning. Of works on the 
psychology of design, there is even less (though 
see 7 and 8). 

What does exist, in quantity and quality, is 
work on formalizing design. This occurs both as 
mathematical models and as computer programs for 
classes of design tasks. The bulk of this work 
fits the following constraint formulation: 
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Find a point x in a space X such that 
x satisfies the constraints C.(x) and 
maximizes an objective function F(x). 

Most mathematical work takes X to be Euclidean, 
so that a mathematical programming problem of 
some type is obtained (e.g., 20). Much computer 
work follows suit, being practical algorithms 
for solving such problems (e.g., 5). A small 
amount, mostly experimental work in artificial 
intelligence, considers more complex spaces, 
such as all arrangements of a set of objects in 
a two-dimensional room (9), (11). 

The generality and utility of this formula­
tion belies the difficulty of specifying prob­
lems in its terms. To formulate completely the 
design, say, of an operating system appears to 
be essentially impossible. All aspects of the 
formulation contribute to the difficulties: 
defining the space of possibilities; formulating 
the constraints; obtaining all the constraints 
in advance; and creating a reasonable objective 
function. Evidence from Eastman (7) and con­
siderations brought forth by others (e.g., 1) 
agree in indicating that humans do not design 
using this approach. Even when the space seems 
well defined, the constraints emerge continually 
throughout the design, rather than being avail­
able all at once. 

Following Eastman's evidence, one could 
profitably consider relaxing the above con­
straint-formulation: permitting the space, the 
objective function or the constraints to change 
or to become progressively defined throughout a 
design. Instead, we wish to follow a different 
clue: the tendency of humans to design in terms 
of functions. 

Reasoning in terms of functions--functlonal 
reasoning, as we shall call it--appears to be 
ubiquitous. We often name things by the func­
tions they provide: a machine for washing 
clothes is a "washing machine;" a man who sets 
switches for trains is a "switchman." We give 
advice in functional terms: "If your man is 
attacked, defend i t . " We even write definitions 
of function terms by using others: 

wash: To cleanse, using water or 
other liquid, usually with soap 
detergent, bleach or the like, 
by immersing, dipping, rubbing 
or scrubbing (2). 
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Only a modest amount of sc ien t i f i c study has 
been devoted to functional reasoning. Psychology 
has had a continuing concern with functional 
f i x i t y (6) , the observed tendency of humans to 
select objects for consideration in problem solv­
ing in terms of their functional descriptions 
(thus, proving to be poor problem solvers if 
becoming fixated on inappropriate descript ions). 
This work mainly demonstrates that humans do 
indeed reason in terms of functional descriptions. 

Among a r t i f i c i a l Intel l igence programs, GPS 
(10) and related programs (e .g . , the Heuristic 
Compiler, 18) offer the most exp l i c i t model of 
functioning reasoning. GPS differences operate 
as function terms; they describe a s i tuat ion in 
i t s re la t ion to a goal and operators in re lat ion 
to how they affect s i tuat ions. Matching the 
functional description of a s i tuat ion 's require­
ments to the functional description of what an 
operator provides selects out a subset of a l l 
possible operators for consideration. Thus, in 
an action task (transformation of a si tuat ion 
into a desired one) GPS provides at least one 
paradigm of functional reasoning.* 

Nothing Indicates that functional reasoning 
is a to ta l scheme, suf f ic ient to carry out com­
plete solutions. In GPS it only provides one 
strand of means-ends analysis. GPS also applies 
actual operators to actual situations and 
observes the resul ts . Thus, unlike schemes for 
reasoning that attempt to map problems into a 
single formalized representation (e .g . , those 
in the Advice Taker t rad i t ion (14), (12)), func­
t ional reasoning may be only a par t ia l technique 
that must be combined with others to achieve a 
complete problem solving system. 

This paper is l imited to describing and 
i l l u s t r a t i n g a model for functional reasoning in 
design. Evidence for the model must come from 
studies of human reasoning or from the construc­
t ion of design systems that incorporate the 
model. Neither is presented here. A semi-
automated design system based on the model is 
being developed (by PF) and has been used in the 
main i l l u s t r a t i on presented la ter . It w i l l be 
reported on in a separate publ icat ion. 

We start by describing the task environment 
in which design can take place. We f i r s t give 
the simplest possible model and then augment it 
with various complexities. The next section 
deals with posing design problems and solving 
them. F ina l ly , a detailed example is developed. 

The success of GPS-like programs in describing 
human problem solving offers addit ional ev i ­
dence for the role of th is paradigm (15), (16). 

The Basic Model for the Design Task Environment 

The basic (or qual i tat ive) model of a 
design task environment consists of a set of 
structures and a set of functions such that: 

P1: Each structure provides a set of 
functions. 

P2: For each function It provides, a 
structure requires a set of func­
t ions. 

P3: A functional connection can occur 
between two structures if one 
provides a function required by 
the other. 

P4: A constructed structure consists 
of a set of structures ( i t s 
parts) and a set of functional 
connections between them such 
that : 

1) The functions provided are 
those provided by the parts 
that are not consumed in func­
t ional connections. 

2) The functions required are 
those required by the parts 
that are not provided by a 
functional connection. 

We ca l l this the qual i tat ive model because 
nothing is said about how many structures of a 
given type may exist or how much of a function 
is provided or required. These addit ional s t ipu­
lations are augmentations to the model, to be 
discussed in the next section. We i l l us t ra te 
below each of the propositions, drawing most but 
not a l l examples from computer systems. 

Structures provide functions 

The most obvious examples are those where 
an object has already been named by i t s functions: 

A core memory provides memory. 
A store instruct ion stores information. 

The apparent banality of these statements arises 
purely from the use of functional names as can be 
seen in these examples: 

A drum provides memory. 
The BOZ instruct ion provides a change in 

program cont ro l . 

