Session 5 Applications and
Implications of Artificial
Intelligence

ARTIFICIAL INTELLIGENCE AND AUTOMATIC PROGRAMMING IN CAl

Elliot B. Koffman

Computer Science Group
Electrical Engineering Dept
University of Connecticut
Storrs, Conn. 06268

Abstract

This paper discusses generative computer-assisted
instruction (CAIl) and its relationship to Artificial
Intelligence Research. Systems which have a limited
capability for natural language communication are

described. In addition, potential areas in which
Artificial Intelligence could be applied are outlined.
These include individualization of instruction, deter-

mining the degree of' accuracy of a student response,
and problem-solving,

A CAl system which is capable of writing computer
programs is described in detail. Techniques are given
for generating meaningful programming problems. These
problems are represented as a sequence of primitive
tasks each of which can be coded in several ways.
manner in which the system designs its own solution
program and monitors the student solution is also
described.

The

I. Al in CAT

There is currently significant interest in
generative systems for computer-assisted instruction
(CAIl). A generative system has the capability to both
generate and solve meaningful problems. It must also
be able to monitor a student's solution, determine to
what extent the student is correct, and provide perti-
nent remedial feedback.

Generative CAl systems free the course author
from having to develop several alternative presenta-
tions of the same or similar material. In addition,
the course author does not have to specify correct
and incorrect answers and their consequences as the
system can determine all of these on its own. These
systems often have the capability to reply to student
questions and allow him to divert the instruction to
areas that interest him.

Data-Base Systems

There have been a few CAl systems designed which
are oriented around a structured network of facts.
Wexler describes a system which combines generative
CAl with frame-oriented CAIl in that the course-author
must specify certain question formats. The system
generates parameters for these formats and searches
the data base to determine the correct answer. It
generates remedial feedback from its network if the
student's solution is incorrect. This feedback can
either be in the form of a correct statement based on
the student's response or a trace of the steps required
to retrieve the correct answer. On command from the
student, it will generate statements from its data-
base which conform to prespecified patterns.

This research has been supported by the National
Institute of Education, Grant #0EG-0-72-0895. The
University of Connecticut Computer Center Provided
computational facilities.

86

Sumner E. Blount

Software Development Group
Digital Equipment Corp.
Maynard, Mass. 01754

Carbonell describes a system, SCHOLAR, in which
the generation of several types of questions is done
entirely by the system from the semantic network. Also,
the system has the capability to interpret a variety
of student questions and generate appropriate responses.
As in the Wexler system, the semantic network must
be constructed by the course-author.

Recent research with SCHOLAR (Carbonell®) has
attempted to incorporate graphical information along
with symbolic information in a semantic network. In
addition, emphasis is being placed on improving the
ability of the system to make inferences based upon
the information contained in its semantic network and
to take into account the fuzzyness or uncertainty
associated with an inference. (Carhonell and Collins*).

Simmons® describes a system in which the semantic
network is automatically produced from a page of text.
The student can request paraphases of difficult passa-
ges and word definitions. In addition, the system
can generate "fill-in" and "true-false" questions from
its semantic network.

This system relies heavily on the use of an
augmented transition network grammar (Woods®) both
for the construction of the semantic network and for
the generation of statements from this network. More
recent research has focused on the use of a STRIPS like
model (Fikes and Nilsson') to allow modifications to
the semantic network which reflect a time sequence of
events.

Research in a CAl system for meteorology (Brown,
Burton and Zdybel®) has investigated the use of a
semantic network to store static information and an
augmented finite automata structure for storing
information concerning the dynamics of a process.
This latter structure shows, for all possible state
transitions, the external and internal conditions which
must be met before the transition can occur. Conse-
quently, when a student poses a question, he excites
the model and causes the generation of a tree of
intermediate states until equilibrium is reached.
Answering the student's question is accomplished by
interpreting this tree of states in the appropriate
manner.

