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Abstract

A computer program that achieves the
interpretation of line drawings as polyhedral
scenes without using specific object prototyp-
es is described. The method is primarily
based on general coherence rules that the
orientations of the surfaces and edges must
satisfy, thereby dispensing with predeter-
mined interpretations of particular categories
of picture junctions as corners. The paper
also comments on the relationship of this
program to four other scene analysis programs.
1. Introduction
One way to capture the meaning of
pictures is to investigate the relationship
between two domains: the picture and what-
ever it is that is depicted the scene1.
This paper closely examines that relationship
for pictures consisting of straight line seg-
ments and scenes made up of opaque polyhedra.
A program, POLY, in the same tradition as
Guzman's SEE2 and Clowes' OBSCENE1 is
presented. POLY exploits the relationship
between the domains and also coherence rules
that entities in the scene domain must satisfy.
Following a description of POLY some feasible
extensions to this scheme are described.
Finally, the relevance of this program to
other scene analysis programs is discussed.

The work reported here stemmed from con-
sideration of several unsatisfactory aspects
of OBSCENE. The 'predicate table' embodied
in that program appears to be a rigid and
opaque theory of three-surface corners and
the picture-taking process. Secondly, OBSCSfE
has a very weak grip on the consistency of
the viewing direction. Finally, it inter-
prets many pictures as polyhedra which cannot,
in fact, exist. The conceptual framework for
POLY was inspired by Huffman's 'dual-graph3’,
which was presented as a device for checking
an interpretation provided by the Huffman-
Clowes labelling process.

2. Scene Coherence

Let us first establish a representation
for the geometry of polyhedra and the picture
taking process.

Dual Space

In conventional Cartesian space we des-
cribe a point by giving its coordinates
(x,y,z) and a plane by a constraint upon the
coordinates of a point: a. x + a. y +ta z +1=0

X y z
representation is as it were point
Since planes are of more interest
in the context of planar-

is desirable to use a

The
oriented.
to us than points

faced polyhedra, it

Sussex,
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England.

rejiresentation that is plane oriented. Such
a representation is dual space4 in which a
plane is represented as a point - specifically
by the coefficients a , a , a of the

variables in the equation of the 'real' plane.
It follows that the dual of a point (x,y,z)
is a plane such that (a , a , is on the

a )
= 6.

plane if xav + ya y+ zax, + K.

If a line in real space is construed as

the intersection of two real planes then its
dual is the line passing through the points
in dual space which repiresent those real
planes.

Viewpoint

A two-dimensional image of a three-
dimensional body is a projection whose form
can be specified in terms of a viewing posit-
ion and a picture plane.

illustrates such a situation where
the picture plane is the x-y plane and the
viewpoint V is on the z axis. |If we consider
a particular line such as P1P2 then P1P2, B1B2
(the corresponding edge) andV all lie in a
plane. This plane we call the plane of
interprctation(l) of P1P2 since given P1P2 in
a picture we have only to hypothesise the
position of V relative to that picture to
achieve a powerful constraint upon the pos-
sible interpretations of P1P2 as an edge,
namely that the edge lies in the plane |
beyond P1P2 . Such an hypothesis about V" has

Pig.l

global implications for it determines the
planes of interpretation for all other picture
lines simultaneously because all planes of

This fact
space as
the inter-
of V

interpretation must pass through V.
is expressed elegantly in the dual
the assertion that the duals of all
pretation planes must lie on the dual
namely on a plane in the dual space D.

If V is at
picture (an ideal point)
orthographic otherwise

infinity relative to the

the projection is
it is perspective.
Bodies

The interpretation of some set of picture
lines as edges bounding a plane surface of a
body is expressed in dual space as the require-
ment that the duals of these edges all pass
through the dual point representing that
surface. Hidden edges of a partially visible
surface would of course also be subjected to
this requirement as would the dual of any line
presumed to be upon the surface.

