
Session 5 Appl icat ions and
Impl icat ions o f A r t i f i c i a l
In te l l i gence

ARTIFICIAL INTELLIGENCE AND AUTOMATIC PROGRAMMING IN CAI

E l l i o t B. Koffman
Computer Science Group
E l e c t r i c a l Engineering Dept
Univers i ty of Connecticut
S tor rs , Conn. 06268

Sumner E. Blount
Software Development Group
D i g i t a l Equipment Corp.
Maynard, Mass. 01754

Abstract

This paper discusses generative computer-assisted
i ns t ruc t i on (CAI) and i t s re la t ionsh ip to A r t i f i c i a l
I n te l l i gence Research. Systems which have a l im i ted
capab i l i t y f o r na tu ra l language communication are
described. In add i t i on , p o t e n t i a l areas in which
A r t i f i c i a l I n te l l i gence could be applied are ou t l i ned .
These include i nd i v i dua l i za t i on of i n s t r u c t i o n , deter­
mining the degree of" accuracy of a student response,
and problem-solving,

A CAI system which is capable of w r i t i n g computer
programs is described in d e t a i l . Techniques are given
f o r generating meaningful programming problems. These
problems are represented as a sequence of p r im i t i ve
tasks each of which can be coded in several ways. The
manner in which the system designs i t s own so lu t ion
program and monitors the student so lu t ion is also
described.

I . AI i n CAT

There is cur rent ly s i g n i f i c a n t i n te res t in
generative systems fo r computer-assisted i ns t ruc t i on
(CAI). A generative system has the capab i l i t y to both
generate and solve meaningful problems. It must also
be able to monitor a s tudent 's s o l u t i o n , determine to
what extent the student is co r rec t , and provide p e r t i ­
nent remedial feedback.

Generative CAI systems free the course author
from having to develop several a l te rna t i ve presenta­
t ions of the same or s im i la r mate r ia l . In add i t i on ,
the course author does not have to specify correct
and incor rec t answers and t h e i r consequences as the
system can determine a l l of these on i t s own. These
systems often have the capab i l i t y to reply to student
questions and allow him to d i ve r t the ins t ruc t ion to
areas that i n te res t him.

Data-Base Systems

There have been a few CAI systems designed which
are or iented around a st ructured network of f a c t s .
Wexler describes a system which combines generative
CAI w i th frame-oriented CAI in that the course-author
must specify ce r ta i n question formats. The system
generates parameters fo r these formats and searches
the data base to determine the correct answer. It
generates remedial feedback from i t s network i f the
s tudent 's so lu t i on is i nco r rec t . This feedback can
e i the r be in the form of a correct statement based on
the student 's response or a t race of the steps required
to r e t r i e v e the correct answer. On command from the
student , i t w i l l generate statements from i t s data­
base which conform to prespeci f ied pat terns.

This research has been supported by the Nat ional
I n s t i t u t e of Education, Grant #0EG-0-72-0895. The
Univers i ty of Connecticut Computer Center Provided
computational f a c i l i t i e s .

Carbonell describes a system, SCHOLAR, in which
the generation of several types of questions is done
en t i r e l y by the system from the semantic network. A lso,
the system has the capab i l i t y to i n t e rp re t a va r ie ty
of student questions and generate appropriate responses.
As in the Wexler system, the semantic network must
be constructed by the course-author.

Recent research wi th SCHOLAR (Carbonel l3) has
attempted to incorporate graphical informat ion along
w i th symbolic in format ion in a semantic network. In
add i t i on , emphasis is being placed on improving the
a b i l i t y of the system to make inferences based upon
the informat ion contained in i t s semantic network and
to take i n to account the fuzzyness or uncerta inty
associated wi th an inference. (Carhonell and C o l l i n s 4) .

Simmons5 describes a system in which the semantic
network is automatical ly produced from a page of t e x t .
The student can request paraphases of d i f f i c u l t passa­
ges and word d e f i n i t i o n s . In a d d i t i o n , the system
can generate " f i l l - i n " and " t r u e - f a l s e " questions from
i t s semantic network.

This system r e l i e s heavi ly on the use of an
augmented t r a n s i t i o n network grammar (Woods6) both
fo r the construct ion of the semantic network and for
the generation of statements from t h i s network. More
recent research has focused on the use of a STRIPS l i k e
model (Fikes and Ni lsson ') to allow modi f icat ions to
the semantic network which r e f l e c t a time sequence of
events.

Research in a CAI system for meteorology (Brown,
Burton and Zdybel8) has invest igated the use of a
semantic network to store s t a t i c in format ion and an
augmented f i n i t e automata s t ruc tu re fo r s to r ing
informat ion concerning the dynamics of a process.
This l a t t e r s t ruc ture shows, fo r a l l possible s ta te
t r a n s i t i o n s , the external and i n t e r n a l condit ions which
must be met before the t r a n s i t i o n can occur. Conse­
quent ly , when a student poses a ques t ion , he exci tes
the model and causes the generation of a t ree of
intermediate states u n t i l equ i l ib r ium is reached.
Answering the student 's question is accomplished by
i n te rp re t i ng t h i s t ree o f states in the appropriate
manner.