As research continues, improvements due to Arti-
ficial Intelligence Research will enable future ver-
sions of data-base oriented systems to accept an
unstructured or essay-type response from a student.
These systems provide an impressive demonstration of
the potential application of research in natural
language communications and question-answering to CAI.
However, there are still several problem areas in
generative CAl which tie in very closely with Arti-
ficial Intelligence.

Individualizing Instruction and Remedial Aid

The first problem is individualizing the

instruction received by each student or determining
what is best for a student to study based on his
previous interactions with the system. This is a
problem in pattern recognition. The student must be
classified as a particular type of learner. Based on
this categorization and his past history, an appro-
priate concept should be selected for study.

This problem is being studied by Shea and Sleeaan
They propose a three level teaching system in which
level one is strictly concerned with student inter-
action, record collection, and generation of problems
to suit the criteria imposed by level 2. Level 2 is
responsible for implementing a specific teaching
strategy. Level 3 decides which strategy should be
used and evaluates the performance of the lower levels
to determine whether performance is satisfactory or
whether a different strategy should be tried.

Other studies in the design of an intelligent
monitor for CAIl have centered around the use of a
student model (summary of a student's past performance)
and a concept tree, which indicates the pre-requisite
structure of the course. As the syster. gains exper-
ience with a particular student, it updates his model
and establishes to what extent he prefers to advance
quickly to new material or build a solid foundation
before going on. Based on its knowledge of the stu-
dent and his past performance, it decides at which
plateau of the concept tree the student should be
working. All concepts on this plateau are then
evaluated with respect to factors such as recency of
use, change in state of knowledge during last inter-
action, current state of knowledge, tendency to
increase or decrease his state of knowledge, and
relevance to other course concepts. The highest
scoring concept is selected, a problem suitable for
his experience level is generated, and its solution is
monitored.

In order to generate pertiment remedial feedback,
a CAl system must determine the degree of correctness
of a student response. If a simple number or phrase
is expected, it is relatively easy to determine
whether a student is correct. In mathematics, resolu-
tion-based theorem provers have been used to verify
logical proof procedures''. Their initial application
has been successful in assisting a student in constr-
ucting a proof by applying the rule of inference
designated by him to earlier lines in the proof seg-
uence. If the student's rule cannot be applied, he
is given remedial feedback. Efforts to verify that
a line typed in by a student is a valid inference from
his previous work have been "moderately successful".
A more ambitious goal now under study is to have the
theorem prover suggest ways of completing a proof
taking into account a student's incomplete or erroneous
work.

Often it is not sufficientto tell a student he is
wrong and indicate the correct solution method. An
intelligent CAl system should be able to make hypo-
theses based on a student's error history as to
where the real source of his difficulty lies. For
example, a student may be having trouble with
division because he does not know how to multiply
and/or subtract. The CAI monitor must recognize
this and redirect the student's efforts or he will
never master the division algorithm.

This problem, of course, is even harder to re-
solve in natural language systems. None of these
systems currently have an effective way of adapting
the tutorial dialogue to exploit the information
present in an incorrect student response.

87

Problem-Solving in CAI

A final probleiti area is pertinent to researchers
attempting to use generative CAl in a problem-solving
environment. This is the design of the problem-
solver itself. Perhaps current research in problem-
solving and planning techniques such as are evidenced
in STRIPS and in languages such as PLANNER™ and
QA4™ will find application in this area.

A generative CAl system has been designed around
an introductory course in computer science at the
University of Connecticut. Two-thirds of this course
is concerned with an introduction to digital logic
design; the remainder of the course teaches machine-
language programming. An algorithmic approach has
been used to teach the concepts in digital logic
design through CAIl. The specific approach taken has
been described elsewhere

The software portion of the course Is concerned
with teaching students how to write machine language
programs for a small computer, very similar to the
Digital Equipment Corporation PDP-8. The instruction
set and organization are identical; the only difference
is that student programs are restricted to pages 0 and
1 of memory. This consists of 377 (octal) words of
core which is sufficient for beginning students to
learn to program (and also to learn principles of
memory conservatlyn).