The interpretation of a picture junction
as the corner of a polyhedron can also be use-
fully characterised in dual space. A point in
real space can be construed as the intersection



of a set of planes so that we can identify
the planes with the surfaces of the corner
and the point with the corner Itself. Each
edge of the corner is then the line of inter-
section of a pair of planes, and has as its
dual a line which passes through the dual

(point) of each of the pair of planes. This
set of dual lines forms a polygon lying in a
plane in D, that plane which is the dual of

the point in real space that we identified
with the corner. Thus the dual of an n-

surface corner of a polyhedron is a plane
n-gon.

Assumptions that the objects in the por-
trayed three-dimensional situations are poly-
hedra interface with a model of viewpoint in

a particularly simple way. Both the picture
line and the edge it depicts lie in the plane
of interpretation, 1, for that line. Thus the
dual of the edge (a line in D) must pass thr-

ough the dual of I. This can be combined
with the requirement that the dual of an edge
pass through the duals of the surfaces it
belongs to, to obtain the requirement that

the duals of | and the two surfaces inter-
secting in | lie on the dual of the edge
which is that intersection. Thus in Fig.l
the duals of the surfaces B1B2 B3B4
and the plane of interpretation of P1P2 all
lie on the dual line of B1B2.

The Gradient Space.

A particularly interesting 2-D subspace
of the duai space D is the gradient, space G.
A point (ax,a ,aZ} in D corresponds to the

y
point
az aZ
in G. Geometrically, this corresponds to

projecting (ax,ay'as” int,° the az ~ ™ P”ane
with centre or projection at 0 and using
(0,0,17) as the origin, 0Q, of G. Tn Pig.2, |
in D is projected into i in G.
u

Several interesting remarks can be made
about G. If the equation of the pjane is re-
written as

& a
e Sxs Yoya B
aZ a az
a a
then we can see why {G_,G ) =X s+ X | ;g
XYy a a
2
called the gradient of the plane. In Fig.lI,

-z is the distance from the point (x,y,zj on
a surface of the object such as B1B£B3B4 to
the picture plane, z = 0. The gradient
represents the vector rate of change of this
distance with respect to movement in the
picture plane1 that is,

g0y B2, bzl |

The length of the vector from 0Q to a point,
W, in G is the tangent of the angle between
the picture plane and the plane corresponding
to W; the direction of that vector is the
direction of the dip of the plane corres-
ponding to W relative to the picture plane.
Since the dual of the picture plane is the
ideal point on the a -axis, Op the zero
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gradient, corresponds to it. The projection
into the gradient space of the dual line
representing an edge may be called the gradi-
ent line of that edge. A perpendicular
dropped from CG to that line is the gradient
of that edge in that its direction and mag-
nitude are the direction and tangent of the
angle of dip oi' that edge relative to the
picture plane. A family of mutually parallel
planes represented by the coordinates

(ka ,ka ,ka ) in D will have coincident repre-
sentations/ § a -, . = , .,
(.x » _2, ) m G. Planes which are
a a
z 2
steeply inclined to the picture plane will be

relatively remote from 0G in G. Most of the
relationships that were Shown to hold in D
must necessarily hold in G. In particular,
the gradients of the interpretation plane and
the two object surfaces that intersect in, an
edge must be on the gradient line of that edge.

The orientation of a picture line deter-
mines the direction of the gradient of its
interpretation plane in G. Thus a picture
line which is parallel to the y-axis, say,
will have an interpretation plane whose
gradient /, lies on the a axis. If we align
the x-y (picture ) axes with the a -a axes
of G the directionof IG relative to 0G will
be perpendicular to the picture line.

The above remarks arwv all true regardless
oi' the viewing position, V, and so are true
for both orthographic and perspective
pictures. We shall now concern ourselves
with the gradient space for' orthographic
pictures. The duals oi' all the interpretation
planes (which must lie on the duai of V) ivill
then be on the a -m O plane of D. Projecting
thejii into G willztbere'foru put all their
gradients at infinity (they become ideal
points in the gradient space). Another way
of looking at it is to realize that as V" goes
further from the picture plane the angles
between the picture and the interpretation
planes all approach 90° and so the lengths oi’
the gradients approach tan 90" (-*00).