This common usage of functional names for struc­
tures does lead to more serious confusion of what 
are functions and what are structures, however: 
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An iteration-code requires an ini t ial i ­
zation, an iteration-action, a termina­
tion-test and an exit. 

The iteration-code is a structure--a sequence of 
instructions. We name it "iteration-code" 
because all we know about it is that it provides 
the function of iteration. If we had called it 
"Sam," there would have been no confusion between 
structure and function. 

Proposition P1 asserts that more than one 
function can be provided by a single structure: 

The drum can hold user files or resi­
dent systems. 

The conditional branch instruction can 
provide either loop control or switch­
ing between two mutually exclusive 
control paths. 

In all these examples there appears to be a 
single capability--a single function--that under­
lies the multiple use. A drum provides memory; 
holding user files and resident systems are 
simply two subvariates of the memory function. 
The branch provides for the single function of 
changing program control; it suffices for either 
loop control or path splitting. 

This singularity, however, need not be: 

A pencil can print characters, punch 
holes in paper, serve as a core for a 
ball of string, and tamp down pipe 
tobacco. 

Different aspects of a single object provide the 
structural basis for each separate function. 
Other structures can be found that provide each 
function separately, but not the others (in any 
reasonable way): In the example above a type­
writer, a three-hole punch, a cardboard cylinder, 
and a pipe tool, respectively. 

With designed objects (e.g., a magnetic 
tape) there is a strong tendency for a single 
function to be dominant, with all others seen as 
variant, or even deviant: 

A magnetic tape provides memory or a 
photogenic visage for public relations, 

Inside of a structure the situation is otherwise, 
and parts are carefully constructed to have 
multiple function (e.g., general registers in a 
central processor). 

The structures in the examples above are 
physical objects (drums and pencils) and abstract 
objects (instructions). Another important class 
of structures in computer systems are relations: 

Adjacency of cells in memory provides 
a two-way association between two 
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items of information (their contents). 

A structure may provide a given function for any 
number of objects: 

A single real-time clock provides time-
of-day for all user programs. 

In general there is no limit on the number of 
structures that can use a provided function. 

Structures require functions 

The most obvious examples involve general 
requirements. 

A physical object requires space. 

A program requires primary memory 
space. 

Typically a structure requires the conjunction 
of several functions: 

A compiler requires primary memory, 
secondary memory, input-output, and 
a processor. 

A generator requires initialization, 
a way to obtain a candidate from the 
generator state, a next state, and a 
termination test. 

The second example has another instance of using 
function terms to name structures. The termina­
tion test might seem to be a structure. After 
a l l , we know that any test is a piece of code. 
But this is because we presume a unique struc­
ture for the required function of testing for 
termination. In fact, generator terminations 
can be provided by a memory protect system that 
detects out-of-bounds memory accesses. 

The converse of one structure providing 
many functions is that in general many struc­
tures can be found to provide a given function; 

Tape, disk, and core provide memory. 

Printers, terminals, and card punches 
provide output. 

The choice of one of the structures providing a 
function is the central activity of qualitative 
design. 

Proposition P2 is more specific than we 
have demonstrated. Functions are required by a 
structure in order to provide specific functions: 

A program requires primary memory 
space to execute. 

This is most clearly seen when a structure has 
different functional requirements for the 
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different functions it can provide: 

A compiler provides compiled programs 
and also source language debugging. 
It requires a resident symbol table to 
provide the source language debugging, 
but not to provide compiled programs. 

Construction of structures 

Propositions P3 and P4 describe how struc­
tures can be combined into new structures. By 
choosing a set of structures so that the func­
tional requirements of some are satisfied by 
others, some functions are left for external 
usage. Consider a functional description of a 
knife: 

Component structures: 

structure is never taken as complete and always 
admits of further refinement and modification. 

Augmentations of the Model 

The model in the previous section was the 
simplest one that seems to capture the essence 
of the relations between structure and function 
in design. The situation can be complicated by 
various restrictions: 

Define the functional specification of 
a structure to be the functions pro­
vided and required by it along with 
whatever restrictions apply (as 
defined below). 

P4. A constructed structure must 
obey the restrictions on its 
individual subparts after 
the effects of the func­
tional connections are 
accounted for. 

A functional connection exists between the 
blade's requirement for being held (R1) and the 
handle's provision of that function (P2) . The 
blade's provision of the cutting function (P1) is 
not consumed in a connection and is thus provided 
by the constructed structure; likewise, the 
handle's requirement of being held (R2) is not 
satisfied and is thus a functional requirement of 
the knife. 

This example illustrates a basic property of 
construction: Once a functional connection is 
established, some of the functions involved may 
disappear (e.g., the ability of the handle to 
hold a narrow object). They become internal to 
the new structure, so to speak. 

The functional description of a knife just 
given is incomplete. More is required to cut 
than just having a blade and a handle (even with 
a hand). There must be motion aimed in the right 
way and with sufficient pressure; the material 
from cutting must be removed; the blade must be 
sharp; and so on. A functionally described 

P5. A structure may be subject 
to a supply law that limits 
the number of structures of 
a given functional specifi­
cation that are available 
and/or can be constructed. 

P6. A structure may be subject 
to a capacity law that 
limits the functions that 
can be provided. 

P7. Functions may be quantified 
so that an amount of a func­
tion may be provided or 
required (measured in some 
units); these amounts may be 
subject to capacity laws. 

P8. A structure may be subject 
to an input-output relation 
connecting the functions it 
provides and those it 
requires (either by amounts 
for quantified functions or 
mere existence for unquanti-
fied functions--compare 
compiler example above). 

As elaborate restrictions are applied, the 
problem of design gradually converts from one of 
purely qualitative specification into one that 
gives the full details of the structures 
involved and requires quantitative mathematical 
treatment. 

Supply laws 

Often only a limited supply of a given type 
of structure is available, especially in ad hoc 
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design efforts: 

In constructing a raft to get across a 
river, exactly two large felled logs 
oi particular characteristics are 
avai lable• 

These logs can be described in terms of the func­
tions they provide and require, but one must not 
assume from such descriptions the availabi1ity of 
an indefinite number of logs. 

