
Session No. 15 Heuristic Problem Solving 621

A MODEL FOR FUNCTIONAL REASONING IN DESIGN*

P. Freeman and A. Newell
Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania, U.S.A.

Abstract

A model of the design process is developed
in two stages, corresponding to the task environ
ment of design and the activity of posing and
solving design problems. Use of the model with
top-down and bottom-up disciplines is discussed.
An example of the design of an object using a
semi-automated design system based on the model
is presented. Several issues raised by the
model's qualitative aspects, its suitability to
automated design, and lines for iurther develop-
ment are discussed.

Introduction

We wish to understand "the process oi devis­
ing artifacts to attain goals," as Herbert Simon
(19) recently characterized design. Our inter­
ests include the design of programming and com­
puter systems, the intellectual processes that
constitute designing, and the actual processes
used by humans in designing.

Informal knowledge about design is abundant.
Entire professions--engineering, programming and
architecture--take design as a central profes­
sional aim. However, l itt le reliable information
exists about how design is accomplished. Most
works, e.g. (3), exposit design methodology to
instruct the novice, being based on informal
observation of design and participation in its
practice, overlaid with attempts to rationalize
i.ts methodology. These works provide a useful
initial approximation. We learn strategies such
as top-down and bottom-up, that careful specifi­
cation of design goals is a must, and that care­
ful evaluation is equally important. But this
provides only a beginning. Of works on the
psychology of design, there is even less (though
see 7 and 8).

What does exist, in quantity and quality, is
work on formalizing design. This occurs both as
mathematical models and as computer programs for
classes of design tasks. The bulk of this work
fits the following constraint formulation:

This work was supported by the Advanced
Research Projects Agency of the Office of the
Secretary of Defense (F44620-70-C-0107) and is
monitored by the Air Force Office of Scientific
Research,

Find a point x in a space X such that
x satisfies the constraints C.(x) and
maximizes an objective function F(x).

Most mathematical work takes X to be Euclidean,
so that a mathematical programming problem of
some type is obtained (e.g., 20). Much computer
work follows suit, being practical algorithms
for solving such problems (e.g., 5). A small
amount, mostly experimental work in artificial
intelligence, considers more complex spaces,
such as all arrangements of a set of objects in
a two-dimensional room (9), (11).

The generality and utility of this formula­
tion belies the difficulty of specifying prob­
lems in its terms. To formulate completely the
design, say, of an operating system appears to
be essentially impossible. All aspects of the
formulation contribute to the difficulties:
defining the space of possibilities; formulating
the constraints; obtaining all the constraints
in advance; and creating a reasonable objective
function. Evidence from Eastman (7) and con­
siderations brought forth by others (e.g., 1)
agree in indicating that humans do not design
using this approach. Even when the space seems
well defined, the constraints emerge continually
throughout the design, rather than being avail­
able all at once.

Following Eastman's evidence, one could
profitably consider relaxing the above con­
straint-formulation: permitting the space, the
objective function or the constraints to change
or to become progressively defined throughout a
design. Instead, we wish to follow a different
clue: the tendency of humans to design in terms
of functions.

Reasoning in terms of functions--functlonal
reasoning, as we shall call it--appears to be
ubiquitous. We often name things by the func­
tions they provide: a machine for washing
clothes is a "washing machine;" a man who sets
switches for trains is a "switchman." We give
advice in functional terms: "If your man is
attacked, defend i t . " We even write definitions
of function terms by using others:

wash: To cleanse, using water or
other liquid, usually with soap
detergent, bleach or the like,
by immersing, dipping, rubbing
or scrubbing (2).

622 Session No. 15 Heuristic Problem Solving

Only a modest amount of sc ien t i f i c study has
been devoted to functional reasoning. Psychology
has had a continuing concern with functional
f i x i t y (6) , the observed tendency of humans to
select objects for consideration in problem solv­
ing in terms of their functional descriptions
(thus, proving to be poor problem solvers if
becoming fixated on inappropriate descript ions).
This work mainly demonstrates that humans do
indeed reason in terms of functional descriptions.

Among a r t i f i c i a l Intel l igence programs, GPS
(10) and related programs (e .g . , the Heuristic
Compiler, 18) offer the most exp l i c i t model of
functioning reasoning. GPS differences operate
as function terms; they describe a s i tuat ion in
i t s re la t ion to a goal and operators in re lat ion
to how they affect s i tuat ions. Matching the
functional description of a s i tuat ion 's require­
ments to the functional description of what an
operator provides selects out a subset of a l l
possible operators for consideration. Thus, in
an action task (transformation of a si tuat ion
into a desired one) GPS provides at least one
paradigm of functional reasoning.*

Nothing Indicates that functional reasoning
is a to ta l scheme, suf f ic ient to carry out com­
plete solutions. In GPS it only provides one
strand of means-ends analysis. GPS also applies
actual operators to actual situations and
observes the resul ts . Thus, unlike schemes for
reasoning that attempt to map problems into a
single formalized representation (e .g . , those
in the Advice Taker t rad i t ion (14), (12)), func­
t ional reasoning may be only a par t ia l technique
that must be combined with others to achieve a
complete problem solving system.

This paper is l imited to describing and
i l l u s t r a t i n g a model for functional reasoning in
design. Evidence for the model must come from
studies of human reasoning or from the construc­
t ion of design systems that incorporate the
model. Neither is presented here. A semi-
automated design system based on the model is
being developed (by PF) and has been used in the
main i l l u s t r a t i on presented la ter . It w i l l be
reported on in a separate publ icat ion.

We start by describing the task environment
in which design can take place. We f i r s t give
the simplest possible model and then augment it
with various complexities. The next section
deals with posing design problems and solving
them. F ina l ly , a detailed example is developed.

The success of GPS-like programs in describing
human problem solving offers addit ional ev i ­
dence for the role of th is paradigm (15), (16).

The Basic Model for the Design Task Environment

The basic (or qual i tat ive) model of a
design task environment consists of a set of
structures and a set of functions such that:

P1: Each structure provides a set of
functions.

P2: For each function It provides, a
structure requires a set of func­
t ions.

P3: A functional connection can occur
between two structures if one
provides a function required by
the other.