The distance of !, from 0, increases
with the (presumed) distance in real space of
the viewing point V from the picture plane.
The projection onto G of the dual of the edge
depicted by the picture line, wiJ ! be a line
passing through l«. For any picture line
there is an infinite family of such lines in
G being the projection onto G oi' duals of
the possible edfes depicted by tht: line. As
V tends to infinity, the picture tends to an
orthographic projection of the scene and 1,
tends to an ideal point. The family of edge
gradient lines in G simultaneously tends
toward a set oi' parallel lines whose orienta-
tion is that of the direction of 1Q., that is,
perpendicular to the picture line.

Consider an orthographic picture of a
scene with a visible edge joining two visible
surfaces, A and B. MWe call such an edge, a
‘connect' edge). The gradient space configu-
ration corresponding to that consists oi' the
two gradients (G, and Gg) joined by a line
which is the projection of the dual of the
edge. That line is perpendicular to the
picture line if the gradient space is super-
imposed on the picture space as described



above. Moreover, it can easily be shown that
if the gradients are ordered on the dual line
in the same direction as the corresponding
surfaces appear at the edgethen that edge is
convex but if they are ordered in the reverse
direction then it is concave. (Intuitively,
imagine a convex edge then rotate one of the
surfaces until the edge becomes concave.
When the edge is flat, the gradients must
coincide). This crucial fact allows the
exploitation of the gradient space for convex/
concave interpretations.

As a simple example of the use of this
consider a FORK junction (Fig. 3) where it is
known that all the edges are connect. The
configuration of the gradients of surfaces, A,
B and C, (G., GBiand G,) can only take on one
of the two forms' of Fig.hif they are to
satisfy the requirement that the mutual
vector difference be perpendicular to the
depicting the edge that connects the two
surfaces. These configurations can, of course,
be translated and expanded in the gradient
space and still satisfy the requirement. Com-
paring the relative positions of the gradients
in Fig.U(a) with the ordering of the regions
in the picture shows that all the edges must
be convex for1 that interpretation while for
the interpretation given by Fig.U(b) all the
edges must be concave. That switch of inter-
pretations which can be achieved by mapping
every gradient G into its negation, -G, is
known in the literature of psychology as the
Necker reversal.

line

- m Description jsf _t he program

The task for POLY can be specified as
follows: using these constraints on the
coherent interpretation of polyhedra subjected

to this picture-taking process what informa-
tion can be derived from the picture? In
particular, the program must provide easily
accessible answers to questions, such as,

Which edges are connect edges?

Which of those are convex, which
concave?

Which edges are occluding?

If an edge is occluding which
surface is in front?

Hov much of the hidden structure
of the scene can be recovered?

What is the orientation of each
surface and each edge?

and so on.

A program, POLY, will now be described which
recovers these attributes and relationships
of the scene. POLY is an existence proof
that such questions can be answered. It
does not purport to be a stand alone scene
analysis programm but it can be thought of as
a useful embodiment of most of the knowledge
specific to these picture and scene domains
and their interrelationship that a scene-based
problem solver would need to have available.
The overall structure of POLY is shown in
Fig.5. The program is written in ALGOL 60
extended to allow for the representation and
manipulation of data objects, attributes and
binary relationships. The input is obtained
by drawing a picture on the graphical display;
'the input phase passes to the parsing phase

uhe end points of the lines. The parsing
phase recovers the picture structure by
examining the lines for join relationships,
and establishing the junctions and closures
and the regions made up of closures. The
picture structure is that given in Fig.6(a).
Then the scene correspondents of this data
structure are created following the relation
of representation1as shown in Fig.6(b).

