
Session 14 Natural Language:
Semantics and Parsing

A LINGUISTICS ORIENTED PROGRAMMING LANGUAGE
Vaughan R. Prat t

Massachusetts I n s t i t u t e of Technology
Cambridge, Massachusetts

Abstract

A programming language fo r natural language pro
cessing programs is descr ibed. Examples of the output
of programs w r i t t e n using it are g iven. The reasons
fo r various design decisions are discussed. An actual
session wi th the system is presented, in which a small
fragment of an Engl ish-to-French t r ans la to r is devel
oped. Some of the l i m i t a t i o n s of the system are d i s
cussed, along wi th plans fo r fu r the r development.

1. Overview

This paper presents some aspects of work done at
odd i n te rva l s over the past two years, f i r s t at Stan
ford and then at MIT, on a pro ject to develop a pro
gramming language su i tab le fo r w r i t i n g natural language
processing programs. The relevant acronym is LINGOL,
fo r L ingu is t i cs Oriented Language. Simi lar pro jects
such as COMIT21 and i t s successors METEOR2 and SNOBOL5

no longer r e f l e c t the s ta te of the a r t of computational
l i n g u i s t i c s ; indeed, they do not r i s e above the remark
that computational l i n g u i s t i c s is concerned wi th pro
cessing tex t s t r i ngs . The issue addressed in these
pages is that of the programming technology appropriate
to the syntax-semaotics i n te r f ace , an a r t i f i c e that
ar ises in the phrase-structure paradigm fo r natural
languages. A secondary issue, to be deal t wi th e lse
where, concerns the r e l a t i v e meri ts of various parsing
s t ra teg ies fo r phrase-structure or iented grammars, and
the development of a parsing a lgor i thm superior to
both the Barley and Cocke-Kasami-Younger procedures.
(See Aho and Ullman1 , p. 314).

Following Winograd's lead, we begin by g iv ing
some examples of the output of programs wr i t t en in
LINGOL. The point of having a programming language is
to make programming less painfu l f o r a l l concerned. The
i n te res t i ng property of these programs is that two of
them were w r i t t e n in qu i te a short space of time by
students wi th no experience in e i the r LINGOL or l i n
g u i s t i c s . Another program (the French t r ans la to r) was
designed, w r i t t e n and debugged from scratch fo r demon
s t ra t i on purposes by the author from 3:00 a.m. to
8:00 a.m. of the morning he was scheduled to g ive a
t a l k on i t .

The f i r s t program was w r i t t e n in September 1970,
to tes t out the f i r s t version of LINGOL. It was a sort
of "deep s t ruc tu re " analyzer which attempted to make
syntact ic remarks about sentences (Figure 1) . The gram
mar used in it served as the basis f o r the next two
programs.

The system languished fo r s ix months u n t i l a grad
uate s tudent , B i l l Faught, took advantage of i t f o r a
pro jec t in an A . I . workshop. He took two weeks to
w r i t e an English-to-German t r ans la to r (Figure 2) .

La ter , Faught decided to do some serious work on
questioning-answering systems, and soon produced a com
prehension program (Figure 3) tha t r e l i e d on a r e l a
t iona l model of the world in which a l l re la ted concepts
were represented in a graph as ver t i ces l inked by two-
way labeled edges. Recently he has produced considera
b ly more impressive r e s u l t s , but i t is more appropriate
that Faught himself repor t on them.

The French t rans la to r (Figure 4) was w r i t t e n by
the author ear ly in 1972, f o r demonstration purposes.
The program consisted of a page of grammar and seman
t i c s , a page of d i c t i onary and a page of useful func
t ions f o r conjugating verbs, arranging agreements of
a r t i c l e s and ad jec t i ves , performing l i ason and so on, so
i t was not p a r t i c u l a r l y la rge . The po in t of i t was

i) i t was easy to w r i t e ;
i i) i t was s u f f i c i e n t l y succinct to be su i tab le fo r

e x h i b i t i o n ; and
(i i i) i t deal t competently wi th that par t o f English for
which it was def ined.