As research cont inues, improvements due to A r t i ­
f i c i a l I n te l l i gence Research w i l l enable fu ture ver­
sions of data-base or iented systems to accept an
unstructured or essay-type response from a student.
These systems provide an impressive demonstration of
the p o t e n t i a l app l i ca t ion of research in na tura l
language communications and question-answering to CAI.
However, there are s t i l l several problem areas in
generative CAI which t i e in very c lose ly wi th A r t i ­
f i c i a l I n t e l l i g e n c e .

I n d i v i d u a l i z i n g I ns t ruc t i on and Remedial Aid

The f i r s t problem is i n d i v i d u a l i z i n g the

86

i n s t r u c t i o n received by each student or determining
what is best f o r a student to study based on h is
previous in te rac t ions w i th the system. This is a
problem in pa t te rn recogn i t i on . The student must be
c l a s s i f i e d as a p a r t i c u l a r type of learner . Based on
t h i s ca tegor iza t ion and his past h i s t o r y , an appro­
p r i a t e concept should be selected f o r study.

This problem is being s tudied by Shea and Sleeaan .
They propose a three l e v e l teaching system in which
l e v e l one is s t r i c t l y concerned w i th student i n t e r ­
a c t i o n , record c o l l e c t i o n , and generation of problems
to s u i t the c r i t e r i a imposed by l e v e l 2. Level 2 is
responsible fo r implementing a spec i f i c teaching
s t ra tegy . Level 3 decides which s t ra tegy should be
used and evaluates the performance of the lower leve ls
to determine whether performance is sa t i s f ac to ry or
whether a d i f f e r e n t s t rategy should be t r i e d .

Other s tud ies in the design of an i n t e l l i g e n t
monitor f o r CAI have centered around the use of a
student model (summary of a s tudent 's past performance)
and a concept t r e e , which ind icates the p re - requ i s i t e
s t ruc tu re of the course. As the syster. gains exper­
ience wi th a p a r t i c u l a r s tudent , i t updates h is model
and establ ishes to what extent he pre fers to advance
quick ly to new ma te r i a l or b u i l d a so l i d foundation
before going on. Based on i t s knowledge of the s t u ­
dent and h is past performance, it decides at which
p lateau of the concept t ree the student should be
working. A l l concepts on t h i s plateau are then
evaluated w i th respect to fac tors such as recency of
use, change in s ta te of knowledge during l as t i n t e r ­
a c t i o n , current s ta te of knowledge, tendency to
increase or decrease h is s ta te of knowledge, and
relevance to other course concepts. The highest
scor ing concept is se lec ted , a problem su i tab le fo r
his experience l e v e l is generated, and i t s so lu t i on is
monitored.

In order to generate pert iment remedial feedback,
a CAI system must determine the degree of correctness
of a student response. If a simple number or phrase
is expected, i t i s r e l a t i v e l y easy to determine
whether a student is co r rec t . In mathematics, reso lu ­
t ion-based theorem provers have been used to v e r i f y
l o g i c a l proof procedures1 1 . Their i n i t i a l app l i ca t ion
has been successful in ass i s t i ng a student in const r ­
uc t i ng a proof by apply ing the r u l e of inference
designated by him to e a r l i e r l ines in the proof seq­
uence. If the s tudent 's ru l e cannot be app l i ed , he
is given remedial feedback. E f f o r t s to v e r i f y that
a l i n e typed in by a student is a v a l i d inference from
his previous work have been "moderately successfu l " .
A more ambitious goal now under study is to have the
theorem prover suggest ways of completing a proof
tak ing i n t o account a s tudent 's incomplete or erroneous
work.

Often i t i s not s u f f i c i e n t to t e l l a student he i s
wrong and i nd i ca te the correct so lu t i on method. An
i n t e l l i g e n t CAI system should be able to make hypo­
theses based on a s tudent 's e r ro r h i s t o r y as to
where the r e a l source of h is d i f f i c u l t y l i e s . For
example, a student may be having t roub le wi th
d i v i s i o n because he does not know how to mu l t i p l y
and/or sub t rac t . The CAI monitor must recognize
t h i s and r e d i r e c t the s tudent 's e f f o r t s or he w i l l
never master the d i v i s i o n a lgor i thm.

This problem, of course, is even harder to r e ­
solve in na tu ra l language systems. None of these
systems cu r ren t l y have an e f f e c t i v e way of adapting
the t u t o r i a l dialogue to exp lo i t the in format ion
present in an i nco r rec t student response.

87

Problem-Solving in CAI

A f i n a l probleiti area is pe r t i nen t to researchers
at tempt ing to use generative CAI in a problem-solving
environment. This is the design of the problem-
solver i t s e l f . Perhaps current research in problem-
so lv ing and planning techniques such as are evidenced
in STRIPS and in languages such as PLANNER12 and
QA413 w i l l f i n d app l i ca t ion i n t h i s area.

A generative CAI system has been designed around
an in t roduc tory course in computer science at the
Un ivers i ty of Connecticut. Two-thirds of t h i s course
is concerned wi th an in t roduc t ion to d i g i t a l l og i c
design; the remainder of the course teaches machine-
language programming. An a lgor i thmic approach has
been used to teach the concepts in d i g i t a l log ic
design through CAI. The spec i f i c approach taken has
been described elsewhere1 .