The GONNECT part of the program uses the
rules of coherence sketched earlier to
establish which edges are connect and which
are not. This part of the programm searches
over a binary tree with each level represent-
ing a different edge in the scene, the left
branches being connectfedge) = true and the
right branches connect(edge) = false. This
tree is not searched in either of the conven-
tional depth-first or breadth-first ways. To
achieve the most connected interpretation
first, the top level goal requires all edges
to be connected and then, when that fails, all
edges but one and so on. The tree search is
effected by the usual backtracking method with
state saving which in this case is achieved
by a recursive procedure. The edges are not
searched in random order; starting from the
background region each region is interpreted
in turn: the next region chosen is that
uninterpreted region with the most lines
adjacent to the interpreted regions. In this
context, to interpret a region means to fix
the position of the corresponding surface in
gradient space. Because the region selected
by that criterion will correspond to the most
constrained surface, this strategy results in
the most efficient search. So, in fact, the
order of the search is given in advance by
the parser but there is no reason why the
program  could not modify the order of search
dynamically if it were embedded in a larger
system that could supply advice or hypotheses
about the orientation of particular surfaces
or the status of various edges.

A simple example will make the workings
of OONTACT clearer. Consider the picture in
Fig.7- GOONNECT fails to find any interpreta-
tion with five or with four connect edges for
reasons that will become obvious. So with
the goal of establishing three connect edges,
GONNECT starts with the background A, and for
convenience sets G, at the origin in gradient
space, it then examines the lines on the
inner closure of A (1, 2, it and 5) and finds
that none of the regions on the other sides
of those lines have been interpreted so it
can say nothing yet about these lines. It
then chooses the uninterpreted region that
has the most adjacencies to the interpreted
regions as the next region to interpret. The
ordering of the edges as a tree is determined
by this strategy of addressing the picture.
Both B and C have two adjacencies so the

choice is arbitrary, say, B. Now it examines
lines on the outer closure of B in sequence
trying to establish connect edges. Say it
looks at 1 first. It establishes it as a

connect edge which means that GR must lie on
a line perpendicular to 1 through G. =(0,0).

In general the position of a gradient is
defined by the intersection of two or more i -
nes in the gradient space arising from edges
assigned connect status; however, for the
first two gradients (@A and GB, here) there is



no IOSB of generality if we do not use that
requirement to locate them since the origin
and scale of the gradient space can 'be subse-
quently altered. So we put GB at unit
distance from G, on that line. The next
picture line to”e considered is 2, which
AGONNECT also tries to establish as a connect
edge but this would require GB to lie on a
line perpendicular to 2 through G. which is
incompatible with the current interpretation
of GR, Thus the interpretation in which both

1 ana 2 are connect edges is said to be
incoherent. This makes it clear why GONNECT
failed in its original goal of establishing
all the edges as connect edges. 2 is
established as an occluding edge and GCONNECT
looks next at 3* Since the region on the
other side,C, is not yet interpreted, it says
nothing about 3. The remaining region C is

then interpreted. 3 is established as a
connect edge requiring G_ to lie on a line
perpendicular to 3 passing through G The

actual position of O, is established by
defining its relationship to Q by making 4
or 5 (but not both) connect edges. The inter-
pretation in which 1, 3 and 5 are connect and
2 and 1+ are occluding edges is rejected by
the single rule that three non-collinear

points in space (the corners a, b and c)
cannot simultaneously lie on two planes (A ad
B). So one legal connect interpretation is
that 1, 3 and 4 arc connect edges while 2

and 5 are not. Continued search of the tree
v.rill only yield one moreinterpretation with 3
connect edges, vis. 2, 3 and 5 connect, 1 and
Occluding. For 1, 3 and 4 connect the final
gradient space configuration will be as shown
in Fig.S, in which the gradient line of
connect edge 1 is labelled as 1' etc.

Then VBEXCAE takes over and decides
which of the connect edges arc convex and
which concave. WVEXCAVE starts by partit-
ioning the gradient space graph into 2-con-
nccted subgraphs8' using the gradient lines of
connect edges as arcs. For each subgraph
VEXCAVE then determines its two possible
interpretations using the ordering rule for
gradients. In the example, VEXCAVE will
decide in the interpretation for which 1, 3
and 4, are connect edges that the whole graph
is 2-cDnnected and that either 1 and 4 are
concave edges while 3 is convex or 7 and 4
are convex while 3 is concave. Note that,
for the latter interpretation, junction b is
assigned an 'accidental' status.