The CAl system Jts not used to replace the classes
or textbook. It Is intended to provide practice and
tutoring in problem solving similar to what one would
obtain through homework problems. The advantage, of
course, is that the student gets some guided direction
and remedial feedback when he goes astray.

Since the system is generative and problems are
constructed in a random fashion, it is necessary that
it also be able to write its own solution programs.
There has been significant effort expended in the
development of programs with this capability. Early
work by Simon' has been reported. Recent efforts
by Manna and Waldinger15 emphasise a theorem proving
approach to writing programs. It was felt that this
general approach would not allow programs which
emphasize the requisite techniques of machine-language
programming to be designed.

The remainder of the paper will focus on our
heuristic approach to automatic programming. The
system so designed will be referred to as MALT
(MAchine Language Tutor).

Il1. System Overview

Prior to describing the system itself, it would
be worthwhile to outline some of its goals and con-
straints. It was important that this system function
effectively as a tutor in machine language programming
for approximately thirty students per semester, rather
than just serve as a demonstration of what might be
accomplished if additional computer resources were
available. This meant that MALT had to be implemented
on the time-sharing system currently available on the
University's IBM 360/65 which is CPS (Conversational
Programming System-IBM'®), a dialect of PL-l. It
also meant that response times to students should
normally be on the order of 5 to 10 seconds or less.
An additional restriction imposed by CPE itself was
that no more than twelve pages (U8K bytes) of core
memory be active at any user terminal.

A second goal of this system was that it be
easily expandable. This means it should be possible

to add new problem types without having to increase
the system's problem solving capability, This factor,
and the requirement for a compact or modular structure
in order to meet the twelve page core limit, resulted
in the use of primitive tasks to serve as building
blocks in the design of solution programs,

A third goal was that the system be capable of a
high degree of individualization of instruction. The
form of the problem posed for each student should be
influenced by his previous experience with the system.
The degree of monitoring should decrease as the stu-
dent's level of competence increased; in fact, the
system should assist the student by programming
previously mastered sub-tasks for him.

IIl. General Approach

A generative CAl system has the minimum compo-
nents illustrated in Figure 1. The problem generator-
is capable of providing an unlimited variety of
meaningful problems. A vital information link
exists between the problem generator and problem
Solver. This link provides the system with the exact
structure of the problem, and allows the problem
solver to concentrate on the solution of the problem
rather than its definition.

The structure of each problem is illustrated
by the AND-OR goal tree in Figure 2. A complex
programming problem is represented as three sub-
problems dealing with input of information, processing
of core-resident information, and program output
respectively. There are several alternatives for each
of the sub-problems. For example, (I , I , ..., |}
is the set of input sub-problems where |,is the null
sub-problem. Each sub-problem, in turn, is decomposed
into a sequence of logical tasks. Some of these tasks
are primitive tasks which the system can solve directly

in one or more ways (1 and |-,-). Other logical
tasks consist themselves of a sequence of primitive
tasks (i ,).

ID

There are thirty-five primitive tasks program-
med in MALT. They would be used repeatedly in the
design of a complete program. Sample tasks might be:
the initialization of pointers to data, initialization
of counters to keep track of the number of loop iter-
ations; reading or printing an ASC-Il character; and
transferring data into and out of memory. A large
variety of problems can be constructed using only
this set of primitive tasks.

Figure 3 is a block diagram for the MALT
system. The previous student performance determines
what type of problem will be generated. This problem
is presented to the student in natural language and
also passed on to the system as an ordered triple of
sub-problems. Next, a list of logical tasks for each
of the sub-problems is presented to the student. The
system representation of this "flow-chart" is a seqg-
uence of calls to problem-solver routines. These
problem-solver routines solve the programming problem
and interact with the student to monitor his solution.

As the student undertakes each task in the
programming process, a corresponding problem-solver
routine is entered by the CAl system, which guides
the student through the construction of that part of
his program. During this phase, the student is
constantly being given feedback as to the correctness
of his program. If his program introduces logical
errors, the system will point these out and offer
helpful suggestions for their correction. If the

88

system feels that the student might benefit from
observing his program in operation, it also has the
capability to simulate statement by statement program
execution.

