A BASIS FOR THE ACQUISITION OF PROCEDURES
FROM PROTOCOLS

Michael
Department

A. Bauer*®

of Artificial

Intelligence

University of Edinburgh
Edinburgh, Scotland. EH8 9NW

Abstract

The problem of reconstructing a procedure
from traces of its behavior is considered. A
representation for procedures, including back-
tracking procedures, is described and a definition
of a trace or protocol is presented. Algorithms
for the construction of a procedure from a set of
traces and for its correction using additional
traces are described.

Introduction

If one is interested in developing systems
whose capabilities increase, then it is clear that
one must be concerned about the mechanics of how
such a system might acquire procedures. This
kind of problem is examined in Sussman's HACKER
[5], a program whose capabilities increase as it
solves problems and acquires procedures. HACKER
makes use of problem specific information and
general procedural information to write a program
and debug it.

Once a solution to a problem is found, one
would expect a problem solver to generalize the
solution in order to use the knowledge gained in
solving that particular problem to solve others.
The generalization could involve domain-specific
knowledge, like replacing one type of object by a
more general type of object. On the other hand,

if one views a solution (a sequence of steps) as a
trace from some unknown procedure on some input,
then the generalization might involve the intro-
duction of variables and the formation of loops.

Hewitt [4] discusses the formation of pro-
cedures from protocols - instruction traces. He
is concerned with creating variables and general-
izing protocols to recursive procedures. Biermann
[2D discusses the synthesis of a Turing Machine
from traces of its behavior. He illustrates how
this technique can be used to form loops.

We build upon and extend the ideas of these
authors. We introduce a representation for
procedures and an execution rule. Based upon
this representation and the rule, we describe the
class of protocols we shall consider. Following
Biermann's ideas we describe an algorithm for con-
structing a procedure from a set of protocols.
The construction involves the formation of loops,
replacement of constants by parameters and the
resolution of variable renamings.

We continue by describing techniques for
debugging a previously constructed procedure by
using new protocols. The debugging process uses
the constructed procedure and the new protocols;
it does not require the retention of the previous

traces. The debugging process cannot always be
guaranteed to correct a constructed procedure,
however, for many procedures, it works very well.

226

Representation

We shall restrict our discussion of procedures
to function procedures, that is, procedures which,
if executed sucessfully, return a single value.
The techniques we shall describe are not restricted
to this particular form of procedures, but this
restriction will simplify many of our descriptions.
(A more complete treatment can be found in til.)

We shall also be concerned with backtracking,
primarily because of its importance, in some form,
in recent work on problem solving [4,5,63. If the
solutions we are trying to generalize involve back-
tracking, then our model of procedures must have
this form of control as well. Thus, in addition
to normal sequential control, our representation
for procedures will involve backtrack control.

involve three "kinds"
assighment statements, tests and
Assignment statements have

Our representation will
of instructions -
return statements.

the form x<—-t, where x is a variable and t is a
constant, a variable or a function invocation. A
function invocation i f{a,,...,a)where f is a

function of n arguments ané each B is a constant
or variable. A function returns & single value if
executed successfully. Because of the possibility
of backtracking, if a function is not executed

successfully, but does halt, then we say that it

fails.

Tests are instructions of the form p(t ,..,t),
where p is a predicate (a function returning True
or False) and each t; is a constant, a variable or
a function invocation. Like functions, tests may
fail as well.

The remaining kind of instruction is Return (a),
where a is a constant, a variable. True or False.

The execution of this instruction means a success-
ful execution of the procedure and the return of
the value of a.

Our basic structure will
labelled directed graph.
by an instruction and the successors of each node
are ordered. A list of distinct variables from
instructions labelling the nodes is designated as
the list of parameters. The directed graph and
this list form a procedure.

be a finite, rooted,
Each node is labelled

The execution of a procedure begins when the
parameters are given values (that is, bound).
The instruction labelling the root node is eval-
uated first. The execution proceeds depth first
until reaching an assignment or test which fails
when evaluated or until reaching a test which
evaluates to False. The execution then resumes
at the last successfully node with an untried
successor. The value of all variables are re-
stored to the value they had after the execution
of this node. If all the successors of the root
node are tried unsuccessfully, then the procedure

fails.

Let us illustrate this rule on a simple pro-
cedure. Figure 1 represents a function PAIRS
(L,X) of two arguments (the root is underlined;
successors are ordered left to right). The first
argument, L, is a list, possibly empty, containing
null lists or pairs of atoms. The second argument,
X, is an atom. PAIRS searches L looking for the
first pair whose second element has the same value
as X or whose second element is a '?'. PAIRS
then returns the first element. If L is Nil
if PAIRS fails to find a pair, it returns Nil.

or

Figure 1 PAIRS (L, X)
Y+Nil
e \
NULL (L) Z+TL (L)
N l
- RETURN (Y) L+RD (L}
N
NULL (L) Y+HD (L)
1:|+z"'— L+TL (L)
Y+Nil L+HD (L)
WL / / \
L = X L= '3
1)
Now consider PAIRS ([[A '?']],'?'). The root

is labelled by Y<-Nil; its evaluation makes Y Nil.
The first successor, NULL(L),is evaluated - return-
ing False. The execution then resumes at the
next successor of Y<-Nil, namely Z<-TL(L) . The
evaluation of this instruction makes Z Nil.
only successor, L«-HD(L), is evaluated making L
[A '?']. Its first successor, NULL(L), evaluates
to False; the second successor assigns A to Y.
The next two instructions assign '?'" to L. The
first successor of L<-HD(L), namely L = X, evaluates
to True. The Return (Y) is evaluated, returning
A and signifying the end of the execution of PAIRS.