Finally, OOQlILE Ilooks at the non-conn-
ect edges and uses two inference rules to
achieve a complete interpretation. The first
rule expresses the fact that if two surfaces

intersect in a connect edgethat is known to
be, say, convex then at any position in the
picture it will be apparent which surface is
in front. Using this rule it becomes clear,

for many occluding edges, which surface (of
the two that it apparently bounds) the edge
actually belongs to. The rule also adds a
hidden surface attached to that edge. The
fact that such a surface is both turned away
from the viewing direction and obscured by
the visible surface means that it obeys the
same constraint as it would if the edge were
concave and connect. This rule is used in
the example to decide for the case where 1 and
4 are concave and 3 is convex that occluding
edges 2 and 5 belong to surfaces B and C
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respectively. The second rule for occlusion
completes the polygon of gradients corres-
ponding to the visible and hidden surfaces
meeting at each corner. It does this by
allowing for the hidden surfaces created by
the first rule and introducing the minimum
number of extra hidden surfaces required.
The minimum number is achieved by allowing
two occluding edges to share the same hidden
surface wherever possible. In the example
the second rule confirms that the polygon of
gradients is complete for corner c since the
surfaces at that corner, A, B and C are all
visible and there are no occluding edges.
For corner d it completes the polygon by
introducing a hidden edge between the hidden
surface at edge 5 and the background.
Similarly for corner a and the hidden surface
at edge 2. Then at corner b it decides that
those two hidden surfaces could be the same
surface, D, and still obey the constraints.
So the final gradient space configuration is
fig.9 which looks like a picture of a wire-
frame tetrahedron because the tetrahedron is
'only self-dual polyhedron4.

The interpretation pursued in the
example above is one of the first produced by
POLY but the program will continue to generate
less connected interpretations. For example,
the tetrahedron separate from the background
surface has only one connect edge, 3', but its
gradient space configuration has the same
structure as Fig.9 with the exception that Q.
in that figure is replaced by the gradient 01
a second hidden surface, GE and GA is now an
isolated point in gradient space. Interpre-
tations such as this with complete bodies
separate from the background can be easily
generated first by giving GONNECT the advice
that all the lines on the inner closure of
the frame represent non-connect edges.

When OOQULLE has finished then the
Interpretation process is complete. Each edge
in the scene data structure is related to
other scene entities such as the surfaces it
bounds and the corners which bound it. An
edge node also contains attributes such as
connect, convex, concave or occluding and its
slope relative to the picture plane. Nodes
for the original visible surfaces and the
hidden surfaces introduced by OOCAlILE contain
the gradient vectors which are relative to
the gradient of some other surface, usually
the background. These gradients nmay be
uniformly scaled by a positive number before
being added to the gradient of that other
surface to obtain the true gradient. The
scale factor must be positive because the work
done by OCOUIE on the hidden surfaces will
not survive the Necker transformation that a
negative scale factor would involve. This
transformation was allowed for earlier, in
VEXCAVE, when two versions of the configura-
tion were generated.

Two further points about the program
should be made. First, POLY has no difficulty
in making sense of cracks as in Fig.10.

Cracks are simply connect edges where the two
adjacent surfaces have identical gradients.
Finally, the processing time required to
produce the first interpretation is
proportional to the number of picture lines if
that interpretation is completely connected
but that tends towards an exponential



relationship if the first interpretation is
less connected.
4. Possible Extensions of POLY

There are many possible elaborations of
this scheme. Since surfaces are represented
by their gradients we learn only the
orientation of each surface and not its
position in space. It is clear, however,
that one could take the results of POLY and
by fixing the actual position of one surface
propagate the positions of the other surfaces
through the connect edges. Alternatively one
could use the dual space itself as a represe-
ntation and build a program that directly
exploited the constraints outlined above.
Such a program would not have the conceptual
simplicity of the implemented scheme.