The system is constantly evaluating the student's
performance and updating his permanent file. This is
necessary because his achievement determines not only
the difficulty of the problems given him, but also the
amount of interaction which he receives during the
design of his program.

It should be stressed at this point that the
system can only solve the primitive tasks. Complex
problems can be constructed using these tasks as build-
ing blocks. The system's knowledge of the primitive
tasks and their relationships enables it to generate
the solution for the complete programming problem.

As is indicated by the above discussion, the logic
sequence which the system will use to code the problem
is pretty well determined by its implied structure.

The only freedom that exists is in the selection of the
code to implement each primitive task.

This is perfectly satisfactory for a system whose
sole function is to produce the machine-language code
which accomplishes a particular programming problem.
However, this approach should be justified in a CAIl
environment.

There are normally many ways to flowchart and
code a programming problem. The system could accept
the student's solution in its entirety, derive its
own solution program, execute both programs, and com-
pare their results. Such an approach, although it
would give the student complete freedom and verify his
program, would be worthless as a teacher. Essentially,
it would say to the student who has made a mistake:
"Your answer is wrong, but | have no idea why. Here
is my solution; perhaps you can figure out what is
wrong yourself." A student who can do this does not
really need a CAIl tutor.

The approach we have taken is to say: "You are
just learning how to code in machine language. Your
problem can be flowcharted in this way. If you will
follow my flowchart, | can teach you something about
machine-language coding," We feel (and so do our
student guinea pigs) that the beginning student gains
more from a little guidance at this stage and learns
quite a bit about flowcharting through observation.

Perhaps, current research in program synthesis
and verification will soon remove this restriction.
It would then be preferable to allow the student to
design his own program to the extent he is able. The
system could verify that the portion of the program
constructed so far does, in fact, accomplish what the
student intended. At this point, the system would
take over and synthesize the remainder of the solution.
If the student's portion of the solution were only
partially correct, the point at which his program went
astray could, perhaps, be located and the correct
solution continued from there.

IV. Problem Generator

As has been mentioned, each problem may be
thought of as consisting of three (or less) distinct
phases. When students first start off using the
system, they will normally be presented with a problem
that consists of just a single phase. As they gain
competence and experience, more difficult problems will
be generated for them.

Problem generation consists of selecting a
pa'Uh through a tree of depth three as shown in Figure

4. Branches A1 through A7 consist of the seven strings

(including the null string) describing the input sub-
problems. B , B , B are the three meaningful

processing steps (out of a total of thirteen) which
can be performed on the input format described by
A,. Cjiji °a2 @ e possible forms of the output

sub-problem (out of a total of 10) for a problem
beginning with A and B

The probability of a particular branch being
selected is a function of each student's competence.
These probabilities change as the student progresses
through the course material. There are more than HO
different paths through this tree which represent
meaningful problems. Before presenting a problem
format (or path) which has been .selected, the system
checks to see that it is "different" from one pre-
viously worked by this student.

In addition,
various parameters must be randomly generated. These
parameters might represent specific memory registers
or character's to be searched for. The complete
problem is described internally a? a vector consist-
ing of the three selected brandies from the problem
tree followed by all required parameters. Sample
problems are shown in Table 1.

TABLE 1

Sample Problems

Note: All Randomly Generated Parameters Are

Underlined.

1. Add the contents of register 150 to the cuntenU;
of register 167.

2. Print out the message "Hello".

3. Read in a series of ASCJ-I1 character's ending with
a * and store them starting, in location 1M?2Q.

4. Read in 31 A'SC-ll characters and store them
starting at iocation 300. Search register 30
through 330 for the largest number.

b. Read in a series of 3-digit numbers and store
them starting at location 25Q. The input will

end when the first character of a number' is a "X".

6. Read in 24 (octal) four digit numbers and store
them starting at iocation 242. Search registers
242 thru 265 for the 1st number which begins
with the ocTal digits "7£". (Example 7QXX)

7. Multiply the contents of register 211 by the con-
tents of register 310. Finally print out the
4-digit contents of the Accumulator.