When design is done in a commercial enter­
prise, supply restrictions often do not exist. 
Any number of structures of a given type can be 
used, the restrictions being expressed in terms 
oi the costs of obtaining them. 

Capacity laws 

The mos t pervasive form of restriction is on 
the ability of a structure to provide a function 
for more than one (or several) structures, or to 
provide a function given that it is providing 
another. 

A wall plug may provide any electrical 
device with power, but only one at a 
time . 

If a conditional branch instruction is 
used for a loop, it cannot also be used 
for path-splitting. 

Capacity laws are not quantitative, but 
rather an expression of the logical character oi 
the structure in providing its functions. AImost 
any pattern oi interrelation can exist, but the 
most usual are: 

Single-iunction capaci ty: A s tructure 
can provide one and only one of its 
functions at a time. 

Single-structure capacity: A structure 
can provide a function to one and only 
one s tructure at a time. 

There at e also strong time dependent effec ts 
as we 11 as irreversible ones: 

A bomb may provide an explosion only 
once . 

A pawn may be queened only once. 

Quantitative functions 

Many homogeneous quantities occur in func-
tional descriptions: power, space , memory, pro­
cessing, channe 1 capacity, energy, time, etc. 
The amounts of these functions that can be pro­
vided are frequently subject to capacity laws: 

A file directory can be kept in primary 
memory, on the swapping drum, or on the 
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secondary file• 

- If it is kept in primary memory, 
the users will have a smaller 
job area. 

- If it is kept on the swapping 
drum, fewer users can be logged 
in simultaneously. 

- If it is kept on the fi le, the 
time to obtain files increases. 

The first two consequences derive from the capac-
ity law on the amount of memory that is a form 
oi conservation law (i.e., what is provided to 
one structure is not available for others). The 
thirI arises from the fundamental law that a 
function (obtaining files) cannot be performed 
until its required functions (obtaining file 
addresses) is provided. 

Input-output relations 

The amount of a funct ion provided can be 
tied to the amount of the functions required by 
an input-output relation: 

The number of users logged on depends 
on the amount of pr imary memory avail -
able . 

The amount oi cutting depends on the 
sharpness of the blade. 

Summary 

Functional reasoning in design doe s not 
operate at some particular level in the range oi 
restrictions, Rather, different domains of 
design (different technologles) require the use 
of specific types oi restrictions. Further, no 
consis tency occurs within a des ign s i tuat ion 
(e.g., if some supply laws are used, it does not 
follow that there are supply laws on everything). 
Complexity is added only for the critical struc-
tues that need it , other component s be mg le ft 
as simple as possible . 

We have laid out these augmentations to 
provide context for the qualitative model and to 
emphasize that casting the basic mode 1 in the 
simp lest of forms was deliberate. This paper 
will focus on the qualitative model, since it 
contains the basic notions. 

Design wi th the Mode 1 

The model given in the previous sections 
lays out an environment. Within this a variety 
of design problems can be posed. The most fun­
damental one is: 

Given: A set of structures and 
and their functional speci -
fications. 
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Construct: A structure with desired 
functional specif icat ions. 

The fundamental problem here is not one of op t i ­
mization, but one of f e a s i b i l i t y - - t o f ind a 
structure that can be composed from the available 
structures and has the desired properties 
(expressed funct ional ly) . Variations can be 
generated by ins is t ing that certain structures 
be used, by asking for minimum structure, by 
finding a l l possible designs rather than just 
one, and so on. 

Given a design problem, di f ferent methods 
can be formulated for attempting i t . Top-down 
schemes start with the desired functions and 
work back toward the structures that are ava i l ­
able. Bottom-up schemes start with the struc­
tures avai lable, constructing successively 
larger structures un t i l one is found that has 
the desired specif icat ions. Most -c r i t i ca l -
component-first schemes posit functional speci­
f icat ions of structures that appear (on whatever 
grounds) to be c r i t i c a l to the f i na l design and 
then design these f i r s t . 

These methods a l l have a combinatorial, 
heuristic-search character. At each stage of 
the design a set of possible actions is available 
to advance the design, one of which must be 
selected, which then leads to a new si tuat ion of 
par t ia l design. As in other such problems, the 
set of alternatives is generally large enough so 
that brute force search (e .g . , breadth f i r s t ) 
cannot possibly succeed. However, let us formu­
late the basic bottom-up and top-down methods, 
since they bring out some important points. 

Basic bottom-up method 

The elements of the problem space consist of 
sets of structures (with functional specif ica­
t ions) . A new structure can be constructed from 
any set of exist ing structures that can form 
functional connections. The functional speci­
f icat ions for the new structure can be deter­
mined via postulates P4 and P4' . 

A structure sat is f ies the desired functional 
specif ications i f i t s provided functions include 
those desired and if for each desired function 
the required functions match exactly those 
desired.* Thus the basic bottom-up method Is 
exactly heur ist ic search in terms of the opera­
tions that are specified in the task environment. 

Basic top-down method 

Working top-down is not just working back­
ward from the desired functions toward the given 
structures. It also attempts to bind the design 

* 
The asymmetry arises because there is no o b l i ­
gation to use provided functions. 
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as l i t t l e as possible at each stage, taking only 
necessary steps, given the structures actually 
avai lable, and coming as close as possible to 
deriving the design. 

A typical step in a top-down design might 
look like: 

Synchronization of the drum requires 
a buffer memory. 

Stipulate a memory that is wri te-by-
word and read-by-bit. 

Only a single essential feature of the memory is 
specif ied, rather than an actual available 
memory (e .g . , a specific drum). The specif ica­
t ion (the st ipulat ion) is s t ructura l , for i t is 
not necessary real ly that memory have this 
property to produce synchronization. The step 
is a perfect one in a top-down design i f , in 
fact , for the available structures, a l l solu­
tions to the design problem w i l l have this 
structure. 