The software por t ion of the course Is concerned
w i th teaching students how to w r i t e machine language
programs fo r a small computer, very s im i l a r to the
D i g i t a l Equipment Corporation PDP-8. The i n s t r u c t i o n
set and organizat ion are i d e n t i c a l ; the only d i f fe rence
is tha t student programs are r e s t r i c t e d to pages 0 and
1 of memory. This consists of 377 (oc ta l) words of
core which is s u f f i c i e n t fo r beginning students to
learn to program (and also to learn p r i nc ip l es of
memory conservat Iyn) .

The CAI system Its not used to replace the classes
or textbook. I t Is intended to provide prac t ice and
t u t o r i n g in problem so lv ing s im i l a r to what one would
obta in through homework problems. The advantage, of
course, is that the student gets some guided d i r ec t i on
and remedial feedback when he goes ast ray.

Since the system is generative and problems are
constructed in a random fash ion , i t is necessary that
i t also be able to wr i te i t s own so lu t ion programs.
There has been s i g n i f i c a n t e f f o r t expended in the
development of programs wi th t h i s c a p a b i l i t y . Early
work by Simon14 has been repor ted. Recent e f f o r t s
by Manna and Waldinger15 emphasise a theorem proving
approach to w r i t i n g programs. I t was f e l t that t h i s
general approach would not al low programs which
emphasize the r e q u i s i t e techniques of machine-language
programming to be designed.

The remainder of the paper w i l l focus on our
heu r i s t i c approach to automatic programming. The
system so designed w i l l be re fe r red to as MALT
(MAchine Language Tu to r) .

I I . System Overview

Pr io r to descr ib ing the system i t s e l f , i t would
be worthwhile to ou t l i ne some of i t s goals and con­
s t r a i n t s . I t was important tha t t h i s system funct ion
e f f e c t i v e l y as a t u t o r in machine language programming
f o r approximately t h i r t y students per semester, ra ther
than jus t serve as a demonstration of what might be
accomplished i f add i t i ona l computer resources were
a v a i l a b l e . This meant tha t MALT had to be implemented
on the t ime-shar ing system cur ren t l y ava i lab le on the
Un i ve r s i t y ' s IBM 360/65 which is CPS (Conversational
Programming System-IBM16), a d i a l e c t of P L - I . I t
a lso meant that response times to students should
normally be on the order of 5 to 10 seconds or less .
An a d d i t i o n a l r e s t r i c t i o n imposed by CPE i t s e l f was
tha t no more than twelve pages (U8K bytes) of core
memory be ac t i ve at any user te rm ina l .

A second goal of t h i s system was that it be
e a s i l y expandable. Th is means i t should be poss ib le

to add new problem types wi thout having to increase
the system's problem s o l v i n g c a p a b i l i t y , This f a c t o r ,
and the requirement f o r a compact or modular s t ruc tu re
in order to meet the twelve page core l i m i t , resu l ted
in the use of p r i m i t i v e tasks to serve as bu i l d i ng
blocks in the design of s o l u t i o n programs,

A t h i r d goal was t ha t the system be capable of a
high degree of i n d i v i d u a l i z a t i o n of i n s t r u c t i o n . The
form of the problem posed fo r each student should be
inf luenced by h is previous experience w i th the system.
The degree of moni tor ing should decrease as the s t u ­
dent 's l e v e l of competence increased; in f a c t , the
system should ass is t the student by programming
prev ious ly mastered sub-tasks for him.

I I I . General Approach

A generat ive CAI system has the minimum compo­
nents i l l u s t r a t e d in Figure 1. The problem generator-
is capable of prov id ing an un l im i ted va r i e t y of
meaningful problems. A v i t a l in format ion l i n k
ex is ts between the problem generator and problem
Solver. This l i n k provides the system wi th the exact
s t ruc tu re of the problem, and al lows the problem
solver to concentrate on the so lu t i on of the problem
ra ther than i t s d e f i n i t i o n .

The s t ruc tu re of each problem is i l l u s t r a t e d
by the AND-OR goal tree in Figure 2. A complex
programming problem is represented as three sub-
problems deal ing w i th input of i n fo rma t i on , processing
of core- res ident i n fo rma t ion , and program output
r espec t i ve l y . There are several a l t e rna t i ves fo r each
of the sub-problems. For example, (I , I , . . . , I }
is the set of input sub-problems where I , i s the n u l l
sub-problem. Each sub-problem, in t u r n , is decomposed
i n to a sequence of l o g i c a l tasks . Some of these tasks
are p r i m i t i v e tasks which the system can solve d i r e c t l y
in one or more ways (1 and I- ,-) . Other l o g i c a l

tasks cons i s t themselves of a sequence of p r i m i t i v e
tasks (i ,) .

ID
There are t h i r t y - f i v e p r i m i t i v e tasks program­

med in MALT. They would be used repeatedly in the
design of a complete program. Sample tasks might be:
the i n i t i a l i z a t i o n o f po in ters t o da ta , i n i t i a l i z a t i o n
of counters to keep t rack of the number of loop i t e r ­
a t i o n s ; reading or p r i n t i n g an ASC-II character ; and
t r a n s f e r r i n g data i n t o and out of memory. A large
v a r i e t y of problems can be constructed using only
t h i s set o f p r i m i t i v e tasks .