8. Search registers 160 thru 20%5 for the octal
number 7215. For registers 160 thru 205" print
out the register number, 4_ spaces, and the octal
contents of that register.

9. Assume that a table has been set up starting at
location 120 consisting of a 2-character symbol
followed by a number-, there are W_ of these
entries.

Search the table for the symbol "AN" and retrieve
the corresponding number. If it is not in the
table, then halt the program. Finally, print out
the 4-digit contents of the Accumulator.

once the format has been selected,

89

The next step is to generate the corresponding
list of logical sub-tasks. These are generated
separately for each of the three major phases of the
problem. An example is shown in Table 2. As mentioned
above, the student solution would be monitored after
the generation of all the sub-tasks associated with
each phase of the problem.

TABLE 2
EXAMPLE Or PROGRAM SUB-TASK GENERATION

YOUR PROBLEM IS To WRITE A PROGRAM WHICH WILL;

a) Read in 20 (octal) ASCIl characters and store them
in registers 240 thru ?f>0.

b) Form the absolute value of the contents of register
240 in the Accumulator.

cl Finally, print out the 4-digit contents of the

Accumulator.
Here- are the subt.asks for a.

1)

Initialize a ptr to register 240.

2) Initialize a ctr with the value of -20 (octal).
3) Read a character,

4) Store it away using the ptr-.

5) Update the ptr.

0) Update the ctr and if it's not ;;,cro, jump back to

start of loop,
here are the sub-tasks for b.

J)
2)

Bring the number in register 240 |." the Accumulator.
Check the sign of the ACC and if it's negative,
then form it's 2's complement.

Here are the sub-tasks for c.

1)

Store the contents of the Aecumul.-it.ur temporarily.

2) Set up a subroutine which will print a character,
3) Get the number to be printed and rotate it so the
1st (or leftmost) octal digit" is on the right.

4) Mask out the lefr g bits, add 260, and call the

print subroutine,
5) Do the same for the 2nd digit,
b) Do the same for the 3rd digit.
7) Fet the number, mask it, add 260, and print it.

The system representation of these sub-tasks con-
sists of a string of two digit numbers. This sequence
indicates which of the thirty-five primi'ive tasks of
TtiHchine language programming muct be performed, and in
what order, to program each sub-problem correctly.
Interpretation of this string by the control routine
results in a sequence of calls to the individual prob-
lem-soxver routines. The manner in which the problem-
t.olvers monitor the machine code being entered by the
student will be described next.

V. Problem Solver and Monitor

Each of the logical sub-tasks is broken down
further into a sequence of primitive tasks (35 total)
which the system can solve. The student builds his
solution by coding one task at a time as Implied by
Figure 2.

The system provides the student with varying

degrees of interaction depending on his past performance.

A beginning student will be led by the hand and each
program statement will be requested and checked
individually. An intermediate student receives fewer
hints and will normally enter a group of statements

at a time; an advanced student benefits from the
system's ability to code its own programs and will be
provided with the code for the simpler sub-tasks.

This is important as it frees him to concentrate on
more difficult areas and prevents the boredom which
would result from constant repetition of trivial tasks.

Table 3 provides an example of the problem
solver/monitor interaction with a student. The
square-bracketed comments have been added for clarity.
Each underscore indicates the start of a student
response. M377 stands for memory register 377. The
system is operating at a moderate degree of inter-
action.

TABLE 3
EXAMPLE OF STUDENT INTERACTION

Your problem is to write a program which will:
Read in 10 (octal), 1-digit numbers and store their
value starting in register 205.

Is this problem OK?
yes

Here are the sub-tasks for the 1st line:

1) Initialize a pointer to register 205,

2) Initialize a counter with the value of -10 (octal).

3) Read a digit and mask out the left 9 bits.

4) Store it away using the pointer.

5) Update the pointer

S) Update the counter and if its not zero,
back to start of loop.

jump

SUB-TASK 1:

Use M377 to store the pointer value, and M376 as the
pointer.