St ipulat ion can appear to be ent i re ly func­
t ional : 

A value of the Bessel function must be 
obtained. 

Stipulate a process that searches a 
table for i t . 

Further specif icat ion has occurred, for an alter­
native could have been chosen: 

Stipulate a process that recomputes it 
on demand. 

We recognize the difference between a search and 
a computation (as intended here), but the d is ­
t inc t ion is given in functional terms (though 
lurking in the background are some structural 
d is t inc t ions) . 

In a top-down design one is continually 
forced to ask "What structures w i l l provide this 
function?". The answer one wants in order to 
delay binding the design is one that makes only 
very general commitments. Thus, an answer such 
as 

"CLA instructions and Input operations 
retr ieve information." 

to the question "How can we obtain information?" 
is not very useful during most stages of a top-
down design. On the other hand, an answer of 
the form: 

Information can be obtained by knowing 
i t , computing I t , or searching for i t . 

provides an incremental binding of the design 
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that permits further detai l ing without overcom-
mit t ing the designer. Such generalized function-
structure laws* appear to be quite important, 
carrying much of the burden of top-down reason­
ing. 

A top-down design iterates between picking 
structures to supply functions and generating 
new functional requirements from the chosen 
structures. Successful termination of the pro­
cess occurs when a l l functional requirements are 
sat isf ied by parts of the designed structure 
(through functional connections) and a l l desired 
functions are provided. This corresponds to a 
backwards working heurist ic search procedure. 

The result of a successful design is a con-
structed structure whose components are either 
given structures or are reducible (recursively) 
thereto. Such a structure may s t i l l be distant 
from a real physical object that w i l l perform as 
desired. To have designed a knife as a blade 
and a handle, or even a blade, handle and 
fastener (of blade to handle), is not yet to have 
a kn i fe . One might ins is t that a design task is 
not well posed unless the given structures cor­
respond to actual physical objects. Successively 
more detailed restr ic t ions could be added to the 
functions, u n t i l an adequate physical model of 
the si tuat ion would be impl ic i t in the func­
t ional descript ion. Reasoning would more and 
more involve the detai ls of these restr ic t ions 
and less and less the matching of functions 
required to functions provided, which is the 
heart of functional reasoning. Actual ly, it 
appears impossible (even if it were desirable) 
that an elaboration of functions into f iner and 
f iner categories could suffice for expressing 
the intr icacies of actual physical technologies 
(e .g . , metallurgy or polymer chemistry). How­
ever, such an elaboration might prove successful 
for extremely a r t i f i c i a l and discrete technolo­
gies, such as computer programming. 

The resu l t , then, of a functional design 
remains a plan for the real izat ion of an actual 
object. To implement the plan requires enlarg­
ing the reasoning to include working with the 
actual physical structures or with symbolic 
models of them, observing the effects of manipu­
la t ion , correcting the design, test ing i t , and 

* The example given here is actually a funct ion-
function law, of a type that further elabo­
rates a function term. There is a similar 
type of re la t ion that deals with the inclusion 
of one function in another (e .g . , hi-speed, 
low-speed, and multiplexed transmission of i n ­
formation are a l l transmissions of informa­
t i on ) . For s impl ic i ty , the i n i t i a l version of 
the model does not deal with th is issue. A 
more complete version w i l l deal with direct 
relationships between functions ( i . e . with no 
intervening structure) since they are an 
important part of design. 

so on. This is in agreement with the paradigm 
embedded in GPS; and we shall not explore it 
further here. 

An Example of Qualitative Design: A Symbol Table 

We w i l l not attempt an example of a com­
plete design, involving the application of a 
design method to a task environment to obtain a 
solut ion. Although this must be done to explore 
the problem solving aspects of an automated 
design system, that seems less crucial i n i t i a l l y 
than exploring the framework i t s e l f . We w i l l 
attempt an example that provides: 

- an exp l ic i t rendition of a design 
task environment; 

- the posing of a real design problem 
in this environment; 

- the description of a path through 
the design space that would have 
resulted in the solution given; 

- the exhibit ion of a functional 
assignment of structures that sat is­
f ies the posed design problem; 

- an indication of how a complete 
physical specif ication could be 
obtained; 

- an indication of how alternate 
choices in the design could have led 
to other solutions. 

We 
two-way 
This is 
many st 
search, 
search, 
simple, 
to stay 
manual 

chose as the example the design of a 
symbol table for a programming language, 
a common programming structure, and 

andard solutions to it ex ist : sequential 
binary search, logorithmic or tree 
and hash addressing. It is a f a i r l y 
though rea l , design task and permits us 
within the confines of the paper and 

analysis. 

No extensive discussion exists in the l i t ­
erature that explores thoroughly the design of 
symbol tables, describing trade-offs in terms 
of the possible properties. There does not 
even ex is t , so far as we know, a complete for­
mulation of the design problem, say in terms of 
a space of poss ib i l i t i es , the constraints and 
the objective function. Our example is not 
meant to f i l l any of these gaps, but only to 
i l l us t ra te our model of functional reasoning in 
design. 

The design task environment 

The basic class of structures to be used 
in the design, called programming structures, 
consists of collections of data-structures with 
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programs that operate on them. Programming 
structures, by the execution of one or more of 
their programs, provide (possibly many) func­
tions to other programming structures in which 
they are embedded. 

We adopt two general conventions of design 
practice, which are substantially honored 
throughout the programming world: 

Principle of separated functions. 
There exists a distinct program that 
provides each of the functions pro­
vided by a programming structure. 

Principle of uniform control. There 
exists a programming language (includ­
ing therein the notion of a set of 
programming conventions) that for all 
programming structures provides the 
functions of: 

(1) Designating the program to be 
executed at each moment. 

(2) Designating the operands 
(data-structures) for a pro­
gram. 