P4: A constructed structure consists
of a set of structures (i t s
parts) and a set of functional
connections between them such
that :

1) The functions provided are
those provided by the parts
that are not consumed in func­
t ional connections.

2) The functions required are
those required by the parts
that are not provided by a
functional connection.

We ca l l this the qual i tat ive model because
nothing is said about how many structures of a
given type may exist or how much of a function
is provided or required. These addit ional s t ipu­
lations are augmentations to the model, to be
discussed in the next section. We i l l us t ra te
below each of the propositions, drawing most but
not a l l examples from computer systems.

Structures provide functions

The most obvious examples are those where
an object has already been named by i t s functions:

A core memory provides memory.
A store instruct ion stores information.

The apparent banality of these statements arises
purely from the use of functional names as can be
seen in these examples:

A drum provides memory.
The BOZ instruct ion provides a change in

program cont ro l .

This common usage of functional names for struc­
tures does lead to more serious confusion of what
are functions and what are structures, however:

Session No. 15 Heuristic Problem Solving

An iteration-code requires an ini t ial i ­
zation, an iteration-action, a termina­
tion-test and an exit.

The iteration-code is a structure--a sequence of
instructions. We name it "iteration-code"
because all we know about it is that it provides
the function of iteration. If we had called it
"Sam," there would have been no confusion between
structure and function.

Proposition P1 asserts that more than one
function can be provided by a single structure:

The drum can hold user files or resi­
dent systems.

The conditional branch instruction can
provide either loop control or switch­
ing between two mutually exclusive
control paths.

In all these examples there appears to be a
single capability--a single function--that under­
lies the multiple use. A drum provides memory;
holding user files and resident systems are
simply two subvariates of the memory function.
The branch provides for the single function of
changing program control; it suffices for either
loop control or path splitting.

This singularity, however, need not be:

A pencil can print characters, punch
holes in paper, serve as a core for a
ball of string, and tamp down pipe
tobacco.

Different aspects of a single object provide the
structural basis for each separate function.
Other structures can be found that provide each
function separately, but not the others (in any
reasonable way): In the example above a type­
writer, a three-hole punch, a cardboard cylinder,
and a pipe tool, respectively.

With designed objects (e.g., a magnetic
tape) there is a strong tendency for a single
function to be dominant, with all others seen as
variant, or even deviant:

A magnetic tape provides memory or a
photogenic visage for public relations,

Inside of a structure the situation is otherwise,
and parts are carefully constructed to have
multiple function (e.g., general registers in a
central processor).

The structures in the examples above are
physical objects (drums and pencils) and abstract
objects (instructions). Another important class
of structures in computer systems are relations:

Adjacency of cells in memory provides
a two-way association between two

623

items of information (their contents).

A structure may provide a given function for any
number of objects:

A single real-time clock provides time-
of-day for all user programs.

In general there is no limit on the number of
structures that can use a provided function.

Structures require functions

The most obvious examples involve general
requirements.

A physical object requires space.

A program requires primary memory
space.

Typically a structure requires the conjunction
of several functions:

A compiler requires primary memory,
secondary memory, input-output, and
a processor.

A generator requires initialization,
a way to obtain a candidate from the
generator state, a next state, and a
termination test.

The second example has another instance of using
function terms to name structures. The termina­
tion test might seem to be a structure. After
a l l , we know that any test is a piece of code.
But this is because we presume a unique struc­
ture for the required function of testing for
termination. In fact, generator terminations
can be provided by a memory protect system that
detects out-of-bounds memory accesses.

The converse of one structure providing
many functions is that in general many struc­
tures can be found to provide a given function;

Tape, disk, and core provide memory.

Printers, terminals, and card punches
provide output.

The choice of one of the structures providing a
function is the central activity of qualitative
design.

Proposition P2 is more specific than we
have demonstrated. Functions are required by a
structure in order to provide specific functions:

A program requires primary memory
space to execute.

This is most clearly seen when a structure has
different functional requirements for the

624 Session No. 15 Heuristic Problem Solving

different functions it can provide:

A compiler provides compiled programs
and also source language debugging.
It requires a resident symbol table to
provide the source language debugging,
but not to provide compiled programs.

Construction of structures

Propositions P3 and P4 describe how struc­
tures can be combined into new structures. By
choosing a set of structures so that the func­
tional requirements of some are satisfied by
others, some functions are left for external
usage. Consider a functional description of a
knife:

Component structures:

structure is never taken as complete and always
admits of further refinement and modification.

Augmentations of the Model

The model in the previous section was the
simplest one that seems to capture the essence
of the relations between structure and function
in design. The situation can be complicated by
various restrictions:

Define the functional specification of
a structure to be the functions pro­
vided and required by it along with
whatever restrictions apply (as
defined below).

P4. A constructed structure must
obey the restrictions on its
individual subparts after
the effects of the func­
tional connections are
accounted for.

A functional connection exists between the
blade's requirement for being held (R1) and the
handle's provision of that function (P2) . The
blade's provision of the cutting function (P1) is
not consumed in a connection and is thus provided
by the constructed structure; likewise, the
handle's requirement of being held (R2) is not
satisfied and is thus a functional requirement of
the knife.

This example illustrates a basic property of
construction: Once a functional connection is
established, some of the functions involved may
disappear (e.g., the ability of the handle to
hold a narrow object). They become internal to
the new structure, so to speak.

The functional description of a knife just
given is incomplete. More is required to cut
than just having a blade and a handle (even with
a hand). There must be motion aimed in the right
way and with sufficient pressure; the material
from cutting must be removed; the blade must be
sharp; and so on. A functionally described

P5. A structure may be subject
to a supply law that limits
the number of structures of
a given functional specifi­
cation that are available
and/or can be constructed.

P6. A structure may be subject
to a capacity law that
limits the functions that
can be provided.

P7. Functions may be quantified
so that an amount of a func­
tion may be provided or
required (measured in some
units); these amounts may be
subject to capacity laws.

P8. A structure may be subject
to an input-output relation
connecting the functions it
provides and those it
requires (either by amounts
for quantified functions or
mere existence for unquanti-
fied functions--compare
compiler example above).

As elaborate restrictions are applied, the
problem of design gradually converts from one of
purely qualitative specification into one that
gives the full details of the structures
involved and requires quantitative mathematical
treatment.