I t is easy to c la im t h a t , since t h i s is a toy
t r a n s l a t o r , i t says nothing about the real wor ld . This
is c e r t a i n l y t rue wi th respect to polysemy. However,
i t i s fa l se wi th respect to e x t e n s i b i l i t y o f grammati-
c la r u l e s ; we shal l l a t e r demonstrate the s t r i k i n g ef
fec ts obtained on adding very simple ru les . More re
c e n t l y , another four hours of work gave a s e l f - t u t o r
ing capacity to the program (Figure 5) . Notice how
unknown words are co r rec t l y c l a s s i f i e d as to par t of
speech before the program requests in format ion.

We have been basking in these examples somewhat
v i c a r i o u s l y . I t is very much l i k e expla in ing the
advantages and disadvantages of FORTRAN by exh ib i t i ng
the output of some FORTRAN programs. Thus the reader
should only i n fe r from these examples the existence
of LINGOL, and a lower bound on what can be achieved
wi th i t ; he should i n f e r i t s q u a l i t y o r lack o f i t not
from here but from the fo l l ow ing .

2. Terminology and Perspective

Let us set the stage preparatory to g iv ing some
d e f i n i t i o n s , we need a paradigm for computational
l i n g u i s t i c s programs, and we choose the translation
paradigm as best descr ib ing the LINGOL system. The
t r a n l a t i o n paradigm character izes natural language
processing programs as t rans la to rs from the natural
source language to some natural or formal ta rget
language, whether French, LISP, s t ruc tu ra l descr ip
t i o n s , predicate ca lcu lus , conceptual dependency
diagrams or what have you. No loss of genera l i ty is
en ta i led here, f o r by simply making the target
language a programming language, any other paradigm
may be conveniently emulated. The obvious competitor
is the stimulus-response paradigm, in which the input
isseen as a stimulus that e l i c i t s an ac t i on . Again
no loss of genera l i t y can occur, since a possible
act ion is to emit an ut terance. The main advocate of
t h i s paradigm is Narasimhan 13 although it appears to
be the i m p l i c i t paradigm in many extant programs. We
prefer the former paradigm fo r no very good reason,
although we''do f i n d i t easier conceptually to mani
pulate and character ize utterances rather than act ions.
In p a r t i c u l a r , in the programming methodology to be
descr ibed, large items are gradual ly b u i l t up from
smaller ones, and i t is t r i c k y to cast t h i s in a
stimulus-response format.

With in the t r ans la t i on paradigm we shal l i d e n t i f y
two main phases, cogn i t ive and generat ive. The cog
n i t i v e phase is pars ing , in which the input is pre-
processed u n t i l i t is in a form convenient fo r opera
t i on on by the generative phase, which then produces
the t r ans la t i on as output . The paradigm i t s e l f does
not requi re tha t one phase run to completion before
the other can s t a r t . Indeed, Winograd's program
makes e f f e c t i v e use of feedback from the p a r t i a l re
su l ts of his generative rout ines in guiding the cog
n i t i v e rou t i nes , by attempting to b u i l d a semantic
s t ruc tu re f o r , say, a Noun Group, before cont inuing
wi th the pars ing.

We are now prepared fo r the d e f i n i t i o n s . By
syntax is meant a l l aspects of the source language
involved in the cogn i t i ve phase, inc lud ing such things
as phrase s t ruc tu re ru les and semantic markers. By
semantics we re fe r to what is involved 1n going from

372

373

374

the source language (after the syntactic preproces
sing) to the target language during the generative
phase. By pragmatics we mean knowledge about the
universe of discourse, and the local context, that may
be consulted by both the cognitive and generative
phases as they make decisions.

Each of these three concepts has been used many
times in the l i te ra ture , with varying shades of mean
ing and precision, so we are not redefining previously
well-defined terms. Rather, we see three main aspects
to the programs written in LINGOL, and found three
reasonably uncommitted terms with which to label them.
(The f i r s t two definitions coincide more or less with
those of Winograd16, so we are not too far af ie ld.)

{ I t may seem paradoxical to include semantic
markers in syntax, but this is just the consequence
of our usage of the word semantics as opposed to that
of, say, Katz and Fodor9. With respect to.our usage,
semantic markers represent an attempt to encode a
t iny fragment of pragmatics into syntax (or into
l inguis t ics , to use the Katz and Fodor terminology,
and their equation SEMANTICS = LINGUISTICS - SYNTAX).
We do not want to make value judgment; about such
an encoding; the example simple serves to i l lust rate
the perspective induced by our defini t ion.)