(3) Communicating the operands to 
a program to be executed. 

(4) Communicating the results of 
an executed program. 

(5) Loading programs and their 
operands into space required 
for their operation. 

The first principle is simply that one designs a 
separate subroutine for each kind of thing one 
can do with a data structure, rather than evok­
ing the actions in various linked and contingent 
combinations. It does not imply that only such 
programs should exist; the usual programming 
structure has many subroutines that are internal 
to i t . The second principle is simply to have 
uniform conventions for calling routines, passing 
parameters, providing space in primary memory, 
etc. Both principles cover functions that must 
be provided for any programming structure to 
operate. They permit the design of a particular 
programming structure to attend exclusively to 
the processing required to achieve the specific 
functions desired. 

Both program and data are structures and 
lead to a kind of dual functional description. 
We can describe programs, giving the function 
performed by each subroutine (ultimately, each 
instruction). Such a functional description wil l 
be complete: the functioning of each of the in­
structions is the necessary and sufficient con­
dition for the programming structure to provide 
specified functions. The data does not seem to 
enter in. Equally, we can describe data 

Session No. 15 Heuristic Problem Solving 

structures, giving the functions of the contents 
of each subpart and their relations in address 
space. Such a description wil l be almost com­
plete, for almost every instruction in the pro­
gram wil l operate only by the grace of some 
aspect of the data,* Thus, a functional 
description of a programming structure wil l 
appear to present everything twice. We recog­
nize this by taking the function of data as 
permitting various processing functions to be 
provided by particular programs (ultimately, 
instructions). For example, an address rela­
tionship may "permit computation" of some results 

Figure 1 shows the actual structures avail­
able for our example: cells, addresses, the 
relation of contents-of, and sets of instruc­
tions. We write programs in a simple Algol-like 
notation. Figure 2 illustrates the functions 
provided by the program structures and those 
permitted by the data structures. The func­
tional requirements of the structures are not 
shown here since they are well-known to all 
programmers. 

Figure 3 shows the code and data structure 
for the simple symbol table whose design we shall 
illustrate. It consists of a one-dimensional 
array with each entry in the symbol table taking 
two adjacent cells. The external symbol is 
entered in the first cell of a pair, the internal 
address in the second. There are three routines: 
Rl finds the address associated with an external 
symbol; R2 finds the symbol associated with an 
internal address; and R3 enters a new symbol-
address pair into the table. For the accessing 
operations a search is made of the table, test­
ing the first word of a pair if the symbol is 
given or the second word of the pair if the 
address is given. If a match is found, then the 
other member of the pair is returned as the 
result. To establish a new pair, it is simply 
loaded into the table at the high end. 

Several simplifications have been intro­
duced. We ignore all failure conditions, either 
that a requested entry is not in the table or 
that the table is too ful l to receive a new 
entry. We do not provide for the removal or 
modification of existing entries so that R3 
becomes much simplified. These simplifications 
are made to keep the example within bounds. 

It is necessary to impose a system of func­
tion terms. Figure 4** defines the functional 
* The failure of completeness derives from pro­

grams accomplishing some things without resort 
to a data structure. 

**The material in Figures 4, 5 and 6 is output 
from XDA, a semi-automated design system based 
on our model. The system is being built (by 
PF) and used on the PDP-10; it is constructed 
on L*(F) -- a kernel system-building system. 
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provisions of the structures to be used in the 
design example. Referring to Table 1 for an 
explanation of the notation used by XDA, Figure 
4 tells us that the function OBTAIN (with inter­
nal name Fl) can be provided by three different 
structures: a KNOW STRUCTURE, a COMPUTE STRUC­
TURE, or a SEARCH STRUCTURE (with internal names 
S1, S2, and S3). Additionally, Si (the KNOW 
STRUCTURE) is marked PRIMITIVE, meaning that for 
the present we need not worry about its func­
tional requirements. 

Although the function terms listed in 
Figure 4 (OBTAIN, KNOW, COMPUTE, etc.) are 
meaningful to the reader, their role in this 
design must depend entirely on their functional 
specifications. These consist of the function 
provision laws given in Figure 4 and the func­
tional requirements given in Figure 5. The 
first line of Figure 5 states that S2 requires 
the function F3, lines 4 and 5 state that S5 
requires F3 and F9, etc. (The full form of a 
name (e.g. SEARCH STRUCTURE) or its internal 
name (e.g., S3) can be used interchangeably). 

The system of functional description that 
this scheme leads to is quite simple and reason­
ably abstract compared to the actual programming 
structures of Figure 1. Nonetheless, it is 
adequate for the purposes of the example and 
serves to define a small but complete design task 
environment. 

The design problem 

We can pose the problem of designing a 
symbol table as follows: 

Given: The structures available in the 
design task environment. 

Construct: A structure (called a 
symbol table) that provides 
for: 

(1) Obtaining the internal 
address associated with a 
presented external symbol. 

(2) Obtaining the external sym­
bol associated with a pre­
sented internal address. 

(3) Associating a presented exter 
nal symbol and internal 
address. 

In accordance with our earlier remarks, we have 
removed other functions normally associated with 
a symbol table. 

The problem is cast in terms of a set of 
three functions to be provided and none to be 
required. From the principles stated earlier, we 
can take it that there will be a program for each 
of the three functions, and that the only design 

problem is what is the nature of these three pro­
grams and the data structures on which they work. 
The issue of how an external symbol and an inter­
nal address are presented is not of concern, 
being part of the surrounding programming system. 

The design task environment presented is not 
at all a special task environment for symbol 
tables. The structures and functions provided 
arc general. With a few additions, a complete 
order code could be built up and we could then 
propose other problems to be solved in the same 
environment. 

Design path 

As already discussed, one can follow a 
vailety of design strategies while employing 
functional reasoning to go from a design goal to 
a complete design. Although the strategy used 
can be very important, our purpose here is to 
illustrate the reasoning and its product -- not 
the pattern it follows. Consequently, no par­
ticular significance should be attached to the 
order in which the following design unfolds. 