In theory,
graphic projections but
practice, a significant limitation on a scene
analysis program. However, one could reform-
ulate the program to deal with perspective
projection. In outline, this means that the
interpretation plane is now represented as a
real point in gradient space since it is not,
in general, perpendicular to the picture
plane. The vector from the origin of the
gradient space to that point will still be
perpendicular to the picture line but the
gradient line of the edge is only required to
pass through that point and also contain the
gradients of the two object planes. Since
the gradients of the planes of interpretation
of all the picture lines are determined by
the geometry of the picture and the position
of the viewpoint relative to the picture
plane these constraints can be systematically
exploited to construct a perspective
interpretation of the line drawing.

POLY only considers ortho-
this is not, in

If the scene is it
discrete light sources
shadows cast arc depicted as straight lines.
Consider a shadow plane formed by the light
source, a shadow-casting edge and the corres-
ponding shadow boundary. The gradient of

by one or more
the boundaries of the

such a plane must lie on the gradient line of
the edge (which is perpendicular to the
picture line and contains the gradients of

the two object surfaces meeting at the edge).
The shadow boundary will also have a gradient
line which contains the gradients of the

shadow-receiving surface and the shadow plane.

Moreover, for a source producing a parallel
beam the gradients of all the shadow planes

must lie on a straight line in gradient space
that is perpendicular to the direction of

Such constraints
include

illumination in the picture.
allow the extension of the scheme to
shadow interpretation.

5. POLY and Related Programs

POLY has particularly interesting
relationships with four other vision programs,

namely, Guzman's SEE?, Clowes' OBSCENE',
Waltz's program® and Falk's INTERPRET®.
SEE accepts input in the same form as

POLY does and produces groupings of the
picture regions on the basis of the putative
body membership of the surfaces depicted. The
program starts by classifying each junction
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into one of a small number of junction cate-
gories. It then uses this classification to
place links between regions if certain local
junction configurations exist. The resultant
graph (with surfaces as nodes and links as
arcs) is then examined for well connected
subgraphs which are declared to represent
bodies. In the language of POLY, Guzman's
links can be thought of as good guesses at
connect edges and, indeed SEE's graph
structure is a weaker version of POLY's
gradient space representation. But SEW fails
to exploit fully our knowledge of three
dimensional situations; for example, there is
no representation in the program for the fact
that if two edges between two surfaces are not
collinear they cannot both be connect edges.
SEE's tendency to see holes in objects as
separate objects7 is only one consequence of
the fact that the program ignores inherent
ambiguities in the interpretation process
that are exposed by the next program to be
considered here, OBSCENE.

OBSCENE (and Huffman's labelling
algorithm3) gives each edge in the scene one
of four interpretations, namely, convex,
concave and the two occluding possibilities,
OBSCENE works by mapping junctions into
corners using some of the junction categories
described by Guzman. Each junction type
(ELL, FORK, ARROW and TEE) has a small number
of pre-determined corner interpretations. The
program then pursues the legal combinations
of these using the coherence rule that an
edge must have the same interpretation at
each end. OBSCENE can he seen as a theory of

why SEE works, in that it makes explicit, what
is implicit in SER. POLY, in turn, is a
theory of why OBSCENE works, in that it shows
how to derive the junction categories of
OBSCENE.

POLY can be seen as a descendant of
OBSCENE in several ways. The coherence rules
for OBSCENE are at the edge level whereas
POLY requires each surface to have a unique
orientation in space. This higher level of
coherence means, for example, that POLY
rejects as ill-formed, skewed objects, such
as Fig.11, that OBSCENE will accept.

OBSCENE are at the
corner level while those for POLY are at the
level of edges. For OBSCENE, this results in
the rather unsatisfactory predicate table in
which are listed all the various 3-Surface
corners which could be depicted by each
junction type. All the entries arc worked
out in advance by the programmer whereas
drawing each junction type as input to POLY
would result in interpretations that are the
OBSCENE predicate table entries. OBSCENE's
edge mapping is:

convex
concave "
hind 1
" hind 2

but POLY uses the fact that those four
categories are really hiding two boolean
predicates. POLY's mapping is:

The mapping rules for

-» f
line

edge

connect

non-connect edge

line

search is done on this
the other predicate

and the combinatorial
predicate alone with



determined by non-search procedures.