3. Design Philosophy

There is not one philosophy in LINGOL, but three,
each tuned to the requirements of the three concepts
defined above. In the current version of LINGOL, the
philosophies are roughly as follows.

3.1 Syntax

Although this paper 1s concerned mainly with the
semantic component of LINGOL, it behoves us to con
sider syntax since the cognitive phase's output is
the generative phase's input. The central decision to
be made here is the choice of representation for this
output. It seems to be necessary to discover the re
lations between the words of the sentence, or the

phrases of the sentence, or the entit ies denoted by
those words or phrases. Corresponding to each of
these possibi l i t ies are dependency structures8 15

phrase structures (almost everybody) and conceptual
dependency networks.14 Actually the f i r s t two are
not mutually exclusive, since it is perfectly rea
sonable to construct structures which contain a l l the
information of both techniques. We shall use the
term syntactic structure to refer to such a coal i t ion,
to distinguish it from a concept structure.

LINGOL is meant to be a practical system suitable
for export and immediate use by practising computa
tional l inguists. The technology for phrase struc
ture is far advanced over any other technology, and
every successful program for the past eight years or
so has unashamedly used i t . Also, it is f a i r l y easy
to convert a phrase structure system to a syntactic
structure system, by tagging each phrase with the
corresponding governing word together with pointers to
the dependent phrases (and hence words).

For these reasons, the decision was made to use
phrase structure as the output of the cognitive phase,
leaving the other representations as projects to be
experimented with in the future. It is worth noting
at this point that the Idea of a concept structure is
a very powerful one, especially in combination with
Fillmore's6 notion of case, as suggested by Shank14.
The notion of phrase concatenation is nowhere near as
rich as that of case-based relations between concepts.
On the other hand, this does not make phrase-structure
a hopeless loser; 1n principle it is possible to con
struct these relations during the generative phase.
However, Shank's point 1s that the information so

discovered 1s v i ta l to the cognitive phase. More re
cent phrase-structure systems, including those of
Bobrow and Frazer3, Woods20 , Winograd16 and the sys
tem described here make provision for discovering this
sort of information while building the phrase struc
ture. This immediately raises the question, why not
build the concept structure anyway, since this infor
mation is being discovered? This point seems un-
anwerable, and is an excellent area for more research.
In the case of LINGOL, we have a half-answer, in that
we have developed what we feel is very nice program
ming methodology for dealing with phrase structures
during the generative phrase. An avenue for research
is to see if this methodology carries over to concept
structures.

Given that LINGOL is based on phrase structure,
the next issue is that of the user's language for des
cribing how that phrase-structure is to be.bui l t . The
two cr i ter ia here are expressive power and ease of use.
For our f i r s t i teration of LINGOL, since we were more
interested in rapidly developing the semantics tech
nology, we opted to sacrifice expressive power for
ease of use if necessary. This corresponds in a way
to Woods19 and Charnlak* assuming the existence of
some sort of parser and continuing from there. The
differences are f i r s t l y that both addressed pragmatic
issues while we address semantic, and secondly that
whereas they made up their own parsed output, LINGOL
is equipped with a parser, on the philosophy that it
is easier to type unparsed than parsed sentences, and
that no harm is done when the parser gangs agley,
which in practice occurs sat isfactor i ly infrequently
anyway.

The user's language for the cognitive component
was therefore chosen to be context-free rules, since
these are very easy to write. They have exactly the
same expressive capacity as Wood's transit ion net
works20. Moreover, just as Woods extended the capaci
ty of these networks by allowing the user to specify
operations on registers, so do we permit the user to
supply code to give hints to the parser whenever it is
about to apply a rule. This code has access to the
part of the tree bui l t so far by the parser and re
levant to the rule in question, and also to the user's
data base, or pragmatics (which seems to make semantic
markers unnecessary as a special feature of LINGOL).
The form of the hint is a grunt of approval or disap
proval, at a 'volume appropriate for the particular
hint , and in this respect is just l ike Winograd's
numerical treatment of ambiguity18. So far , however,
none of the programs written in LINGOL have made more
than t r i v i a l use of this feature, in sharp contrast
to the use made of the features in the semantics stage.