Supply laws

Often only a limited supply of a given type
of structure is available, especially in ad hoc

Session No. 15 Heuristic Problem Solving

design efforts:

In constructing a raft to get across a
river, exactly two large felled logs
oi particular characteristics are
avai lable•

These logs can be described in terms of the func­
tions they provide and require, but one must not
assume from such descriptions the availabi1ity of
an indefinite number of logs.

When design is done in a commercial enter­
prise, supply restrictions often do not exist.
Any number of structures of a given type can be
used, the restrictions being expressed in terms
oi the costs of obtaining them.

Capacity laws

The mos t pervasive form of restriction is on
the ability of a structure to provide a function
for more than one (or several) structures, or to
provide a function given that it is providing
another.

A wall plug may provide any electrical
device with power, but only one at a
time .

If a conditional branch instruction is
used for a loop, it cannot also be used
for path-splitting.

Capacity laws are not quantitative, but
rather an expression of the logical character oi
the structure in providing its functions. AImost
any pattern oi interrelation can exist, but the
most usual are:

Single-iunction capaci ty: A s tructure
can provide one and only one of its
functions at a time.

Single-structure capacity: A structure
can provide a function to one and only
one s tructure at a time.

There at e also strong time dependent effec ts
as we 11 as irreversible ones:

A bomb may provide an explosion only
once .

A pawn may be queened only once.

Quantitative functions

Many homogeneous quantities occur in func-
tional descriptions: power, space , memory, pro­
cessing, channe 1 capacity, energy, time, etc.
The amounts of these functions that can be pro­
vided are frequently subject to capacity laws:

A file directory can be kept in primary
memory, on the swapping drum, or on the

625

secondary file•

- If it is kept in primary memory,
the users will have a smaller
job area.

- If it is kept on the swapping
drum, fewer users can be logged
in simultaneously.

- If it is kept on the fi le, the
time to obtain files increases.

The first two consequences derive from the capac-
ity law on the amount of memory that is a form
oi conservation law (i.e., what is provided to
one structure is not available for others). The
thirI arises from the fundamental law that a
function (obtaining files) cannot be performed
until its required functions (obtaining file
addresses) is provided.

Input-output relations

The amount of a funct ion provided can be
tied to the amount of the functions required by
an input-output relation:

The number of users logged on depends
on the amount of pr imary memory avail -
able .

The amount oi cutting depends on the
sharpness of the blade.

Summary

Functional reasoning in design doe s not
operate at some particular level in the range oi
restrictions, Rather, different domains of
design (different technologles) require the use
of specific types oi restrictions. Further, no
consis tency occurs within a des ign s i tuat ion
(e.g., if some supply laws are used, it does not
follow that there are supply laws on everything).
Complexity is added only for the critical struc-
tues that need it , other component s be mg le ft
as simple as possible .

We have laid out these augmentations to
provide context for the qualitative model and to
emphasize that casting the basic mode 1 in the
simp lest of forms was deliberate. This paper
will focus on the qualitative model, since it
contains the basic notions.

Design wi th the Mode 1

The model given in the previous sections
lays out an environment. Within this a variety
of design problems can be posed. The most fun­
damental one is:

Given: A set of structures and
and their functional speci -
fications.

626

Construct: A structure with desired
functional specif icat ions.

The fundamental problem here is not one of op t i ­
mization, but one of f e a s i b i l i t y - - t o f ind a
structure that can be composed from the available
structures and has the desired properties
(expressed funct ional ly) . Variations can be
generated by ins is t ing that certain structures
be used, by asking for minimum structure, by
finding a l l possible designs rather than just
one, and so on.

Given a design problem, di f ferent methods
can be formulated for attempting i t . Top-down
schemes start with the desired functions and
work back toward the structures that are ava i l ­
able. Bottom-up schemes start with the struc­
tures avai lable, constructing successively
larger structures un t i l one is found that has
the desired specif icat ions. Most -c r i t i ca l -
component-first schemes posit functional speci­
f icat ions of structures that appear (on whatever
grounds) to be c r i t i c a l to the f i na l design and
then design these f i r s t .

These methods a l l have a combinatorial,
heuristic-search character. At each stage of
the design a set of possible actions is available
to advance the design, one of which must be
selected, which then leads to a new si tuat ion of
par t ia l design. As in other such problems, the
set of alternatives is generally large enough so
that brute force search (e .g . , breadth f i r s t)
cannot possibly succeed. However, let us formu­
late the basic bottom-up and top-down methods,
since they bring out some important points.

Basic bottom-up method

The elements of the problem space consist of
sets of structures (with functional specif ica­
t ions) . A new structure can be constructed from
any set of exist ing structures that can form
functional connections. The functional speci­
f icat ions for the new structure can be deter­
mined via postulates P4 and P4' .

A structure sat is f ies the desired functional
specif ications i f i t s provided functions include
those desired and if for each desired function
the required functions match exactly those
desired.* Thus the basic bottom-up method Is
exactly heur ist ic search in terms of the opera­
tions that are specified in the task environment.

Basic top-down method

Working top-down is not just working back­
ward from the desired functions toward the given
structures. It also attempts to bind the design

*
The asymmetry arises because there is no o b l i ­
gation to use provided functions.

Session No. 15 Heuristic Problem Solving

as l i t t l e as possible at each stage, taking only
necessary steps, given the structures actually
avai lable, and coming as close as possible to
deriving the design.

A typical step in a top-down design might
look like:

Synchronization of the drum requires
a buffer memory.

Stipulate a memory that is wri te-by-
word and read-by-bit.

Only a single essential feature of the memory is
specif ied, rather than an actual available
memory (e .g . , a specific drum). The specif ica­
t ion (the st ipulat ion) is s t ructura l , for i t is
not necessary real ly that memory have this
property to produce synchronization. The step
is a perfect one in a top-down design i f , in
fact , for the available structures, a l l solu­
tions to the design problem w i l l have this
structure.

St ipulat ion can appear to be ent i re ly func­
t ional :

A value of the Bessel function must be
obtained.

Stipulate a process that searches a
table for i t .

Further specif icat ion has occurred, for an alter­
native could have been chosen:

Stipulate a process that recomputes it
on demand.