Its

This backtracking rule is naive, but it does
provide a beginning for studying traces from pro-
cedures involving more complex backtracking control
structures.

Our next task is the description of a protocol
Let P(x ,...,x) be a procedure in our represent-
ation and let a;, ...,a be the input we wish to
use to illustrate how P works. Imagine that we
have '"unwound" the directed graph of P to form an

infinite tree (or finite if P has no loops).
Using our execution rule, if we evaluate P(aq...,a)
and it halts (either returns a value or fails),

then the nodes of the infinite tree evaluated

during the execution form a finite subtree. Re-
place each node of this finite subtree by its label
(instruction) - this is our trace. We shall call
this trace a pure trace.

In our description of PAIRS, the pure trace
produced by PAIRS (t[A '?'1), '?') would be that
in Figure 2.

227

rigure 2 Y+Nil
NULL (L) Z2+TL (L}
1+HD (L)
NULL (L) Y+HD (L}
L+TL (L)
I~HD (L)

|
L=X
RET[*IN (y)

Unfortunately, traces are seldom pure. Most
traces are variations of pure traces - for example,
using constants in the trace instead of variables.
We shall only consider two variations of pure
traces. The first involves replacing a parameter

that occurs in the trace by the input constant
that was bound to it. This can be done in two
ways. First, if x is a parameter and ¢ was the

constant bound to it, we
the new root node of the
of this as our syntactic version of "Let's say x
is c", prefacing a verbal description of some
operations on x.) Alternatively, we may replace
any occurrence of x by ¢ along any number of
branches from the root node. In this case how-
ever, replacement is permitted in those instruct-
ions along a branch occurring before a node of the
form x<-... occurs (with replacements of x occur-
ring on the right hand side permitted).

may add the node x<-c as
trace. (One can think

Our
ables.
long as we replace all
by a new one and never

second alteration involves renaming vari-
We may replace any variable by another as
occurrences of a variable

introduce a variable which

already appears in the trace.
Let us transform our protocol of PAIRS
([IA '?']1]1, '?+) using these rules. Let us first
insert constants. Replace L by [[A " ?'31 and X
by '?'. Then let us rename variables as follows:
Y becomes V, W becomes Z and L becomes M. The
resulting trace is (ignore numbers for the
moment) :
Figure 3 1., venNil
2. NULL{[[a *?2'11) 3. wern(([a '?'11)
4, M«HD([(A '2'1])
5. NULL (M) 6. V+HD (M)
7. M*TL (M)
8. M+HD (M)
9. M= '

10. RETURN (V)

We feel that these variations of pure traces
permit us to talk about a class of traces which
contain important characteristics which we might
expect of traces generated by a problem solver or
presented by a person - use of constants and use
of variables.

In the next section we shall be concerned
with the construction and correction of procedures
from pure traces and transformations of pure
traces (henceforth we shall refer to both pure
traces and transformations of pure traces as just
'traces' or protocols).

Construction

Our first task concerns the construction of
a procedure from a given set of protocols. Sup-
pose that in addition to the trace of Figure 3 we
also have the trace of Figure 4. Take these two
as our set of given traces.

Assume that we have no idea what procedure
the traces came from, just that they come from the
same procedure and the transformations described
earlier may or may not have been used. We shall
illustrate the workings of the algorithm on these
examples and then briefly summarize the major steps

Figqure 4 PAIRS({ (A B]], '?')
1. L+({A B]]
12, y+Nil
13, NULLIL} 14. 2+TL{L)
15;,L+HD{L)

17. ¥+

{L)

18. L+%F(L)

19. L~HD (L)
af”’w { \\\\

20, l=X 21. L='7' 22, L+Z

16. NULL{L)

23. Y+N{il
24. NUI}L(L)
25. RE‘.’I&.IRN (Y}

Before that, however, we need to introduce two
preliminary notions.

Let us call a set of nodes similar if for
any two nodes from the set either 1) they are both
from the same trace ané the instructions labelling
them are identical except that where one has a
constant the cother has a variable or 2) they are
both from different traces and there is a substi-
tution of variables for the variables and constants
of the instructions making the instructions ident-
jcal. For example, the set {1, 11} is similar
and the set {1, 11, 12} is not.

Let us call a set of similar nodes identifi-
able if the sets of all first, second, ,
successors from the nodes in the set are similar.
For example, {1, 12} is identifiable because the
set of first successors, {2, 13), and the set of
second successors (3, 14), are both similar sets.
The set {8, 15) is not identifiable since the set
of first successors, {9, 16), is not similar.