With respect to the actual parser used, the syn
tax philosophy is that the parser should be transparent
to the user, to within the representation of the parts
of the tree to which the user's code has access during
the cognitive phase. This philosophy has enabled us
to run without alteration each of a number of different
LINGOL programs in conjunction with various parsing
algorithms. The details of these parsers and experi
ments are beyond the scope of this paper.

3-2 Semantics

In programming his semantics, the user should be
able to work without the distracting detail of parsing,
tree representation, and ambiguity. The point of
identifying the cognitive and generative phases is to
isolate these issues logical ly in order to achieve
this division of labor. Whether writ ing an English-
to-French translation program or a question-answering
system, there are many details to worry about that
have absolutely no relevance to the cognitive phase;
the myriad idiosyncrasies of French grammar and sty le,
the various searching algorithms and inference rules

375

that are t ight ly coupled in a QA system to the sur
face structure information, and so on. Without some
method in this large-scale madness, progress is bound
to be slow.

Furthermore, we believe that a high level of
performance w i l l be forthcoming from the cognitive
phase of , say, machine translation programs, long be
fore a similarly impressive level is attained by the
generative phase. This is partly because comparative
ly l i t t l e work is being done on generative aspects of
MT, but more because it is inherently harder to say
something with good grammar and style than it is sim
ply to understand what is being said (at least expl i
c i t l y !) . The cognitive phase can ignore most details
of style, and many details of grammar. In every
program written so far with LINGOL, the generative
component has been about three times the size of the
cognitive component, and our prediction is that this
ratio w i l l increase as each phase is improved.

In taking this point of view, we are following
a different philosophy from that of Winograd18, who
makes use of strong interaction between the syntax
and semantics components, which is one of the more
notable features of his program. However, the result
has been to produce a program whose details are lost
in the richness of this interaction, and 1 have heard
Winograd mutter when looking at a part of the program
for "BE", "I don't remember writ ing that".

For the moment we are wi l l ing to sacrif ice what
ever additional power this approach has to offer for
the sake of being able to write clean, modular, trans
parent semantic code. However, we do not believe
that in order to restore this power we need to restore
this interaction. Instead, we plan to rely eventually
on strong interaction between syntax and pragmatics,
leaving semantics as the cognition-independent arena.
This is not just passing the buck; since we see seman
t ics as being more complex than syntax, we are trying
to divide the work-load more evenly to keep a l l mod
ules reasonably small. How syntax is to consult prag
matics is material for future research. Our point is
that the bulk of semantics is irrelevant to syntax.

The issue now is simply, how does one write pro
grams that operate on trees(the output of LINGOL's
cognitive phase)? This issue has been addressed by
computer scientists in connection with compiling for
the past ten years, and the discipl ine of syntax
directed translation has gradually emerged. An early
syntax, directed translator is that of Warshall and
Shapiro17. They used the tree-walk paradigm, in which
the semantics consists of programs that te l l a pointer
to move up, down or across the tree and occasionally
output information. Floyd (conversation) has commented
that the technique was much too clumsy for practical
applications when compared with techniques that t ied
the semantics to the syntax rather than to tne output
of the syntax. It is alarming to f ind Winograd using
this approach in his program, which we conjecture
would be made more transparent by adopting a more rule-
oriented and less tree-oriented approach.

Some theoretical work has been done on syntax-
directed translat ion, notably by Lewis and Stearns12,
Knuth11, and Aho and Ullman1. Knuth's paper is of
interest in that it deals with the problem of passing
information up and down a tree, using the notions of
inherited (from above) and synthesized (from below)
attr ibutes. All of these studies suffer, from the
computational l inguis t 's point of view, in that they
deal with the microcosm of computer source and target
languages, in which the former can be made a compro
mise between the user's needs and the syntax-directed
technology, and the la t ter is a relat ively well-de
fined, reference-poor language when compared with,
say, French.

Knuth's inherited and synthesized attributes come
closest to meeting our needs. The problem with these
attributes l ies with his mechanism for moving them
around a tree. Every node through which information
is passed must make expl ic i t provision for forwarding
i t , even if it is irrelevant to that node.