We recognize the difference between a search and
a computation (as intended here), but the d is ­
t inc t ion is given in functional terms (though
lurking in the background are some structural
d is t inc t ions) .

In a top-down design one is continually
forced to ask "What structures w i l l provide this
function?". The answer one wants in order to
delay binding the design is one that makes only
very general commitments. Thus, an answer such
as

"CLA instructions and Input operations
retr ieve information."

to the question "How can we obtain information?"
is not very useful during most stages of a top-
down design. On the other hand, an answer of
the form:

Information can be obtained by knowing
i t , computing I t , or searching for i t .

provides an incremental binding of the design

Session No. 15 Heuristic Problem Solving 627

that permits further detai l ing without overcom-
mit t ing the designer. Such generalized function-
structure laws* appear to be quite important,
carrying much of the burden of top-down reason­
ing.

A top-down design iterates between picking
structures to supply functions and generating
new functional requirements from the chosen
structures. Successful termination of the pro­
cess occurs when a l l functional requirements are
sat isf ied by parts of the designed structure
(through functional connections) and a l l desired
functions are provided. This corresponds to a
backwards working heurist ic search procedure.

The result of a successful design is a con-
structed structure whose components are either
given structures or are reducible (recursively)
thereto. Such a structure may s t i l l be distant
from a real physical object that w i l l perform as
desired. To have designed a knife as a blade
and a handle, or even a blade, handle and
fastener (of blade to handle), is not yet to have
a kn i fe . One might ins is t that a design task is
not well posed unless the given structures cor­
respond to actual physical objects. Successively
more detailed restr ic t ions could be added to the
functions, u n t i l an adequate physical model of
the si tuat ion would be impl ic i t in the func­
t ional descript ion. Reasoning would more and
more involve the detai ls of these restr ic t ions
and less and less the matching of functions
required to functions provided, which is the
heart of functional reasoning. Actual ly, it
appears impossible (even if it were desirable)
that an elaboration of functions into f iner and
f iner categories could suffice for expressing
the intr icacies of actual physical technologies
(e .g . , metallurgy or polymer chemistry). How­
ever, such an elaboration might prove successful
for extremely a r t i f i c i a l and discrete technolo­
gies, such as computer programming.

The resu l t , then, of a functional design
remains a plan for the real izat ion of an actual
object. To implement the plan requires enlarg­
ing the reasoning to include working with the
actual physical structures or with symbolic
models of them, observing the effects of manipu­
la t ion , correcting the design, test ing i t , and

* The example given here is actually a funct ion-
function law, of a type that further elabo­
rates a function term. There is a similar
type of re la t ion that deals with the inclusion
of one function in another (e .g . , hi-speed,
low-speed, and multiplexed transmission of i n ­
formation are a l l transmissions of informa­
t i on) . For s impl ic i ty , the i n i t i a l version of
the model does not deal with th is issue. A
more complete version w i l l deal with direct
relationships between functions (i . e . with no
intervening structure) since they are an
important part of design.

so on. This is in agreement with the paradigm
embedded in GPS; and we shall not explore it
further here.

An Example of Qualitative Design: A Symbol Table

We w i l l not attempt an example of a com­
plete design, involving the application of a
design method to a task environment to obtain a
solut ion. Although this must be done to explore
the problem solving aspects of an automated
design system, that seems less crucial i n i t i a l l y
than exploring the framework i t s e l f . We w i l l
attempt an example that provides:

- an exp l ic i t rendition of a design
task environment;

- the posing of a real design problem
in this environment;

- the description of a path through
the design space that would have
resulted in the solution given;

- the exhibit ion of a functional
assignment of structures that sat is­
f ies the posed design problem;

- an indication of how a complete
physical specif ication could be
obtained;

- an indication of how alternate
choices in the design could have led
to other solutions.

We
two-way
This is
many st
search,
search,
simple,
to stay
manual

chose as the example the design of a
symbol table for a programming language,
a common programming structure, and

andard solutions to it ex ist : sequential
binary search, logorithmic or tree
and hash addressing. It is a f a i r l y
though rea l , design task and permits us
within the confines of the paper and

analysis.

No extensive discussion exists in the l i t ­
erature that explores thoroughly the design of
symbol tables, describing trade-offs in terms
of the possible properties. There does not
even ex is t , so far as we know, a complete for­
mulation of the design problem, say in terms of
a space of poss ib i l i t i es , the constraints and
the objective function. Our example is not
meant to f i l l any of these gaps, but only to
i l l us t ra te our model of functional reasoning in
design.

The design task environment

The basic class of structures to be used
in the design, called programming structures,
consists of collections of data-structures with

628

programs that operate on them. Programming
structures, by the execution of one or more of
their programs, provide (possibly many) func­
tions to other programming structures in which
they are embedded.

We adopt two general conventions of design
practice, which are substantially honored
throughout the programming world:

Principle of separated functions.
There exists a distinct program that
provides each of the functions pro­
vided by a programming structure.

Principle of uniform control. There
exists a programming language (includ­
ing therein the notion of a set of
programming conventions) that for all
programming structures provides the
functions of:

(1) Designating the program to be
executed at each moment.

(2) Designating the operands
(data-structures) for a pro­
gram.

(3) Communicating the operands to
a program to be executed.

(4) Communicating the results of
an executed program.

(5) Loading programs and their
operands into space required
for their operation.

The first principle is simply that one designs a
separate subroutine for each kind of thing one
can do with a data structure, rather than evok­
ing the actions in various linked and contingent
combinations. It does not imply that only such
programs should exist; the usual programming
structure has many subroutines that are internal
to i t . The second principle is simply to have
uniform conventions for calling routines, passing
parameters, providing space in primary memory,
etc. Both principles cover functions that must
be provided for any programming structure to
operate. They permit the design of a particular
programming structure to attend exclusively to
the processing required to achieve the specific
functions desired.