Figure 3 is a block diagram f o r the MALT
system. The previous student performance determines
what type of problem w i l l be generated. This problem
is presented to the student in na tu r a l language and
also passed on to the system as an ordered t r i p l e of
sub-problems. Next, a l i s t of l o g i c a l tasks for each
of the sub-problems is presented to the student . The
system representa t ion of t h i s " f l ow -cha r t " is a seq­
uence of c a l l s to problem-solver rou t i nes . These
problem-solver rou t ines solve the programming problem
and i n t e r a c t w i th the student to monitor his s o l u t i o n .

As the student undertakes each task in the
programming process, a corresponding problem-solver
rou t ine is entered by the CAI system, which guides
the student through the cons t ruc t ion of that part of
h i s program. During t h i s phase, the student is
constant ly being given feedback as to the correctness
o f his program. I f h is program introduces l o g i c a l
e r r o r s , the system w i l l po in t these out and o f f e r
h e l p f u l suggestions fo r t h e i r c o r r e c t i o n . I f the

system fee ls tha t the student might bene f i t from
observing h is program in opera t ion , i t a lso has the
capab i l i t y to simulate statement by statement program
execut ion.

The system is constant ly evaluat ing the s tudent 's
performance and updat ing h is permanent f i l e . This is
necessary because h is achievement determines not only
the d i f f i c u l t y of the problems given him, but a lso the
amount of i n t e r a c t i o n which he receives dur ing the
design of h is program.

I t should be stressed at t h i s point that the
system can only solve the p r i m i t i v e tasks. Complex
problems can be constructed using these tasks as b u i l d ­
ing b locks. The system's knowledge of the p r i m i t i v e
tasks and t h e i r r e l a t i onsh ips enables i t to generate
the s o l u t i o n f o r the complete programming problem.

As is ind icated by the above d iscuss ion , the l o g i c
sequence which the system w i l l use to code the problem
is p r e t t y we l l determined by i t s impl ied s t r u c t u r e .
The only freedom that ex i s t s is in the se lec t i on of the
code to implement each p r i m i t i v e task.

This is p e r f e c t l y sa t i s f ac to ry fo r a system whose
sole func t ion is to produce the machine-language code
which accomplishes a p a r t i c u l a r programming problem.
However, t h i s approach should be j u s t i f i e d in a CAI
environment.

There are normally many ways to f lowchart and
code a programming problem. The system could accept
the s tudent 's so lu t i on i n i t s e n t i r e t y , der ive i t s
own s o l u t i o n program, execute both programs, and com­
pare t h e i r r e s u l t s . Such an approach, although i t
would give the student complete freedom and v e r i f y his
program, would be worthless as a teacher. Essen t i a l l y ,
it would say to the student who has made a mistake:
"Your answer is wrong, but I have no idea why. Here
is my s o l u t i o n ; perhaps you can f i gu re out what is
wrong y o u r s e l f . " A student who can do t h i s does not
r e a l l y need a CAI t u t o r .

The approach we have taken is to say: "You are
j u s t learn ing how to code in machine language. Your

problem can be f lowcharted in t h i s way. I f you w i l l
fo l low my f l owcha r t , I can teach you something about
machine-language cod ing , " We f e e l (and so do our
student guinea p igs) t ha t the beginning student gains
more from a l i t t l e guidance at t h i s stage and learns
qu i te a b i t about f l owchar t ing through observat ion.

Perhaps, current research in program synthesis
and v e r i f i c a t i o n w i l l soon remove t h i s r e s t r i c t i o n .
I t would then be pre ferab le to al low the student to
design h is own program to the extent he is ab le . The
system could v e r i f y t ha t the po r t i on of the program
constructed so f a r does, in f a c t , accomplish what the
student intended. At t h i s p o i n t , the system would
take over and synthesize the remainder of the s o l u t i o n .
I f the s tudent 's po r t i on o f the so lu t i on were only
p a r t i a l l y c o r r e c t , the po in t at which his program went
astray cou ld , perhaps, be located and the cor rec t
so lu t i on continued from there .

IV. Problem Generator

As has been mentioned, each problem may be
thought of as cons is t i ng of three (or l ess) d i s t i n c t
phases. When students f i r s t s t a r t o f f using the
system, they w i l l normally be presented w i t h a problem
tha t consists of j u s t a s ing le phase. As they gain
competence and exper ience, more d i f f i c u l t problems w i l l
be generated fo r them.

88

Problem generation consists of se lec t ing a
pa"Uh through a t ree of depth three as shown in F igure
4. Branches A1 through A7 consist of the seven s t r ings

(i nc lud ing the n u l l s t r i n g) descr ib ing the input sub-
problems. B , B , B are the three meaningful

processing steps (out of a t o t a l of t h i r t een) which
can be performed on the input format described by
A , . C j i j i c^i2 are t l i e possible forms of the output
sub-problem (out of a t o t a l of 10) f o r a problem
beginning wi th A and B .

The p robab i l i t y of a p a r t i c u l a r branch being
selected is a func t ion of each student 's competence.
These p r o b a b i l i t i e s change as the student progresses
through the course ma te r i a l . There are more than HO
d i f f e r e n t paths through t h i s t ree which represent
meaningful problems. Before present ing a problem
format (or path) which has been .selected, the system
checks to see tha t i t is " d i f f e r e n t " from one pre­
v ious ly worked by t h i s student.