For example, consider:
No mother of such twins has time to relax.
The mother of no such twins has time to

relax.
The mother of such twins does not have time

to relax.
The mother of such twins has no time to

relax.
(The second sentence is inspired by a study of negation
by Klima10. It should be said in a tone of horror,
with the emphasis on "no", before it sounds correct.)

In each case, what is being negated is the whole
sentence, yet the negation marker can be almost any
where in the sentence. This implies that a large num
ber of rules w i l l have to make provision for passing
a negation marker up the tree.

This problem can be circumvented by using global
variables instead of Knuth's at tr ibutes. Now al l that
is needed is for the negation marker to set a negation
variable, and for the semantics at the syntactic clause
level to read i t .

However, consider the following:
The mother who has no twins has time to

relax.
This sentence makes a positive claim (as dist inct

from the negative one of the previous example) in that
it says that there actually are people who do have time
to relax, namely those mothers who have no twins,
(moreover, it.does not exp l ic i t l y say what happens to
mothers of twins.) This seems to be a situation where
synthesized attributes outperform global variables,
since the rule at the relat ive clause level can simply
refuse to pass on the negation marker.

Negation is not the only such troublemaker. Ar
ranging subject-verb, adjective-noun and determiner-
noun agreement also requires passing information
around the tree, especially when translating into
French, where word-for-word translation does not
necessarily result in correct agreement. Again,
having more than one clause makes d i f f i c u l t the use of
global variables, part icularly when a plural relative
clause is separating a singular subject from i ts verb.
Consider the f ive subject-verb agreements i n :

As I walked into the saloon, the three men
whom Jim talked to after I l e f t him yesterday grt
up and slowly walked towards me.
Al l of these problems are "marker" type problems.

Even worse is passing s t y l i s t i c information from a
word at the bottom of a tree to a clause node higher
up, where this information is to be used to alter the
whole structure of the translated clause. Again it
is important that the appropriate clause get this
information.

The mechanism we want here is that of the local
variable, whose scope is the clause with which it is
associated. With many clauses we w i l l associate many
more local variables corresponding to the various
markers and other messages that each clause may want.
Similarly, we w i l l associate other local variables with
noun phrases, to achieve adjective-noun and determiner-
noun agreement. In the case of the subject, some of
these markers (person and number, but not gender)
must be shared with the clause as we l l , to ensure
subject-verb agreement, but we do not want the clause
to share the object's variables. Also, a relat ive
clause such as "who sleeps" needs the same information
from i ts govenor as does the principal clause. More
over, we w i l l want to pass not only markers, but also

376

word-specific programs written at the dictionary lev
el . (Winograd18makes use of this technique for put-
ing the right programs in the right places.) The
implementation of local variables must be able to
handle these combinations.

The f i r s t version of LINGOL implemented a l l of
this in an unimaginative and not very general way.
Eventually, we saw the l ight and came up with the
program paradigm for syntax-directed translation.

The program paradigm says that the surface struc
ture tree is a program. At each node of the tree
there is a function, and the subtrees of that node are
the arguments of that function. For example, if we
have a tree labelled

t h i s corresponds to the program
" p r i n t (a + b) x ((- c) - d) " .

Since LISP has a mechanism fo r local var iables
(two, in fac t - PROG var iables and LAMBDA va r i ab les) ,
by adopting the program paradigm we automatical ly get
local var iab les . Moreover, because we can wr i te the
code f o r each funct ion separate ly, we a t t a i n a very
high level of modular i ty , which we have found pays
o f f handsomely when one t r i e s to add new rules to an
already operat ional LINGOL program.

The mechanism we use fo r running these programs
d i f f e r s s l i g h t l y from LISP's usual EVAL operator. The
main d i f ference is that i t evaluates the funct ion at
each node f i r s t , g iv ing the funct ion the r e s p o n s i b i l i
ty f o r evaluat ing subtrees at i t s l e i s u r e , and con-
t r o l l i n g the scopes of variables for d i f f e ren t sub
t rees.

To i l l u s t r a t e a l l of t h i s , we shall develop a
small French t rans la to r . Imagine we are seated at a
computer console. The fo l lowing session has a l l
typing errors and stupid mistakes edited out , since
they rap id ly become boring and obscure the main i s
sues. The user input is underl ined.

F i r s t we load the system.