Both program and data are structures and
lead to a kind of dual functional description.
We can describe programs, giving the function
performed by each subroutine (ultimately, each
instruction). Such a functional description wil l
be complete: the functioning of each of the in­
structions is the necessary and sufficient con­
dition for the programming structure to provide
specified functions. The data does not seem to
enter in. Equally, we can describe data

Session No. 15 Heuristic Problem Solving

structures, giving the functions of the contents
of each subpart and their relations in address
space. Such a description wil l be almost com­
plete, for almost every instruction in the pro­
gram wil l operate only by the grace of some
aspect of the data,* Thus, a functional
description of a programming structure wil l
appear to present everything twice. We recog­
nize this by taking the function of data as
permitting various processing functions to be
provided by particular programs (ultimately,
instructions). For example, an address rela­
tionship may "permit computation" of some results

Figure 1 shows the actual structures avail­
able for our example: cells, addresses, the
relation of contents-of, and sets of instruc­
tions. We write programs in a simple Algol-like
notation. Figure 2 illustrates the functions
provided by the program structures and those
permitted by the data structures. The func­
tional requirements of the structures are not
shown here since they are well-known to all
programmers.

Figure 3 shows the code and data structure
for the simple symbol table whose design we shall
illustrate. It consists of a one-dimensional
array with each entry in the symbol table taking
two adjacent cells. The external symbol is
entered in the first cell of a pair, the internal
address in the second. There are three routines:
Rl finds the address associated with an external
symbol; R2 finds the symbol associated with an
internal address; and R3 enters a new symbol-
address pair into the table. For the accessing
operations a search is made of the table, test­
ing the first word of a pair if the symbol is
given or the second word of the pair if the
address is given. If a match is found, then the
other member of the pair is returned as the
result. To establish a new pair, it is simply
loaded into the table at the high end.

Several simplifications have been intro­
duced. We ignore all failure conditions, either
that a requested entry is not in the table or
that the table is too ful l to receive a new
entry. We do not provide for the removal or
modification of existing entries so that R3
becomes much simplified. These simplifications
are made to keep the example within bounds.

It is necessary to impose a system of func­
tion terms. Figure 4** defines the functional
* The failure of completeness derives from pro­

grams accomplishing some things without resort
to a data structure.

**The material in Figures 4, 5 and 6 is output
from XDA, a semi-automated design system based
on our model. The system is being built (by
PF) and used on the PDP-10; it is constructed
on L*(F) -- a kernel system-building system.

Session No. 15 Heuristic Problem Solving 629

provisions of the structures to be used in the
design example. Referring to Table 1 for an
explanation of the notation used by XDA, Figure
4 tells us that the function OBTAIN (with inter­
nal name Fl) can be provided by three different
structures: a KNOW STRUCTURE, a COMPUTE STRUC­
TURE, or a SEARCH STRUCTURE (with internal names
S1, S2, and S3). Additionally, Si (the KNOW
STRUCTURE) is marked PRIMITIVE, meaning that for
the present we need not worry about its func­
tional requirements.

Although the function terms listed in
Figure 4 (OBTAIN, KNOW, COMPUTE, etc.) are
meaningful to the reader, their role in this
design must depend entirely on their functional
specifications. These consist of the function
provision laws given in Figure 4 and the func­
tional requirements given in Figure 5. The
first line of Figure 5 states that S2 requires
the function F3, lines 4 and 5 state that S5
requires F3 and F9, etc. (The full form of a
name (e.g. SEARCH STRUCTURE) or its internal
name (e.g., S3) can be used interchangeably).

The system of functional description that
this scheme leads to is quite simple and reason­
ably abstract compared to the actual programming
structures of Figure 1. Nonetheless, it is
adequate for the purposes of the example and
serves to define a small but complete design task
environment.

The design problem

We can pose the problem of designing a
symbol table as follows:

Given: The structures available in the
design task environment.

Construct: A structure (called a
symbol table) that provides
for:

(1) Obtaining the internal
address associated with a
presented external symbol.

(2) Obtaining the external sym­
bol associated with a pre­
sented internal address.

(3) Associating a presented exter
nal symbol and internal
address.

In accordance with our earlier remarks, we have
removed other functions normally associated with
a symbol table.

The problem is cast in terms of a set of
three functions to be provided and none to be
required. From the principles stated earlier, we
can take it that there will be a program for each
of the three functions, and that the only design

problem is what is the nature of these three pro­
grams and the data structures on which they work.
The issue of how an external symbol and an inter­
nal address are presented is not of concern,
being part of the surrounding programming system.

The design task environment presented is not
at all a special task environment for symbol
tables. The structures and functions provided
arc general. With a few additions, a complete
order code could be built up and we could then
propose other problems to be solved in the same
environment.

Design path

As already discussed, one can follow a
vailety of design strategies while employing
functional reasoning to go from a design goal to
a complete design. Although the strategy used
can be very important, our purpose here is to
illustrate the reasoning and its product -- not
the pattern it follows. Consequently, no par­
ticular significance should be attached to the
order in which the following design unfolds.

XDA was used to go through an essentially
complete sequence that achieves a design for the
object specified above within the design task
environment given. Figure 6 shows an initial
portion of the design trace output of XDA as it
was used to develop this example. Using the
notation of Table 1 and noting that the design­
er's input is underlined to distinguish it from
XDA's output, we see that first the structure to
be designed is defined by stating the functions
it is to provide. This structure and its re­
quired functions are placed in nodes of the de­
sign representation (D1, D2, etc.). The designer
is then given a choice as to which part of the
design he wants to work on and a set of possible
structures are presented to him for his choice.
HE may stipulate a structure to supply the func­
tion in question at this point in the design
(other structures might be used to supply the
same function elsewhere in the design). Then
its functional requirements are entered into the
design and the cycle repeats. This proceeds
(assuming the designer does not alter the prompt­
ing sequence of XDA) until a primitive structure
is stipulated to provide a needed function, ter­
minating that branch of the design.

Figure 7 portrays graphically the design
path that was followed in the complete design
trace of XDA (the path that produced the design

it The designer may make a variety of responses,
besides those suggested by the system, that per­
mit him complete freedom in choosing a design
sequence. Additionally, the design may be backed
up, new functions and structures not in the data
base may be defined and used in the design,and the
system can be requested to perform more complicat­
ed searches for structures supplying a given
function.