M377:

105

Wrong! "0205" is the correct ptr value.

MO0O01:
7200
MO002:
1377 [get the value of the pointer]
MO003:

3376 [deposit into pointer]

[user program starts in register 1]
[clear the ACC]

SUB-TASK 2:

Use H375 to store the counter value and M374 as the
counter.

M375:
0012
"0012"
be either "0010"
M375:

7770

Now set the counter value into the counter.
MO004:

7200 [clear the ACC]
You don't need a "CLA"
MO005:

1375

MO06:

3374 [set up the ctr]

can't be used as the counter value. It should

or "7770". Try again!

here but it's ok.

SUB-TASK 3:

You'll need 3 instruction to read a character.
MO007:

6031 [check the keyboard flag]

90

MO010:

5007 [Jump to MO0O07]

MO011:

6036 [Read a keyboard Char.]

Let's store the mask in M373

What number should we use as a mask?

M373:

£077

Wrong! "0007" is the correct mask because it should
contain a "1" corresponding to every bit of the
Accumulator we would like to Keep.

Now, "AND" the ACC with the mask.
M012:
£373 ["AND" the ACC]

SUB-TASK 4:
M013: 3776 [system generates code for easy sub-
task]

SUB-TASK 5:
MO014:
2377 [increment the pointer]

Wrong! The ptr is in M376 so "ISZ PTR" should be:
2376.

SUB-TASK 6:

MO015:

2374 [increment the counter!]

MO016:

5005 [Jump to MOOS]

Wrong! the body of the loop begins in M007 so it
should be: "5007".

Now we should halt the program
MO17: 7402

Several conventions have been established to
facilitate the generation of program segments and
monitoring of student programs. All user programs
begin in location 001 and all program constants are
placed at the top of memory beginning with location
377 and preceeding downwards. The middle areas of
memory, locations 120 through 350, are reserved for
lists and tables to be used by the student's program.

The existence of a program loop is assumed by the

system whenever a pointer or counter is initialized.
The physical start of the loop is the first memory
register after the initialization process. By

monitoring the beginning of a loop in this manner,
the system can easily determine if the student has
correctly designed his end-of-loop decision sequence.
The most common programming mistake of this kind
occurs when the student attempts to jump back to the
initialization sequence instead of the main body of
the loop.

Another program parameter which must be kept
track of is the accumulator status. The simulated
computer has neither a non-destructive deposit nor a
destructive load instruction. Hence, the accumulator
must be cleared prior to loading it with a given
number and must be reloaded after a number has been
deposited in memory if the number is still needed.
The status of the accumulator is going to determine
which of several alternatives is to be pursued by
certain of the problem-solver routines in the design
and checking of a program segment.

A complicating factor in determining accumulator
status is the existence of logical branching or
program jumps. The accumulator status may differ

depending on whether a sub-task was entered sequenti-
ally or through a program jump.

Forward jumps to yet unprogrammed sub-tasks also
present a problem, as the memory location in which
the new sub-task starts is not yet known. Conseqg-
uently, HALT keeps track of the first memory location
of each sub-task. If a jump is made to a previously
programmed sub-task, the required instruction is pro-
vided immediately. In the case of forward jumps, a
note is made of the memory location in which the jump
instruction belongs and the sub-task to be reached.
When this sub-task is finally programmed, HALT com-
pletes all prior jump instructions which reference
it.

There are two important techniques used by the
MALT system to judge the correctness of a student's
program. The most common method is to analyze in
detail each segment of the program as it is typed in,
to determine if it performs the required functions.
This is done on an instruction-by-insfruction basis
so that there is immediate feedback to the student.

Immediate verification implies that the system
must have a detailed knowledge of the status of the
user's program at all times. As the student formu-
lates each response, the system also generates what
it considers to be an appropriate answer. If the two
do not match, the system must determine if other
responses are possible. If so, the student's answer
is compared with all such reasonable possibilities.
When the system finally decides that the response
supplied by the student is in error', it informs him
as to the reason for this determination and supplies
the best program alternative.