XDA was used to go through an essentially 
complete sequence that achieves a design for the 
object specified above within the design task 
environment given. Figure 6 shows an initial 
portion of the design trace output of XDA as it 
was used to develop this example. Using the 
notation of Table 1 and noting that the design­
er's input is underlined to distinguish it from 
XDA's output, we see that first the structure to 
be designed is defined by stating the functions 
it is to provide. This structure and its re­
quired functions are placed in nodes of the de­
sign representation (D1, D2, etc.). The designer 
is then given a choice as to which part of the 
design he wants to work on and a set of possible 
structures are presented to him for his choice. 
HE may stipulate a structure to supply the func­
tion in question at this point in the design 
(other structures might be used to supply the 
same function elsewhere in the design). Then 
its functional requirements are entered into the 
design and the cycle repeats. This proceeds 
(assuming the designer does not alter the prompt­
ing sequence of XDA) until a primitive structure 
is stipulated to provide a needed function, ter­
minating that branch of the design. 

Figure 7 portrays graphically the design 
path that was followed in the complete design 
trace of XDA (the path that produced the design 

it The designer may make a variety of responses, 
besides those suggested by the system, that per­
mit him complete freedom in choosing a design 
sequence. Additionally, the design may be backed 
up, new functions and structures not in the data 
base may be defined and used in the design,and the 
system can be requested to perform more complicat­
ed searches for structures supplying a given 
function. 
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of routine R1 is omitted since it is exactly 
analogous to the design of R2 -- the left-most 
branch of the tree). The time order of the 
trace can be reproduced by following the branches 
depth-first in left to right order (a top-down 
strategy was used for simplicity). The tokens 
in the nodes are the shorthand names of functions 
and structures and the node is labeled with its 
name from XDA's trace. A function node below a 
structure node indicates the function is re­
quired by the structure; a structure node below 
a function node indicates the structure can pro­
vide the function. If a structure node is a 
triangle, then the structure was considered but 
not stipulated for the design. If a node is 
square, the structure is terminal and a name of 
the form Si/(Di) is attached to indicate the 
actual structure that was stipulated for the 
design, as shown in Figures 6 and 8. 

Starting at the top we note that the symbol 
table (S16) has three functional requirements 
(F24, F25 and F26) that are the three functions 
it is to provide. To follow the design of the 
retrieval mechanism for (F24) we move down the 
left subpath. F24 has three types of structures 
(SI, S2 and S3) that can provide i t . Since the 
path goes through S3 that means we chose to use 
a search structure (S3) in the design. 

From XDA's data base (built up in Figures 
4 and 5) we learn that a search structure (S3) 
has only one functional requirement, search (F4), 
and that two structures (S7 and S8) can provide 
the function of search. We chose a generator 
searcher (S7). It in turn has three functional 
requirements (F11, F12 and F13). S8 was con­
sidered as a candidate to provide F4 but was not 
chosen. The design trace in Figure 6 shows this 
sequence more clearly. 

The path continues in this way, splitting 
into subpaths each time two or more functional 
requirements appear for a single structure. At 
the terminal nodes we have designated particular 
pieces of primitive structure (for this design) 
that go to make up the designed object. 

A Solution of the Design Problem 

Figure 3 shows a completed symbol table 
(data structures plus operators) that is an in­
formal solution. Any programmer would verify 
that it performs the required functions. In 
terras of the model, however, it is not a complete 
solution for we have not demonstrated what struc­
tures provide what functions and what structures 
permit other structures (e.g., programs) to 
operate as needed. 

Figure 8 presents the completed design by 
associating the terminal structures from the 
design trace with the actual structures used in 
the solution presented in Figure 3. The first 
column has the code names of the terminal struc­
tures. The second column presents the functions 
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provided by the structures as developed in the 
design trace; it consists of al l functional re­
quirements above the structure in the design 
path up to and including the first function that 
is a member of a set of two or more functional 
requirements of a structure. The third column 
is the informal definition of the structure 
given in the design trace and the last column 
shows the corresponding structure used in 
Figure 3. As noted above, the data structures 
play a role of permitting various functions by 
the program structures and thus do not appear 
in Figure 8. 

Full Design 

The disparity between the functional de­
scriptions of the terminal objects and the 
actual structures used illustrates the point 
made above that the output of a functional 
reasoning design process is essentially a plan 
requiring further implementation. The struc­
tures used are not only some distance from the 
structures specified but some critical elements 
are missing and must be supplied by some pro­
cess to effect an implementation. To wit, the 
control structures that tie together the various 
pieces of program and the exact constraints on 
the data structures (e.g., size of cell, adja­
cency) are not present. 

The distance between the final result of 
the functional reasoning in the example and a 
physical specification of the constructed ob­
ject does not seem to be an unbridgeable chasm. 
Aside from the fact that many important designs 
(e.g., flowcharts and blueprints) leave out 
many important details (the use of language 
constructions and the principles of carpentry), 
there are at least two possible courses of 
action. 

One could try to carry the functional 
reasoning process down further to obtain more 
concrete specifications. Analysis of the re­
quirements of individual instructions in terms 
of their need for operands and/or adjacent in­
structions permits a more detailed specifica­
tion. Likewise, data structures could be ana­
lyzed in terms of relations between their parts, 
tven though this approach could carry the de­
sign further than our example goes, it is not 
clear it could do the entire job. 

The other approach that bears investiga­
tion is to consider the output of functional 
reasoning to be a plan that is input to a 
heuristic compiler. Matching on the functional 
descriptions of instructions and data struc­
tures would be used to implement the plan. 
Clearly, such a procedure would have to have 
available operators for manipulating and testing 
the physical structures so assembled. The 
details have not been worked out, but Figure 8 
clearly presents a set of well-defined problems 
of the general form "Build a structure out of 
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the available physical structures (as in Figure 
1) that performs this well-defined funct ion", 
which would be amenable to heurist ic compiler 
techniques. 