Walta?® considerably extended the
Huffman-Clowes labelling procedure by sub-
dividing the four categories of edge types
and adding cracks and shadow boundaries;
furthermore, he Ingeniously modified the
search mechanism to avoid the combinatorial
explosion of a straightforward breadth-first
procedure. Nevertheless, most of the remarks
made here about the Huffman-Clowes procedure
seen in terras of POLY apply equally
extension. Waltz also assigns to each
surface an illumination statur.: illuminated,
turned away from the light or shaded by

another surface. Such hypotheses would be
better justified if the surface orientations
were explicitly represented as In the
gradient Space. Similarly hip, treatment of
shadows does not include the global consis-
tencies outlined in Section i\ above. Finally,
Waltz suggested a scheme to check a labelled
picture by using quantized versions of line,
edge and surface orientations related through
tabulations of possible valuey. POLY
exploits directly a more coneis'.." and trans-

parent representation of those relationships
to construct rich scene interpretations

thereby dispensing with possible corner lists.
Folk's IITBRPKBT is a well documented
account of a complete scene analysis syster.

is
to

that interprets line drawings and so it,
instmotive to see how POLY could relate

that program. But first, ccxmider Falk's
'faceadjacency graph'. This concept, although
not used in the program, is outlined in his
paper because it 'would be valuable for a
scene analysis system which operated ir, a
universe of planar faced solids more compli-

cated' (s, p.112) than the nine simple
objects his program recognizer.. Falk
suggests doing a Huffman-Clowes analysis of
the picture to determine which edges are
connect and then constructing a graph with
surfaces as nodes and connect edges as ares.
It is then showr. that a property of this
graph, 'mergcability', gives the numner of
independent points that need to be located
three dimenslona order to specify the
scene completely. In particular, if the
graph is 1 - mergeable (™ connected in
graph-theoretic terms) then j\ points must be
located. These 4 scalars correspond to
setting the origin and scale of the gradient
space and the distance of the object from the
picture plane. Falk's result ap, lies directly
to the gradient space configuration produced
by POLY, which is not confined to isolated,
degree - 3 polyhedra.

jn
in

itself, Falk
a Huffman-Clowes

With respect to INTERPRET
mentions Several times that
labelling would have helped the program.
Those remarks apply, a fortiori, to POLY. In
addition, the surface orientations available
in POLY would help in support determination
and in recognition; also, the inclination of
edges relative to the picture plane give the
foreshortening factor necessary to calculate
true edge length. Finally, consider the
seven somewhat opaque heuristics that Falk
uses to determine possible base edges. He
forced to use these because at that stage
program is functioning entirely in the
picture domain. The analysis offered by POLY,

is
the

to Waltz's

which constructs a seme interpretation

without 'recognising' the objects, provides
a structure in which one could find the
lowest hidden surface and simply ask which

visible edges are attached to it.

The caveat should be entered that, as
they stand, both OBSCURE and POLY require
complete line drawings while Falk interprets
pictures in which lines can be missing. How-
ever, examination of the manner of failure of
POLY on a particular picture will suggest
where lines may be missing or extraneous by
showing, at the very least, which subplcturos
can be sensibly interpre ted. Furthermore,
hypotheses concerning lines to be added or
removed can be confirmed by successful
analysis by POLY.

Conclusion

Although POLY is restricted to the
interpretation of complete line drawings
showing an orthographic view of a shadow-free

pelyhedral scene, the extensions in Section 4
and the discussion in Section 5 suggest that
all of these restrictions except the over-

riding commitment to polyhedra can he over-
come. Be that as it may, the program does
demonstrats just bow much structural
Information can be inferred from the picture
using knowledge of the picture-taking process
and the general nature of polyhedra but with-
out using specific polyhedral prototypes.
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