In a d d i t i o n , once the format has been se lec ted ,
var ious parameters must be randomly generated. These
parameters might represent spec i f i c memory reg is te rs
or character's to be searched f o r . The complete
problem is described i n t e r n a l l y a?, a vector cons is t ­
ing of the three selected brandies from the problem
t ree fol lowed by a l l required parameters. Sample
problems are shown in Table 1.

TABLE 1

Sample Problems

Note: A l l Randomly Generated Parameters Are
Underl ined.

1. Add the contents of r eg i s te r 150 to the cunten U;
of r eg i s t e r 167.

2. Pr in t out the message " H e l l o " .

3. Read in a ser ies of ASCJ-.I1 character's ending w i t h
a * and store them s tar t ing , in loca t ion 11?_Q_.

4. Read in 31 A'SC-Il characters and store them
s t a r t i n g at i oca t i on 300. Search reg i s te r 3Q0_
through 330 fo r the la rges t number.

b. Read in a ser ies of 3-d ig i t numbers and s tore
them s t a r t i n g at loca t ion 25Q. The input w i l l
end when the f i r s t character of a number1 is a "X" .

The next step is to generate the corresponding
l i s t of l o g i c a l sub-tasks. These are generated
separately fo r each of the three major phases of the
problem. An example is shown in Table 2. As mentioned
above, the student so lu t ion would be monitored a f t e r
the generation of a l l the sub-tasks associated wi th
each phase of the problem.

TABLE 2

EXAMPLE Or PROGRAM SUB-TASK GENERATION

YOUR PROBLEM IS To WRITE A PROGRAM WHICH WILL;

a) Read in 20 (oc ta l) ASCII characters and store them
in reg is te rs 240 t h ru ?f>0.

b) Form the absolute value of the contents of r eg i s te r
24 0 in the Accumulator.

c l F i n a l l y , p r i n t out the 4 - d i g i t contents of the
Accumulator.

Here- are the subt.asks fo r a.

1) I n i t i a l i z e a p t r to r eg i s t e r 240.
2) I n i t i a l i z e a c t r w i th the value of -20 (o c t a l) .
3) Read a character,
4) Store it away using the ptr-.
5) Update the p t r .
0) Update the c t r and if i t ' s not ;;,cro, jump back to

s t a r t o f loop,

here are the sub-tasks fo r b.

J) Bring the number in r eg i s t e r 240 I." the Accumulator.
2) Check the sign of the ACC and if i t ' s negat ive,

then form i t ' s 2's complement.

Here are the sub-tasks f o r c.

1) Store the contents of the Aecumul.-it.ur temporar i ly .
2) Set up a subroutine which w i l l p r i n t a character,
3) Get the number to be pr in ted and ro ta te it so the

1st (or le f tmost) oc ta l digi t" is on the r i g h t .
4) Mask out the l e f r q b i t s , add 260, and c a l l the

p r i n t subrout ine,
5) Do the same f o r the 2nd d i g i t ,
b) Do the same fo r the 3rd d i g i t .
7) F.et the number, mask i t , add 260, and p r i n t i t .

6. Read in 24 (oc ta l) four d i g i t numbers and store
them s t a r t i n g at ioca t ion 242. Search reg is te rs
242 t h ru 265 for the 1st number which begins
w i th the ocTal d i g i t s "7£" . (Example 7QXX)

7. Mu l t i p l y the contents of r eg i s t e r 211 by the con­
tents of r eg i s t e r 310. F ina l l y p r i n t out the
4 - d i g i t contents of the Accumulator.

8. Search reg i s te rs 160 thru 20̂ 5 fo r the oc ta l
number 7215. For r eg i s t e r s 16_0 t h ru 205^ p r i n t
out the r e g i s t e r number, 4_ spaces, and the o c t a l
contents o f tha t r e g i s t e r .

9. Assume that a table has been set up s t a r t i n g at
l oca t i on 120 cons is t ing of a 2-character symbol
fo l lowed by a number-, there are W_ of these
e n t r i e s .
Search the tab le f o r the symbol "AN" and r e t r i e v e
the corresponding number. I f i t i s not in the
t a b l e , then h a l t the program. F i n a l l y , p r i n t out
the 4 - d i g i t contents of the Accumulator.

The system representat ion of these sub-tasks con­
s i s t s of a s t r i n g of two d i g i t numbers. This sequence
ind icates which of the t h i r t y - f i v e p r i m i ' i v e tasks of
TtiHchine language programming muct be performed, and in
what order , to program each sub-problem c o r r e c t l y .
I n t e r p r e t a t i o n of t h i s s t r i n g by the cont ro l rout ine
resu l t s in a sequence of ca l l s to the i n d i v i d u a l prob-
lem-soxver rou t i nes . The manner in which the problem-
t.olvers monitor the machine code being entered by the
student w i l l be described next .

V. Problem Solver and Monitor

Each of the l o g i c a l sub-tasks is broken down
f u r t he r i n t o a sequence of p r i m i t i v e tasks (35 t o t a l)
which the system can so lve . The student bu i lds his
so lu t i on by coding one task at a time as Impl ied by
Figure 2.

The system provides the student wi th varying
degrees of i n t e r a c t i o n depending on h is past performance.