Alternative Designs 

Figure 7 plainly shows that only one of many 
possible paths has been chosen. Most, of course, 
lead to no design at a l l . For example, if the 
association function had been designed as a hash­
ing function and the ret r ieva l operations as we 
now have them, we clearly would not have a symbol 
table. 

One common type of symbol table employs a 
variant of binary search in which an inspection 
of a candidate indicates a narrowed range from 
which to obtain the next candidate. This is 
what we have called a guided searcher (S8). 
Thus, by choosing S8 instead of the generator 
searcher (S7) at design node D7, we would have 
obtained a symbol table of that design (assuming 
we made appropriate changes in the association 
function as we l l ) . 

To obtain a hash storage scheme instead of 
the relat ional storage we used, we could have 
picked the structure of name location storage 
(S15) at design node D40, this being the kind of 
structure that computes the address of a storage 
ce l l from the name of the presented item. Then 
in the ret r ieval operation we would have had to 
choose a compute structure (S2) at design node 
D5 in order to compute d i rect ly the location of 
the target object. 

Discussion 

We have now presented a model of functional 
reasoning in design and i l lus t ra ted at least the 
central tenets of i t . A number of aspects have 
been l e f t dangling or received no attention at 
a l l . They can receive no adequate treatment 
here, but we w i l l attempt to state some of them 
b r i e f l y . 

Relation to constraint-formulation 

We took note of the constraint-formulation 
at the beginning of the paper, because it appears 
to be the form towards which design problems 
tend as they become formalized. There is more 
than one way to look at the re la t ion of function­
al reasoning to the constraint-formulation. One 
view takes functional reasoning as a special 
subspecies of the constraint-formulation. The 
kinds of constraints are simple logical ones, 
saying that connections of various kinds must 
ex is t . As we move toward the various res t r i c ­
t ive laws (supplies, capacit ies, etc.) a few 
addit ional simple constraints can be handled 
(e .g . , these laws are mostly expressible as 
constant or bounded sums, as in l inear program­
ming). But no real ly in t r i ca te constraints can 
be handled. Thus, functional reasoning is sort 
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of a poor man's non-technical constraint sat is­
faction scheme. It should be replaced by more 
adequate formulations wherever possible. 

An alternat ive view sees functional reason­
ing as a planning scheme to be used in connec­
t ion with more accurate procedures. This is the 
view impl ic i t in our treatment of the example, 
where we carried the functional description only 
to a certain deta i l and then used a more precise 
formulation. 

On the i n i t i a l structuring of designs 

One of the pecul iar i t ies of many design 
problems is that they create structure out of 
nothing, so to speak. They appear in this sense 
to be open problems. It can often be observed 
in human design that a structure is placed on 
the design problem with in a few minutes, or even 
fractions of a minute, of obtaining the problem. 
Pure functional reasoning seems to be a plausible 
candidate for the mechanism whereby this i n i t i a l 
creation of structure occurs. 

The functionally described structures are 
not unlike the kinds of descriptions of struc-
ture people seem to have i n i t i a l l y . The reason­
ing involved, which is highly associational 
(bouncing back and forth between functions and 
structures using function terms as the linkages), 
is well suited for rapid reasoning which could 
put together new structures never before known 
to the designer. This role for functional 
reasoning in design is consistent with viewing 
it as a planning, i n i t i a l approximation ins t ru­
ment. This aspect also emphasizes the qual i ta­
t ive model, rather than models with substantial 
rest r ic t ions added which make reasoning more 
complex. 

Large memory structure 

It goes almost without saying (though we 
have not said it yet) that real designs require 
a large memory of structures and functional laws 
between them. This point has been urged in con­
nection with almost every attempt to reason 
about the real world, and this paper offers no 
new evidence for i t . The qual i tat ive model can 
be viewed as a sort of re t r ieva l net for index­
ing and organizing a large memory, and much of 
i t s power should only become apparent in such 
contexts. 

The relat ion to predicate calculus models 

We do not yet understand the relationship 
of this model of functional reasoning to at­
tempts to formulate problems in a formal calcu­
lus (12), (13), (17). It appears that a l l 

Sometimes they also have a highly specific and 
elaborate structure clearly evoked from having 
already known i t . 

i 
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reasoning schemes rely ult imately on mechanisms 
for matching expressions and instant iat ions of 
forms -- for that is what is available in i n ­
formation processing systems. Thus a l l systems 
have a sort of brotherhood under the surface. 
The formal ca lcu l i offer great precision and thus 
appear to be modelling the structure of s i tua­
t ions. But when they are applied to non-formal 
situations ( i . e . , not to already formalized areas 
such as group theory, l a t t i ce theory, or simple 
puzzles) the toy models that are constructed 
( i . e . , the baby axiomatizations) are su f f i c ien t ly 
gross caricatures of rea l i t y that they may in 
fact be nothing but a vehicle for the sort of 
functional reasoning discussed here. 

Universal non-model 

The uniformity of functional reasoning 
across a l l domains prompts the conjecture that 
it is a sort of non-model* of each part icular 
domain. That i s , it is a scheme of reasoning 
that is adapted to the needs of the reasoner, 
not to the detai ls of the domain. It is applied 
universally to a l l domains. Whatever is picked 
up is reflected in the reasoner's problem solv­
ing; whatever is too in t r ica te is los t . The 
major degree of freedom available to make the 
model adaptive to a part icular domain is the 
choice of the function terms that are to be ap­
pl ied in that domain. The set of functional 
terms appears not to be derivable from the struc­
tural domain, so that they constitute an importa­
t ion or construction for a domain. For instance, 
they can ref lect past experience with solving 
problems in that domain, so that a part icular set 
of function terms serves, in par t , as a memory oi 
past solutions. 