630

of routine R1 is omitted since it is exactly
analogous to the design of R2 -- the left-most
branch of the tree). The time order of the
trace can be reproduced by following the branches
depth-first in left to right order (a top-down
strategy was used for simplicity). The tokens
in the nodes are the shorthand names of functions
and structures and the node is labeled with its
name from XDA's trace. A function node below a
structure node indicates the function is re­
quired by the structure; a structure node below
a function node indicates the structure can pro­
vide the function. If a structure node is a
triangle, then the structure was considered but
not stipulated for the design. If a node is
square, the structure is terminal and a name of
the form Si/(Di) is attached to indicate the
actual structure that was stipulated for the
design, as shown in Figures 6 and 8.

Starting at the top we note that the symbol
table (S16) has three functional requirements
(F24, F25 and F26) that are the three functions
it is to provide. To follow the design of the
retrieval mechanism for (F24) we move down the
left subpath. F24 has three types of structures
(SI, S2 and S3) that can provide i t . Since the
path goes through S3 that means we chose to use
a search structure (S3) in the design.

From XDA's data base (built up in Figures
4 and 5) we learn that a search structure (S3)
has only one functional requirement, search (F4),
and that two structures (S7 and S8) can provide
the function of search. We chose a generator
searcher (S7). It in turn has three functional
requirements (F11, F12 and F13). S8 was con­
sidered as a candidate to provide F4 but was not
chosen. The design trace in Figure 6 shows this
sequence more clearly.

The path continues in this way, splitting
into subpaths each time two or more functional
requirements appear for a single structure. At
the terminal nodes we have designated particular
pieces of primitive structure (for this design)
that go to make up the designed object.

A Solution of the Design Problem

Figure 3 shows a completed symbol table
(data structures plus operators) that is an in­
formal solution. Any programmer would verify
that it performs the required functions. In
terras of the model, however, it is not a complete
solution for we have not demonstrated what struc­
tures provide what functions and what structures
permit other structures (e.g., programs) to
operate as needed.

Figure 8 presents the completed design by
associating the terminal structures from the
design trace with the actual structures used in
the solution presented in Figure 3. The first
column has the code names of the terminal struc­
tures. The second column presents the functions

Session No. 15 Heuristic Problem Solving

provided by the structures as developed in the
design trace; it consists of al l functional re­
quirements above the structure in the design
path up to and including the first function that
is a member of a set of two or more functional
requirements of a structure. The third column
is the informal definition of the structure
given in the design trace and the last column
shows the corresponding structure used in
Figure 3. As noted above, the data structures
play a role of permitting various functions by
the program structures and thus do not appear
in Figure 8.

Full Design

The disparity between the functional de­
scriptions of the terminal objects and the
actual structures used illustrates the point
made above that the output of a functional
reasoning design process is essentially a plan
requiring further implementation. The struc­
tures used are not only some distance from the
structures specified but some critical elements
are missing and must be supplied by some pro­
cess to effect an implementation. To wit, the
control structures that tie together the various
pieces of program and the exact constraints on
the data structures (e.g., size of cell, adja­
cency) are not present.

The distance between the final result of
the functional reasoning in the example and a
physical specification of the constructed ob­
ject does not seem to be an unbridgeable chasm.
Aside from the fact that many important designs
(e.g., flowcharts and blueprints) leave out
many important details (the use of language
constructions and the principles of carpentry),
there are at least two possible courses of
action.

One could try to carry the functional
reasoning process down further to obtain more
concrete specifications. Analysis of the re­
quirements of individual instructions in terms
of their need for operands and/or adjacent in­
structions permits a more detailed specifica­
tion. Likewise, data structures could be ana­
lyzed in terms of relations between their parts,
tven though this approach could carry the de­
sign further than our example goes, it is not
clear it could do the entire job.

The other approach that bears investiga­
tion is to consider the output of functional
reasoning to be a plan that is input to a
heuristic compiler. Matching on the functional
descriptions of instructions and data struc­
tures would be used to implement the plan.
Clearly, such a procedure would have to have
available operators for manipulating and testing
the physical structures so assembled. The
details have not been worked out, but Figure 8
clearly presents a set of well-defined problems
of the general form "Build a structure out of

Session No. 15 Heuristic Problem Solving

the available physical structures (as in Figure
1) that performs this well-defined funct ion",
which would be amenable to heurist ic compiler
techniques.

Alternative Designs

Figure 7 plainly shows that only one of many
possible paths has been chosen. Most, of course,
lead to no design at a l l . For example, if the
association function had been designed as a hash­
ing function and the ret r ieva l operations as we
now have them, we clearly would not have a symbol
table.

One common type of symbol table employs a
variant of binary search in which an inspection
of a candidate indicates a narrowed range from
which to obtain the next candidate. This is
what we have called a guided searcher (S8).
Thus, by choosing S8 instead of the generator
searcher (S7) at design node D7, we would have
obtained a symbol table of that design (assuming
we made appropriate changes in the association
function as we l l) .

To obtain a hash storage scheme instead of
the relat ional storage we used, we could have
picked the structure of name location storage
(S15) at design node D40, this being the kind of
structure that computes the address of a storage
ce l l from the name of the presented item. Then
in the ret r ieval operation we would have had to
choose a compute structure (S2) at design node
D5 in order to compute d i rect ly the location of
the target object.

Discussion

We have now presented a model of functional
reasoning in design and i l lus t ra ted at least the
central tenets of i t . A number of aspects have
been l e f t dangling or received no attention at
a l l . They can receive no adequate treatment
here, but we w i l l attempt to state some of them
b r i e f l y .

Relation to constraint-formulation

We took note of the constraint-formulation
at the beginning of the paper, because it appears
to be the form towards which design problems
tend as they become formalized. There is more
than one way to look at the re la t ion of function­
al reasoning to the constraint-formulation. One
view takes functional reasoning as a special
subspecies of the constraint-formulation. The
kinds of constraints are simple logical ones,
saying that connections of various kinds must
ex is t . As we move toward the various res t r i c ­
t ive laws (supplies, capacit ies, etc.) a few
addit ional simple constraints can be handled
(e .g . , these laws are mostly expressible as
constant or bounded sums, as in l inear program­
ming). But no real ly in t r i ca te constraints can
be handled. Thus, functional reasoning is sort

631

of a poor man's non-technical constraint sat is­
faction scheme. It should be replaced by more
adequate formulations wherever possible.

An alternat ive view sees functional reason­
ing as a planning scheme to be used in connec­
t ion with more accurate procedures. This is the
view impl ic i t in our treatment of the example,
where we carried the functional description only
to a certain deta i l and then used a more precise
formulation.