89

A beginning student w i l l be led by the hand and each
program statement w i l l be requested and checked
i n d i v i d u a l l y . An intermediate student receives fewer
h in ts and w i l l normally enter a group of statements
at a t ime; an advanced student bene f i t s from the
system's a b i l i t y to code i t s own programs and w i l l be
provided w i th the code fo r the simpler sub-tasks.
This is important as it f rees him to concentrate on
more d i f f i c u l t areas and prevents the boredom which
would r e s u l t from constant r e p e t i t i o n o f t r i v i a l tasks.

Table 3 provides an example of the problem
so lver /moni tor i n t e r a c t i o n w i th a s tudent . The
square-bracketed comments have been added fo r c l a r i t y .
Each underscore ind ica tes the s t a r t of a student
response. M377 stands fo r memory r e g i s t e r 377. The
system is operat ing at a moderate degree of i n t e r ­
a c t i o n .

TABLE 3

EXAMPLE OF STUDENT INTERACTION

Your problem is to w r i t e a program which w i l l :
Read in 10 (o c t a l) , 1 -d ig i t numbers and s tore t h e i r
value s t a r t i n g in r e g i s t e r 205.

Is t h i s problem OK?
yes

Here are the sub-tasks fo r the 1st l i n e :
1) I n i t i a l i z e a po in te r to r e g i s t e r 205,
2) I n i t i a l i z e a counter w i t h the value of -10 (o c t a l) .
3) Read a d i g i t and mask out the l e f t 9 b i t s .
4) Store i t away using the po in te r .
5) Update the po in te r
S) Update the counter and if i t s not zero, jump

back to s t a r t of loop.

SUB-TASK 1:
Use M377 to s tore the po in te r va lue , and M376 as the
po in te r .
M377:
105
Wrong! "0205" is the correct p t r va lue.

M001: [user program s t a r t s in r e g i s t e r 1]
7200 [c l ea r the ACC]
M002:
1377 [get the value of the pointer]
M003:
3376 [deposi t i n t o p o i n t e r]

SUB-TASK 2:
Use H375 to store the counter value and M374 as the
counter.
M375:
0012
"0012" can ' t be used as the counter va lue . It should
be e i the r "0010" or "7770". Try again!
M375:
7770
Now set the counter value i n t o the counter.
M004:
7200 [c lear the ACC]
You don ' t need a "CLA" here but i t ' s ok.
M005:
1375
M006:
3374 [se t up the c t r]

SUB-TASK 3:
Y o u ' l l need 3 i n s t r u c t i o n to read a character .
M007:
6031 [check the keyboard f l a g]

M010:
5_007 [Jump to M007]
M011:
6036 [Read a keyboard Char.]

Le t ' s store the mask in M373
What number should we use as a mask?

M373:
£077
Wrong! "0007" is the correct mask because it should
contain a " 1 " corresponding to every b i t o f the
Accumulator we would l i k e to Keep.

Now, "AND" the ACC wi th the mask.
M012:
£373 ["AND" the ACC]

SUB-TASK 4:
M013: 3776 [system generates code f o r easy sub-
task]

SUB-TASK 5:
M014:
2377 [increment the p o i n t e r]
Wrong! The p t r is in M376 so "ISZ PTR" should be:
2376.

SUB-TASK 6:
M015:
2374 [increment the counter!]
M016:
5005 [Jump to MOOS]
Wrong! the body of the loop begins in M007 so it
should be: "5007".

Now we should ha l t the program
M017: 7402

Several conventions have been establ ished to
f a c i l i t a t e the generat ion of program segments and
moni tor ing of student programs. A l l user programs
begin in l oca t ion 001 and a l l program constants are
placed at the top of memory beginning w i th l oca t ion
377 and preceeding downwards. The middle areas of
memory, locat ions 120 through 350, are reserved f o r
l i s t s and tab les to be used by the s tudent 's program.

The existence of a program loop is assumed by the
system whenever a po in te r or counter is i n i t i a l i z e d .
The phys ica l s t a r t of the loop is the f i r s t memory
r e g i s t e r a f t e r the i n i t i a l i z a t i o n process. By
moni tor ing the beginning of a loop in t h i s manner,
the system can eas i l y determine if the student has
co r rec t l y designed h is end-of - loop dec is ion sequence.
The most common programming mistake of t h i s k ind
occurs when the student attempts to jump back to the
i n i t i a l i z a t i o n sequence instead of the main body of
the loop.

Another program parameter which must be kept
t rack of is the accumulator s t a t u s . The simulated
computer has ne i ther a non-dest ruc t ive deposit nor a
des t ruc t i ve load i n s t r u c t i o n . Hence, the accumulator
must be cleared p r i o r to loading i t w i th a given
number and must be reloaded a f t e r a number has been
deposited in memory i f the number is s t i l l needed.
The status of the accumulator is going to determine
which of severa l a l t e r n a t i v e s is to be pursued by
c e r t a i n of the problem-solver rou t ines in the design
and checking of a program segment.

A compl icat ing f a c t o r in determining accumulator
s tatus is the existence of l o g i c a l branching or
program jumps. The accumulator s ta tus may d i f f e r

90

depending on whether a sub-task was entered sequent i ­
a l l y or through a program jump.