The cogni t ive par t is a LISP s-expression (or
program) that should evaluate to a number to ind icate
to LINGOL our sa t i s fac t i on or otherwise wi th th i s
choice o f i n te rp re ta t i on for t h i s word. I t i s r e l e
vant only when a given word has two d ic t ionary entr ies
corresponding to two parts of speech. Under these
circumstances, we might wr i te a program fo r each
entry to inspect the environment to see how reasonable
the corresponding i n te rp re ta t i on i s . These programs
would be executed if and when both in te rpre ta t ions
were found to make sense given the context to the l e f t ,
e . g . , i t would be executed in "the scout f l i e s . . . "
but not in "the big f l i e s . . . " , where " f l i e s " is l i s t e d
as both a noun and a verb. This component of the
entry need not concern us further here; we w i l l remain
neutral by wr i t i ng 0 everywhere, unless we happen to
d i s l i k e the entry i t s e l f , in which case we w i l l w r i t e
- 1 , or -2 if we are in a bad mood.

The generative part is a funct ion destined to be
tacked onto the surface s t ruc tu re . Since words are at
the leaves of the t r e e , they have no arguments. In the
rase of " t h e " , when the t ree is evaluated, the corre
sponding lea f w i l l return a l i s t of one element (LE)
as i t s value. The symbol ' is a quotat ion mark, and
means " l i t e r a l l y " , so as LINGOL w i l l not th ink (LE) is
a program to be executed. The other ent r ies are a l l
s i m i l a r l y s t ruc tured. The reason we use a l i s t of one
word rather than the word i t s e l f is that we are going
to APPEND these l i s t s together to form longer l i s t s .

Now we want a grammar to make sense out of the
words in combination.

377

Each ru le is of the form (LEFT RIGHT COG GEN). The
f i r s t two items should be in terpreted as a context-
f ree r u l e LEFT -> RIGHT, where RIGHT is e i ther one
category or a l i s t of them if more are needed. At
present LINGOL only permits RIGHT to have at most two
categor ies; to get more, one should use extra names
and rules in the standard way.

The item COG is exact ly as fo r the corresponding
d ic t i onary i tem, except that it may be invoked for
more complex types of ambigui ty, usual ly s t r u c t u r a l .
As wi th the d i c t i ona ry , we shal l w r i t e no n o n - t r i v i a l
programs here, although we may occasional ly use a
negative number when we wr i t e a ru le which we do not
expect to need very o f ten .

The item GEN is a more complex item than i t s d i c
t ionary counterpart , since i t can take arguments,
which are w r i t t en !D (down) if RIGHT is a syntact ic
category, and !L (l e f t) or IR (r i g h t) if RIGHT is a
l i s t of two categories. These are not variables but
programs which run the program fo r the corresponding
subtree.

The f i r s t ru le takes the t rans la t i on of the NP and
the PRED and appends them in to a s ingle l i s t . For
example, if the NP were (LE CHIEN) and the PRED were
(AIHE LE HER), then (APPEND !L IR) would produce (LE
CHIEN AIME LE MER). The funct ion (REPLY L T) is a
LINGOL function which allows the generative phase to
type out on the console the words in L, fol lowed by the
value of T. The var iable CHAR is a LINGOL var iab le
which makes avai lab le to the generative phase the
character used to terminate the input s t r i n g . (In the
near fu tu re we shal l give t h i s to the cogni t ive phase
instead, where it belongs.) In t h i s case, we simply
echo CHAR back to the console.

378

379

Also we need a new PERSON and NO for the object,
although GENDER is a l l r ight because it is in the NP
rule.

The reason we keep finding errors is because we
are writ ing the program as though we were beginners.
With a l i t t l e experience, the user can learn to an t i
cipate most of'these problems at the s tar t .

This scheme has the advantage that the user is
not constrained to any one morphological system, but
can write his own in the same language as he writes
his semantics. It has another advantage in that
morphological processing can be interleaved with se
mantic processing. For example, when LINGOL gives up
on a word altogether, it assigns it the category UN
KNOWN and supplies the word in the generative phase.
If we want to implement Thome's closed-class dic
t ionary16 , in which unknown words are parsed as nouns,
verbs or adjectives depending on which interpretation
makes the best syntactic sense, then we could write
rules such as

Notice how the issue of deciding what part of
speech the word is dealt with independently of, e .g . ,
making "CAT" p lura l . Also notice that the parser cor
rectly guessed the parts of speech, and went on to con
jugate "correctly" the unknown verb, However, "cats"
is a b i t of an Anglicism. Our program is starting to
look quite clever already without our having done very
much to it yet. We have only seven grammar rules, one
function (REG) and a few dictionary entries.