Systems of functional description 

Function terms do not generally occur in 
iso la t ion. They form systems for a given domain. 
For example, GPS has a set for logic: add and 
delete terms; increase and decrease numbers of 
terms; change signs, connective, posi t ion, and 
grouping. These cover the domain: if no such 
term applies, then the given si tuat ion is already 
the desired one. Relations other than pa r t i t i on ­
ing hold between function terms (e .g . , inclusion). 
It is clear that the efficacy of a scheme of 
functional reasoning depends on the set oi terms 
chosen and their relations to each other (e .g . , 
see GPS on the Tower of Hanoi (10)). The impor­
tance of the nature of the descriptive system 
available on a problem space has been emphasized 
by others, most notably by Banerji (4). It 
deserves extensive treatment. 

* It i s , of course, a model of any domain it is 
used for . Our use of "non-model" is to emphasize 
i t s lack of responsiveness to the detai ls of any 
part icular domain. 

Conclusion 

This paper provides an i n i t i a l attempt to 
set out a model of a specif ic type of reasoning. 
It does not capture a l l that happens when humans 
design using function terms. But only by a t ­
tempting an exp l ic i t model for some of the more 
obvious aspects of functional reasoning, w i l l 
it be possible to discover the addit ional phe­
nomena that ex is t . 
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An ALGOL-like programming language: 
- identifiers 
- assignment operator 
- simple arithmetic expressions 
- arrays 
- special procedure test(A,B) returns true if A=B 
- simple condit ional: if true 
- goto, labels, declarations, delimiters as needed 

Note: Addresses are posit ive integers and symbols are sequences of 
characters. 

Figure 1: Structures Available for Building Symbol Table 
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s2: COMPUTE STRUCTURE >> f 3 : COMPUTE * 

s3 : SEARCH STRUCTURE >> f4: SEARCH • 

s4: OPERATOR THAT PRODUCES RESULT >> f 9 : KNOW OPERATOR * 

s5 : OPERATOR THAT PRODUCES STRUCTURE FROM WHICH CAN COMPUTE >> 

f 9 : KNOW OPERATOR A f 3 : COMPUTE * 

s6: OPERATOR THAT COMPUTES CONDITIONALLY >> f 6 : RECOGNIZE & 

f 9 : KNOW OPERATOR • 

s7 : GENERATOR SEARCHER >> f l O : GENERATE CANDIDATES A 

f l l : RECOGNIZE TARGET A f l 2 : OBTAIN FROM TARGET * 

s8: GUIDED SEARCHER >> f l 3 : OBTAIN INITIAL CANDIDATE A 

f l 4 : OBTAIN NEXT CANDIDATE FROM CURRENT CANDIDATE A 

f l l : RECOGNIZE TARGET A 

f l 2 : OBTAIN FROM TARGET * 

s9 : GENERATOR >> f l 5 : OBTAIN INITIAL STATE A 

f l 6 : OBTAIN CANDIDATE FROM STATE A 

f l 7 : OBTAIN NEXT STATE FROM STATE * 

s lO : UNIQUE STRUCTURE MATCHER >> f l 8 : OBTAIN UNIQUE STRUCTURE A 

f l 9 : OBTAIN DIFFERENCE * 

s11: UNIQUE RELATION MATCHER >> f 2 0 : OBTAIN UNIQUE RELATION A 

f 2 1 : COMPUTE RELATION • 

s l 2 : EXTREME MEASURE SEARCHER >> f4: SEARCH A f 6 : RECOGNIZE * 

s14: RELATIONAL ITEM STORAGE >> f 2 2 : OBTAIN STORAGE OBEYING RELATION A 

f 8 : STORE * 

s l 5 : NAME LOCATION STORAGE >> f 2 3 : COMPUTE NAME OF STORAGE FROM ITEM A 

f 8 : STORE * 

Figure 5: Functional Requirements (input to XDA) 
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DESIGN SYMBOL TABLE * 

S16: SYMBOL TABLE (D1) —> F24: OBTAIN ADDRESS GIVEN SYMBOL ft 

F25: OBTAIN SYMBOL GIVEN ADDRESS ft 

F26: RETAIN SYMBOL ADDRESS PAIR * 

CHOOSE FROM F24 F25 F26 TO WORK ON: F24 

OBTAIN < - - S1 S2 S3 

F2l4: OBTAIN ADDRESS GIVEN SYMBOL (02) -- S3: SEARCH STRUCTURE * 

S3: SEARCH STRUCTURE (D5) >> F t : SEARCH (D6) 

CHOOSE FROM F4 TO WORK ON: F4 

SEARCH < - - S7 S8 

F4: SEARCH (D6) -- S7: GENERATOR SEARCHER * 

S7: GENERATOR SEARCHER (D7) >> FIO: GENERATE CANDIDATES (D10) ft 

F l l : RECOGNIZE TARGET (D8) ft F12x OBTAIN FROM TARGET (D9) 

CHOOSE FROM FIO F l l F12 TO WORK ON: F12 

OBTAIN < - - S1 S2 S3 

F12: OBTAIN FROM TARGET (09) — S2: COMPUTE STRUCTURE * 

S2: COMPUTE STRUCTURE (D11) >> F3: COMPUTE (D12) 

CHOOSE FROM F3 TO WORK ON: F3 

COMPUTE <— S4 S5 S6 

F3: COMPUTE (D12) ■- SU: OPERATOR THAT PRODUCES RESULT • 

SU: OPERATOR THAT PRODUCES RESULT (D13) >> F9: KNOW OPERATOR (D14) 

F9: KNOW OPERATOR (D14) • • S1: KNOW STRUCTURE (015) 

PLEASE DEFINE AN S1 AT (D15) THAT PROVIDES F9 F3 F12 

S1/(D15) - ADD ONE TO TARGET ANO FETCH 

CHOOSE FROM FIO F l l TO WORK ON: F l l 

Figure 6: I n i t i a l Portion of XDA Design Trace 
(Designer's responses to system are underlined.) 
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