If the student's response matches any of those
which the system generated, then it is accepted by

the system as a valid alternative to its own solution.

Since this was not the expected result, however,
the system must adjust its representation of the
users program status to reflect the new conditions.

In the rare event that there are too many accep-
table ways to program a particular sub-task, the
program segment supplied by the student is simulated
to determine its correctness. To verify the user's
program through simulation, all conditions of the
machine which might possibly affect final program
results are determined. For example, if the program
is intended to perform a particular operation depend-
ing upon the status of the overflow link register,
then only two initial states are necessary; the pro-
gram is tested with a zero Link and again later with
a non-zero Link,

Once the various initial states have been deter-
mined, the program segment can be simulated under
each condition. The system decides, following each
simulation, if normal program termination occurred.
Conditions which might cause abnormal termination
are such things as infinite loops, undefined instruc-
tions, or program branches which are directed outside
the user's program segment. Any such conditions are
corrected immediately by the student, the current set
of initial conditions is re-established, and simula-
tion is attempted again.

If any particular terminal condition indicates
that the user's program did not perform its function
correctly, MALT attempts remedial action. Since
it is aware of the exact results which should have
been obtained, it can provide a concise description

91

of the error. It cannot, however, isolate the
location of the error in the user's program. This
determination must be left up to the student. How-
ever, the problem has been greatly simplified due to
the system's diagnostics and the user's ability to
observe his program in execution. If the student

is unable to correct his program segment, MALT will
generate a correct program segment for him.

V1. Conclusions

The system has been implemented in the CPE (16)
language on. the IBM 360/65 at the University of
Connecticut Computer Center. Students can use this
system whenever' they desire. There is also a batch-
mode simulator of this computer which they use for
class projects of a more ambitious nature.

Student reaction to MALT has been very favorable.
They feel this system helps to bridge the gap
between what they have learned in class, of from the
textbook, and what they need to know to program
independently in batch-mode.

This past semester, students spent two weeks using
HALT and were then given a week to get a rather size-
able problem coded and running in batch-mode. All
but one student managed to accomplish this.

A questionnaire was distributed to the class.
The results of this questionnaire are tabulated in
Table 4. It appears that the students feel that
this experience was beneficial and good preparation
for learning to program independently. On the whole,
students were not bothered by the fact that MALT
requires them to adhere to a particular "flowchart".
As Indicated by question seven, improvements must
be made to the algorithm which determines that a
generated problem is sufficiently different from
previous problems presented to that student.

TABLL' 4

Student Evaluation

for questions 1-9 the numbers of students giving the
following responses are tubulated.

Strongly Uncertain

Disagree

disagree Agree strongly

Agree

1. The system was useful in introducing me to
machine language programming.
2 1 18 12

2. It was relatively easy to learn to Use the batch
version of the assembler since | had been intro-
duced to programming concepts through MALT.

0 5 4 15 7

3. since the sub-tasks were always laid out for me,
1 felt very constrained using MALT.
0 19 9 5 0

4. Because the sub-tasks were laid out, | only
learned the mechanics of programming and didn't
really understand what was going on.

1 16 8 5 2

5. The approach taken in printing out the sub-tasks
was good as it taught me how to organize a
machine-language program.

0 2 7 20 4

6. The problem became more difficult as my level
increased,
1 3 7 19 3

7. There was a good variety in the problems |
received in MALT.

1 12 6 13

S. In general, | enjoyed the interaction with MALT.
0 3 6 21 3

9. In general, | preferred the use of CAl in this
course to conventional homework.
0 2 4 11 16

Overall . we feel that MALT is an effective
demonstration of what can be accomplished in CAl
with the limited use of Al techniques. It should be
stressed that MALT's design has been influenced by
Al research, but certainly much more could be done
in the way of incorporating Al Research in problem
solving and program synthesis. The desire to
produce a working system with reasonable response
time on an existing time-sharing system precluded
this possibility. Hopefully, MALT will challenge
others with an interest in CAl and Al to pursue this
goal further.