Forward jumps to yet unprogrammed sub-tasks also
present a problem, as the memory loca t ion in which
the new sub-task s t a r t s is not yet known. Conseq­
uen t l y , HALT keeps t rack of the f i r s t memory loca t ion
of each sub-task. If a jump is made to a prev ious ly
programmed sub-task, the requi red i ns t ruc t i on is p ro­
vided immediately. In the case of forward jumps, a
note is made of the memory loca t ion in which the jump
i n s t r u c t i o n belongs and the sub-task to be reached.
When t h i s sub-task is f i n a l l y programmed, HALT com­
pletes a l l p r i o r jump ins t ruc t i ons which reference
i t .

There are two important techniques used by the
MALT system to judge the correctness of a s tudent 's
program. The most common method is to analyze in
d e t a i l each segment of the program as i t is typed i n ,
to determine i f i t performs the requi red func t ions .
This is done on an i n s t r u c t i o n - b y - i n s f r u c t i o n basis
so that there is immediate feedback to the student.

Immediate v e r i f i c a t i o n impl ies that the system
must have a deta i led knowledge of the status of the
user 's program at a l l t imes. As the student formu­
la tes each response, the system also generates what
it considers to be an appropriate answer. If the two
do not match, the system must determine if other
responses are poss ib le . I f so, the student 's answer
is compared w i t h all such reasonable p o s s i b i l i t i e s .
When the system f i n a l l y decides that the response
supplied by the student is in error ' , i t informs him
as to the reason for t h i s determinat ion and suppl ies
the best program a l t e r n a t i v e .

If the s tudent 's response matches any of those
which the system generated, then it is accepted by
the system as a v a l i d a l t e rna t i ve to i t s own s o l u t i o n .
Since t h i s was not the expected r e s u l t , however,
the system must adjust i t s representat ion of the
users program status to r e f l e c t the new cond i t ions .

In the rare event that there are too many accep­
tab le ways to program a p a r t i c u l a r sub-task, the
program segment suppl ied by the student is simulated
to determine i t s correctness. To v e r i f y the user 's
program through s imu la t i on , a l l condi t ions of the
machine which might possib ly a f fec t f i n a l program
r e s u l t s are determined. For example, i f the program
is intended to perform a p a r t i c u l a r operat ion depend­
ing upon the status of the overflow l i n k r e g i s t e r ,
then only two i n i t i a l s ta tes are necessary; the pro­
gram is tes ted wi th a zero Link and again l a t e r w i th
a non-zero L ink ,

Once the various i n i t i a l s ta tes have been deter­
mined, the program segment can be simulated under
each cond i t i on . The system decides, f o l l ow ing each
s imu la t i on , i f normal program terminat ion occurred.
Condit ions which might cause abnormal terminat ion
are such th ings as i n f i n i t e loops, undefined ins t ruc ­
t i o n s , or program branches which are d i rec ted outside
the user 's program segment. Any such condi t ions are
corrected immediately by the student , the current set
o f i n i t i a l cond i t ions is r e -es tab l i shed , and simula­
t i o n is attempted again.

I f any p a r t i c u l a r te rmina l cond i t ion indicates
t ha t the user 's program d id not perform i t s func t ion
c o r r e c t l y , MALT attempts remedial a c t i o n . Since
i t is aware of the exact r esu l t s which should have
been obta ined, i t can provide a concise descr ip t ion

of the e r ro r . I t cannot, however, i s o l a t e the
loca t ion of the er ror in the user 's program. This
determinat ion must be l e f t up to the student . How­
ever , the problem has been great ly s i m p l i f i e d due to
the system's diagnost ics and the user 's a b i l i t y to
observe his program in execut ion. I f the student
is unable to correct his program segment, MALT w i l l
generate a cor rec t program segment f o r him.

V I . Conclusions

The system has been implemented in the CPE (16)
language on. the IBM 360/65 at the Univers i ty of
Connecticut Computer Center. Students can use t h i s
system whenever' they des i re . There is also a batch-
mode s imulator of t h i s computer which they use f o r
class pro jects of a more ambitious nature.

Student react ion to MALT has been very favorable.
They f e e l t h i s system helps to bridge the gap
between what they have learned in c lass , of from the
textbook, and what they need to know to program
independently in batch-mode.

This past semester, students spent two weeks using
HALT and were then given a week to get a ra ther s i ze ­
able problem coded and running in batch-mode. All
but one student managed to accomplish t h i s .

A quest ionnaire was d i s t r i b u t e d to the c lass .
The resu l t s of t h i s quest ionnaire are tabulated in
Table 4. I t appears that the students f e e l that
t h i s experience was b e n e f i c i a l and good preparat ion
for learn ing to program independently. On the whole,
students were not bothered by the fac t that MALT
requires them to adhere to a p a r t i c u l a r " f l owcha r t " .
As Indicated by question seven, improvements must
be made to the a lgor i thm which determines that a
generated problem is s u f f i c i e n t l y d i f f e r e n t from
previous problems presented to that student.

TABLL' 4

Student Evaluat ion

fo r questions 1-9 the numbers of students g iv ing the
fo l low ing responses are tubu la ted.