On the i n i t i a l structuring of designs

One of the pecul iar i t ies of many design
problems is that they create structure out of
nothing, so to speak. They appear in this sense
to be open problems. It can often be observed
in human design that a structure is placed on
the design problem with in a few minutes, or even
fractions of a minute, of obtaining the problem.
Pure functional reasoning seems to be a plausible
candidate for the mechanism whereby this i n i t i a l
creation of structure occurs.

The functionally described structures are
not unlike the kinds of descriptions of struc-
ture people seem to have i n i t i a l l y . The reason­
ing involved, which is highly associational
(bouncing back and forth between functions and
structures using function terms as the linkages),
is well suited for rapid reasoning which could
put together new structures never before known
to the designer. This role for functional
reasoning in design is consistent with viewing
it as a planning, i n i t i a l approximation ins t ru­
ment. This aspect also emphasizes the qual i ta­
t ive model, rather than models with substantial
rest r ic t ions added which make reasoning more
complex.

Large memory structure

It goes almost without saying (though we
have not said it yet) that real designs require
a large memory of structures and functional laws
between them. This point has been urged in con­
nection with almost every attempt to reason
about the real world, and this paper offers no
new evidence for i t . The qual i tat ive model can
be viewed as a sort of re t r ieva l net for index­
ing and organizing a large memory, and much of
i t s power should only become apparent in such
contexts.

The relat ion to predicate calculus models

We do not yet understand the relationship
of this model of functional reasoning to at­
tempts to formulate problems in a formal calcu­
lus (12), (13), (17). It appears that a l l

Sometimes they also have a highly specific and
elaborate structure clearly evoked from having
already known i t .

i

632 Session No. 15 Heuristic Problem Solving

reasoning schemes rely ult imately on mechanisms
for matching expressions and instant iat ions of
forms -- for that is what is available in i n ­
formation processing systems. Thus a l l systems
have a sort of brotherhood under the surface.
The formal ca lcu l i offer great precision and thus
appear to be modelling the structure of s i tua­
t ions. But when they are applied to non-formal
situations (i . e . , not to already formalized areas
such as group theory, l a t t i ce theory, or simple
puzzles) the toy models that are constructed
(i . e . , the baby axiomatizations) are su f f i c ien t ly
gross caricatures of rea l i t y that they may in
fact be nothing but a vehicle for the sort of
functional reasoning discussed here.

Universal non-model

The uniformity of functional reasoning
across a l l domains prompts the conjecture that
it is a sort of non-model* of each part icular
domain. That i s , it is a scheme of reasoning
that is adapted to the needs of the reasoner,
not to the detai ls of the domain. It is applied
universally to a l l domains. Whatever is picked
up is reflected in the reasoner's problem solv­
ing; whatever is too in t r ica te is los t . The
major degree of freedom available to make the
model adaptive to a part icular domain is the
choice of the function terms that are to be ap­
pl ied in that domain. The set of functional
terms appears not to be derivable from the struc­
tural domain, so that they constitute an importa­
t ion or construction for a domain. For instance,
they can ref lect past experience with solving
problems in that domain, so that a part icular set
of function terms serves, in par t , as a memory oi
past solutions.

Systems of functional description

Function terms do not generally occur in
iso la t ion. They form systems for a given domain.
For example, GPS has a set for logic: add and
delete terms; increase and decrease numbers of
terms; change signs, connective, posi t ion, and
grouping. These cover the domain: if no such
term applies, then the given si tuat ion is already
the desired one. Relations other than pa r t i t i on ­
ing hold between function terms (e .g . , inclusion).
It is clear that the efficacy of a scheme of
functional reasoning depends on the set oi terms
chosen and their relations to each other (e .g . ,
see GPS on the Tower of Hanoi (10)). The impor­
tance of the nature of the descriptive system
available on a problem space has been emphasized
by others, most notably by Banerji (4). It
deserves extensive treatment.

* It i s , of course, a model of any domain it is
used for . Our use of "non-model" is to emphasize
i t s lack of responsiveness to the detai ls of any
part icular domain.

Conclusion

This paper provides an i n i t i a l attempt to
set out a model of a specif ic type of reasoning.
It does not capture a l l that happens when humans
design using function terms. But only by a t ­
tempting an exp l ic i t model for some of the more
obvious aspects of functional reasoning, w i l l
it be possible to discover the addit ional phe­
nomena that ex is t .

References

1. Alexander, C. Notes on the Synthesis of
Form, Harvard University Press, 1964.

2. American Heritage Dictionary, 1969.

3. Asimow, M. Introduction to Design, Prentice
Hal l , 1962.

4. Banerji, R. B. Theory of Problem Solving:
An Approach to A r t i f i c i a l Intel l igence,
American Elsevier Publishing Company, 1969.

5. Dejka, W. and D. C. McCall. "A Study in the
Design of a Practicable Timeable Bandpass
F i l te r Using Mathematical Programming,"
Proc. of the IEEE 1970 Systems Science and
Cybernetics Conference, p. 267.

6. Duncker, K. "On Problem-Solving," Psychol­
ogy Monographs, 58, 5, 1945.

7. Eastman, C. M. "Explorations of the Cog­
n i t ive Processes in Design." Computer
Science Department, Carnegie-Mellon
University, AD671158, 1968.

8. Eastman, C. M. "Cognitive Processes and
I l l -def ined Problems: A Case Study from
Design." Proc. of First Joint International
Conference on A r t i f i c i a l Intel l igence,
Washington, D. C., 1969.

9. Eastman, C. M. "Problem solving strategies
in Design." EDRA 1: Proceedings of the
Environmental Design Research Association
Conference, H. Sanoff and S. Cohn (eds.)
Chapel H i l l , N. C., June 1969. School for
Design, North Carolina State University,
1970.

10. Ernst, C. W. and A. Newell. GPS: A Case
Study in Generality and Problem Solving,
Academic Press, 1969.

11. Grason, J, "Methods for the Computer-
Implemented Solution of a Class of 'Floor
Plan' Design Problems," Ph.D. Thesis,
Carnegie-Mellon University, AD 717756, 1970.