REFERENCES

1. Wexler, J. D., "Information Networks in Generative
Computer-Assisted Instruction," IEEE Trans.
on Man-Machine Systems, Vol. MMG-11, No. 4,
December 1970, pp. 181-190.

2. Carbonell, J. R., "Al in CAT: An Artificial
Intelligence Approach to Computer-Assisted
Instruction," |EEE Transactions on Man-Machine
Systems, Vol. MMS-11, No. 4, Dec. 1970, pp. 190-
202.

3. Carbonell, J. R., "Artificial Intelligence and
Large Interactive Man Computer Systems," Proc.
of the 1971 Joint National Conference on Major
Systems.

4. Carbonell, J. R, and Collins, A. M., "Natural
Semantics in Artificial Intelligence, " Bolt
Beranek and Newman Working Paper, March, 1973.

5. Simmons, R. F., "Natural Language For Instructional
Communication," In_ Artificial Intelligence and
Heuristic Programming, Edinburgh Univ. Press 1971,
pp. 191-198.

6. Woods, W., "Transition Network Grammars for
Natural Language Analysis," Comm, Assoc,
Comput. Mach. Vol. 13, Oct. 1970, pp. 591-606.

7. Fikes, R. E., and Nilsson, N. J., "STRIPS: A
New Approach to the Application of Theorem Proving
to Problem Solving," Artificial Intelligence, II,
1971, pp. 189-208.

8. Brown, J. S., Burton, R. R., and Zdybel,"A Model-
Driven Question-Answering System for Mixed-Initia-
tive Computer-Assisted Instruction", IEEE Trans,
on Systems, Man, and Cybernetics, SMC-3, No. 3,
pp. 248-257.

9. Shea, T. 0., and Sleeman, D. H., 1972, "A Design
for Adaptive Self-Improving Teaching System,"
Working paper, Department of Computational Science,
University of Leeds, England.

10.

11.

12.

13.

14.

15.

16.

Koffman, E. B., "A Generative CAl Tutor for
Computer Science Concepts," Proceedings of the
AFIPS 1972 Spring Joint Computer Conference.

Goldberg, A, and Suppes, P., "A Computer-
Assisted Instruction Program for Exercises on
rinding Axioms," Tech. Report #186, Stanford
University, Institute for Mathematical Studies
In the Social Sciences, June, 1972.

Hewitt, C., "Planner; ft Language for Proving
Theorems in Robots," Proceedings of the 1369
International Joint Conference on Artificial
Intelligence, Ed, D. E. Walker and L. M. Norton,
1969, pp. 295-302.

Rulifsan, J. F, Derksen, J. A. and Waldinger,

R. J., "QA4: A Procedural Calculus for
Inductive Reasoning," SRI Technical Note
#73, 1972.

Simon, H. A., "Experiments with a Heuristic
Compiler," 1963, JACM, Vol. 10, No. 4,
October 1963.

Manna, Z., Waldringer, R. J., "Toward Automatic
Program Synthesis," CACM, Vol. 14, No. 3,
March, 1971.

IBM Corporation, Conversational Programming
System, (CPS) Terminal User's Manual, IBM Report
GH20-0758-0 1970.

I fae

I

121

Description
PROBLEM N\ >
GENERATOR

PROBLEM
SOLVER

Problem

Ouestions

and

SOLUTION
YERIFIER

Figure 1

Minimal Generatlve CAI System

COMPLEX
TROBLEM

Figure 2
Problem Structure

B3

OUTPUT
PHASE

STUDENT

Programming Problem

FROBLEM - !
GENERATOR (Ii' Pj' Uk], f
Frogram !
JFarametears |
}
Student Logic Logical , 1
Model Generator Sub-tasks '
1
[
Primitive I
Tasks)
1
A |
|
Problem |
4 Salver MALT's Sollticn '
Program, Hints, !
) Remedia} Comments

o
|
W {
}
Student |
Program & |

cpa Program

Yerifier Statements \

M

L 2

FDP-8

Simulator
Tigure 3

System Block Diagram

79l 792

Figure 4

Tree of Problems
12

-H o= m Y a3 !