Strongly disagree Uncertain Agree strongly
Disagree Agree

1. The system was usefu l in in t roduc ing me to
machine language programming.

2 1 18 12

2. It was r e l a t i v e l y easy to learn to Use the batch
vers ion of the assembler since I had been i n t r o ­
duced to programming concepts through MALT.
0 5 4 15 7

3. since the sub-tasks were always la id out for me,
1 fe l t very constrained using MALT.
0 19 9 5 0

4. Because the sub-tasks were l a i d ou t , I only
learned the mechanics of programming and d i d n ' t

r e a l l y understand what was going on.
1 16 8 5 2

5. The approach taken in p r i n t i n g out the sub-tasks
was good as it taught me how to organize a
machine-language program.
0 2 7 20 4

91

6. The problem became more d i f f i c u l t as my l e v e l
increased,
1 3 7 19 3

7. There was a good va r i e t y in the problems I
received in MALT.
1 12 6 13

S. In genera l , I enjoyed the i n te rac t i on wi th MALT.
0 3 6 21 3

9. In genera l , I p re fer red the use of CAI in t h i s
course to convent ional homework.
0 2 4 11 16

Overal l . we feel tha t MALT is an e f f e c t i v e
demonstration of what can be accomplished in CAI
w i th the l i m i t e d use of AI techniques. I t should be
stressed t ha t MALT's design has been in f luenced by
AI research, but ce r t a i n l y much more could be done
in the way of incorpora t ing AI Research in problem
so lv ing and program synthes is . The desire to
produce a working system w i th reasonable response
time on an e x i s t i n g t ime-shar ing system precluded
t h i s p o s s i b i l i t y . Hopefu l ly , MALT w i l l challenge
others w i t h an i n t e res t in CAI and AI to pursue t h i s
goal f u r t h e r .

REFERENCES

1. Wexler, J . D., " In format ion Networks in Generative
Computer-Assisted I n s t r u c t i o n , " IEEE Trans.
on Man-Machine Systems, Vo l . MMG-11, No. 4,
December 1970, pp. 181-190.

2. Carbonel l , J. R., "AI in CAT: An A r t i f i c i a l
I n te l l i gence Approach to Computer-Assisted
I n s t r u c t i o n , " IEEE Transactions on Man-Machine
Systems, Vo l . MMS-11, No. 4, Dec. 1970, pp. 190-
202.

3. Carbonel l , J. R., " A r t i f i c i a l I n te l l i gence and
Large In te rac t i ve Man Computer Systems," Proc.
of the 1971 Jo in t Nat iona l Conference on Major
Systems.

4. Carbonel l , J. R., and C o l l i n s , A. M., "Natura l
Semantics in A r t i f i c i a l I n t e l l i g e n c e , " Bol t
Beranek and Newman Working Paper, March, 1973.

5. Simmons, R. F . , "Natura l Language For I n s t r u c t i o n a l
Communication," In A r t i f i c i a l I n t e l l i g e n c e and
Heur is t i c Programming, Edinburgh Univ. Press 1971,
pp. 191-198.

6. Woods, W., "T rans i t i on Network Grammars fo r
Natural Language Ana l ys i s , " Comm, Assoc,
Comput. Mach. Vo l . 13, Oct. 1970, pp. 591-606.

7. F ikes , R. E . , and N i l sson , N. J . , "STRIPS: A
New Approach to the App l i ca t ion of Theorem Proving
t o Problem So l v i ng , " A r t i f i c i a l I n t e l l i g e n c e , I I ,
1971, pp. 189-208.

8. Brown, J. S . , Burton, R. R., and Zdybel,"A Model-
Driven Question-Answering System fo r M i x e d - I n i t i a ­
t i v e Computer-Assisted I n s t r u c t i o n " , IEEE Trans,
on Systems, Man, and Cybernet ics, SMC-3, No. 3,
pp. 248-257.

9. Shea, T. 0 . , and Sleeman, D. H. , 1972, "A Design
fo r Adaptive Sel f - Improving Teaching System,"
Working paper, Department of Computational Science,
Un ivers i ty of Leeds, England.

10. Koffman, E. B. , "A Generative CAI Tutor f o r
Computer Science Concepts," Proceedings of the
AFIPS 1972 Spring Jo in t Computer Conference.

1 1 . Goldberg, A, and Suppes, P. , "A Computer-
Assisted I ns t ruc t i on Program for Exercises on
r i n d i n g Axioms," Tech. Report #186, Stanford
Un i ve rs i t y , I n s t i t u t e fo r Mathematical Studies
In the Socia l Sciences, June, 1972.

12. Hewi t t , C. , "Planner; f t Language f o r Proving
Theorems in Robots," Proceedings of the 1369
In te rna t i ona l Jo in t Conference on A r t i f i c i a l
I n t e l l i g e n c e , Ed, D. E. Walker and L. M. Norton,
1969, pp. 295-302.

13. Ru l i f san , J. F, Derksen, J. A. and Waldinger,
R. J . , "QA4: A Procedural Calculus f o r
Induct ive Reasoning," SRI Technical Note
#73, 1972.

14. Simon, H. A . , "Experiments w i th a Heur i s t i c
Compiler," 1963, JACM, Vo l . 10, No. 4,
October 1963.

15. Manna, Z . , Waldringer, R. J . , "Toward Automatic
Program Synthesis , " CACM, V o l . 14, No. 3,
March, 1971.

16. IBM Corporat ion, Conversational Programming
System, (CPS) Terminal User's Manual, IBM Report
GH20-0758-0 1970.

93