12. Green, C. "Application of Theorem Proving
to Problem Solving," Proc. of First Inter­
national Joint Conference on A r t i f i c i a l
Intel l igence, Washington, D. C., 1969.

Session No. 15 Heuristic Problem Solving 633

13. McCarthy, J. "Programs with Common Sense,"
in Semantic Information Processing, M. Minsky
(ed.) , MIT Press, 1%8.

14. McCarthy, J. and P. J. Hayes. "Some Philo­
sophical Problems From the Standpoint oi
A r t i f i c i a l Intel l igence," in Machine I n t e l l i ­
gence 4, B. Meltzer and D. Michie (eds.),
American Elsevier Publishing Co., Inc., 1%9.

15. Newell, A. and H. A. Simon. "Computers in
Psychology," in Handbook of Mathematical
Psychology, vo l . 1, John Wiley, pp. 361-428,
1963.

16. Newell, A. and H. A. Simon. Human Problem
Solving, Prentice-Hall, in press, 1971.

17. Pople, H. E. Jr. A Coal Oriented Language
for the Computer, Ph.D. Thesis, Carnegie -
Mellon University, 1969.

18. Simon, H. A. "Experiments with a Heuristic
Compiler," JACM 10,4, October, 1963.

19. Simon, H. A. The Sciences of the A r t i f i c i a l ,
MIT Press, 1969.

20. Wilde, D. J. and C. S. Beightler. Founda­
tions of Optimization, Prentice-Hal1, 1967.

634 Session No. 15 Heuristic Problem Solving

An ALGOL-like programming language:
- identifiers
- assignment operator
- simple arithmetic expressions
- arrays
- special procedure test(A,B) returns true if A=B
- simple condit ional: if true
- goto, labels, declarations, delimiters as needed

Note: Addresses are posit ive integers and symbols are sequences of
characters.

Figure 1: Structures Available for Building Symbol Table

Session No. 15 Heuristic Problem Solving 635

636

Session No. 15 Heuristic Problem Solving

s2: COMPUTE STRUCTURE >> f 3 : COMPUTE *

s3 : SEARCH STRUCTURE >> f4: SEARCH •

s4: OPERATOR THAT PRODUCES RESULT >> f 9 : KNOW OPERATOR *

s5 : OPERATOR THAT PRODUCES STRUCTURE FROM WHICH CAN COMPUTE >>

f 9 : KNOW OPERATOR A f 3 : COMPUTE *

s6: OPERATOR THAT COMPUTES CONDITIONALLY >> f 6 : RECOGNIZE &

f 9 : KNOW OPERATOR •

s7 : GENERATOR SEARCHER >> f l O : GENERATE CANDIDATES A

f l l : RECOGNIZE TARGET A f l 2 : OBTAIN FROM TARGET *

s8: GUIDED SEARCHER >> f l 3 : OBTAIN INITIAL CANDIDATE A

f l 4 : OBTAIN NEXT CANDIDATE FROM CURRENT CANDIDATE A

f l l : RECOGNIZE TARGET A

f l 2 : OBTAIN FROM TARGET *

s9 : GENERATOR >> f l 5 : OBTAIN INITIAL STATE A

f l 6 : OBTAIN CANDIDATE FROM STATE A

f l 7 : OBTAIN NEXT STATE FROM STATE *

s lO : UNIQUE STRUCTURE MATCHER >> f l 8 : OBTAIN UNIQUE STRUCTURE A

f l 9 : OBTAIN DIFFERENCE *

s11: UNIQUE RELATION MATCHER >> f 2 0 : OBTAIN UNIQUE RELATION A

f 2 1 : COMPUTE RELATION •

s l 2 : EXTREME MEASURE SEARCHER >> f4: SEARCH A f 6 : RECOGNIZE *

s14: RELATIONAL ITEM STORAGE >> f 2 2 : OBTAIN STORAGE OBEYING RELATION A

f 8 : STORE *

s l 5 : NAME LOCATION STORAGE >> f 2 3 : COMPUTE NAME OF STORAGE FROM ITEM A

f 8 : STORE *

Figure 5: Functional Requirements (input to XDA)

637

Session No. 15 Heuristic Problem Solving

DESIGN SYMBOL TABLE *

S16: SYMBOL TABLE (D1) —> F24: OBTAIN ADDRESS GIVEN SYMBOL ft

F25: OBTAIN SYMBOL GIVEN ADDRESS ft

F26: RETAIN SYMBOL ADDRESS PAIR *

CHOOSE FROM F24 F25 F26 TO WORK ON: F24

OBTAIN < - - S1 S2 S3

F2l4: OBTAIN ADDRESS GIVEN SYMBOL (02) -- S3: SEARCH STRUCTURE *

S3: SEARCH STRUCTURE (D5) >> F t : SEARCH (D6)

CHOOSE FROM F4 TO WORK ON: F4

SEARCH < - - S7 S8

F4: SEARCH (D6) -- S7: GENERATOR SEARCHER *

S7: GENERATOR SEARCHER (D7) >> FIO: GENERATE CANDIDATES (D10) ft

F l l : RECOGNIZE TARGET (D8) ft F12x OBTAIN FROM TARGET (D9)

CHOOSE FROM FIO F l l F12 TO WORK ON: F12

OBTAIN < - - S1 S2 S3

F12: OBTAIN FROM TARGET (09) — S2: COMPUTE STRUCTURE *

S2: COMPUTE STRUCTURE (D11) >> F3: COMPUTE (D12)

CHOOSE FROM F3 TO WORK ON: F3

COMPUTE <— S4 S5 S6

F3: COMPUTE (D12) ■- SU: OPERATOR THAT PRODUCES RESULT •

SU: OPERATOR THAT PRODUCES RESULT (D13) >> F9: KNOW OPERATOR (D14)

F9: KNOW OPERATOR (D14) • • S1: KNOW STRUCTURE (015)

PLEASE DEFINE AN S1 AT (D15) THAT PROVIDES F9 F3 F12

S1/(D15) - ADD ONE TO TARGET ANO FETCH

CHOOSE FROM FIO F l l TO WORK ON: F l l

Figure 6: I n i t i a l Portion of XDA Design Trace
(Designer's responses to system are underlined.)

Session No. 15 Heuristic Problem Solving 639

640 Session No. 15 Heuristic Problem Solving