In the example of Figure 5 (section 1),the rules
involving UNKNOWN have for their generative component
a program that queries the user about the translat ion.

These examples could go on indef in i te ly . To see
what can be achieved with a few more hours work, re
fer back to Figure 5. That example s t i l l has very
l i t t l e grammar - approximately twenty rules. However,
it has a page of LISP functions for doing l iason, var i
ous agreements, and handling t r icky things l i ke LES
versus DES in the object position.

These examples bring this section to an end.
There 1s no section 3.3 on Pragmatics - this is en
t i re l y the user's problem. Figure 3 (section 1) gives
examples from a LINGOL program in which the user

successfully interfaced his semantics to quite non-tr i
vial pragmatics. It is not yet clear whether LINGOL
should ever address pragmatic issues.

4. Conclusions

We have described a programming language for
natural language processing programs. We discussed
the reasons for each of the major design decisions.
We presented a session with the system in which we
developed a t r i v i a l fragment of an English-to-French
translator. With adequate imagination, the reader
should be able to project at least some of the po
tential of LINGOL. What may be more d i f f i c u l t to see
are the present l imitations of the system.

We have already suggested that our separation of
semantics from the syntax does not present serious
problems. Whether this is true we leave to further
experiments with LINGOL. It should be noted that
LINGOL is s t i l l in i ts infancy; so far the author has
invested approximately three months' work in i t , over
the two and a half years of i t s existence.

At present, conjunction is not handled at a l l by
LINGOL, except in so far as one may supply context-
free rules for each syntactic category to be conjoined
(which is most). This is tedious at best, and is net
even always possible. One wants to deal not only with
"The Chinese have short names and the Japanese long"
but with "He eloped with and married the farmer's
daughter." Neither of these are at a l l well handled
by context-free grammars, regardless of what we write
in the cognitive component of our rules. Winograd's
system deals with these sorts of problems simply by
being more procedure-oriented. This provides the
necessary f l e x i b i l i t y to deal with pathological cases.

Another d i f f i c u l t area is that of adverbs, which
may appear in many places in a sentence, but which
always modify the verb of the clause they appear in
(unless they modify an adjective). It should not be
necessary to give rules for each of the places an
adverb may appear. It suffices to rely mainly on
semantic connections to establish the role of the ad
verb, and this is one place where concept structures
(Schank14) are of value. It is perhaps signif icant
that Winograd18 makes no attempt to deal with adverbs.

Both of these problems w i l l be studied in the
near future, to see how best to change LINGOL to deal
with them without losing the attract ive programming
convenience afforded by context-free rules in con
junction with LISP semantics. In the meantime, the
system as it stands at present is available from the
author for experimental use. A LISP environment is
required, with at least 20K words of memory. An ob
vious application for LINGOL is as a pedagogical tool
in a computational l inguist ics course, for Introduc
ing students painlessly to one method of writ ing actu
al programs that do something useful with English
other than parsing it for the sake of the parse tree.
We have used it for this purpose during the Independ
ent Act iv i t ies Period at MIT this January. One stu
dent wrote an English-to-unpointed-Hebrew translator!
We ask only that users keep us up-to-date with the
uses to which they put LINGOL.

380

Bibliography

Work reported herein was supported in part at Stan
ford by the National Science Foundation under grant
no. GJ 992, and the Office of Naval Research under
grant number N-00014-67-A-0112-0057 NR 044-402; by
IBM under a post-doctoral fellowship at Stanford; and
at the A r t i f i c i a l Intelligence Laboratory, a Massa
chusetts Inst i tute of Technology research program
supported in part by the Advanced Research Projects
Agency of the Department of Defense and monitored by
the Office of Naval Research under Contract Number
N00014-70-A-0362-0003.

Reproduction of this document in whole or in part is
permitted for any purpose of the United States Gov
ernment .

381