With these notions presented, we can now
describe how the construction algorithm would
generalize these protocols.

228

Firstly, we know that nodes of the form Var.->
Const, might have been added (using the first
transformation). We also know that nodes con-
taining function invocations or tests or nodes
which have multiple successors could not have been
added. Using these rules we proceed along the
path from the root node until we reach a node we
are sure has not been added. In our examples,
these are nodes 1 and 12.

Working backwards from these nodes, we can see
if corresponding nodes in both traces are similar.
When we reach the root nodes or find non-similar
corresponding nodes we stop. We conclude that
nodes accepted during this process must have been
added - node 11 in our example. We delete these
added nodes and shall use them to help determine
parameters. We shall call this process Reduction.

We then begin to match the set of protocols
with one another. The nodes match if they are
similar. The matching process proceeds from the

root nodes, along corresponding paths (two paths
from two nodes ‘'correspond' if they begin with the
[successor of each node, say ny and n , and one

of ny , n, has no successor or the paths from n;
and ny, correspond). Matching provides a
means of grouping nodes likely to be identifiable

and finding substitutions.

The matching in our example proceeds as
follows: nodes 1 and 12 match, indicating that v
and Y are probably the same variable. Matching 2
and 13 tells us that L has been replaced by
[[A "?']]. Matching 3 and 14 we see that Z and W
are the same variable and that L has been replaced
by [[A ' ?]l) again. This last fact agrees with
the previous information. If instead of[tA '?'])
we had found [[B '?']], then L would have had to
be replaced by two constants. Since this event
would be beyond explanation in terms of our trans-
formations (and, in fact, indicate an error) we
would terminate the attempt to construct a proced-
ure .

Matching 4 and 15 reveals that L has been
replaced by [IA '?")} and that L must represent
the same variable as M - an apparent, contradiction.

This is not really a problem since variables can
be replaced by constants and renamed as well (that
is, involved in both transformations). As long as

we do not find L replaced by two different constants
or variables in the same trace, we are satisfied.

The results of the matching process are the
following pairs of nodes: (1,12), (2,13), (3,14),
(4,15), (5,16), (6,17), (7,18), (8,19), (9,20).
The following ‘'equivalences' are discovered as

well: Vand Y, [[A '?']3, M and L and W and Z.
Assuming that we use the variables in Figure 4 as
a basis, these equivalences suggest that the fol-
lowing substitutions have occurred. V for Y,
[A '?']] and M for L and W for 2.

The next step is to form sets of identifiable
nodes and try to collapse the two traces together
and form loops in the process. But which sets do

we choose? Since we are interested in construct-
ing a general procedure, we choose sets of ident-
ifiable nodes which result in the fewest number of
sets containing all the nodes. However, we also
make sure that nodes paired during the matching

process remain together.

procedure used to find such a set
to
t3).

The actual
is similar to the refinement procedure used
minimize the states in finite state machines

Now using the nodes omitted during the
duction and the substitutions discovered,
easy to deduce that L was a parameter.

re-
it is
Since

'?'" occurred in the parameter list, we create a
new variable, say X, and replace occurrences of
'?' by X. The resulting procedure appears in
Figure 5.
Figure 5 BPAIRS {(L,X}
1. Y-d-Nil%
2. NULL(L) o 4. z+TL(ﬁ;MH“““l
3. RE'J*JRN (Y)\"""_iymﬂn (L)
6. Y+HD{L)
7. I+TL(L)
8. L+HD(L)
9. L =X 10. L + 2
T L]

Summary of Construction

The following descriptions of the steps under-

taken in the previous example provides a concise
cverview of the construction process. A detailed
description can be found in [1].

1.
find similar start nodeg,

Reduce the protocols, if more than one, to
Save nodes ouittea.

2. Match the protocols, beginning at the start

nodes, recording successfully matched sets of nodes

and any substitutions that are discovered.

3. Pind classes of identifiable sets such that
for each class each node of each protocol 1is con-
tained in cone of the identifiable sets in the
class, any nodes paired during the matching are in
the same set and for any ildentifiabhle set, the set
of first successors of nodes in that set are all
contalined in some set, the set of second success-
ors are 1ln some set, etc.

4. Choose the class containing the fewest
identifiable sets; resolve ties arbitrarily.

5.
find
the
of
found
nodes
continue with step 4.
section.)

Given a chosen class of identifiable sets,
the substitutions for the class which make
instructions in each set identical. If any
the substitutions produced contradict those

in matching, partition the class by grouping
to avoid the contradictory substitutions and
(see example in the next

6. Replace constants in each parameter list by
the variables replacing them in the substitutions.
Replace the constants remaining in the lists by
new variables. The variables in the same posit-
ion of the argument lists of the protocols must be
the same. This becomes the parameter list of the
procedure. Finally, replace constants in the
constructed procedure by variables in the paramet-
er list which replaced these constants.

229

Modification

The procedure constructed is not the one we
intended. Of course, in the way we are building
procedures, one could not expect a correct pro-
cedure to be constructed from these two limited
protocols.

Our
if possible,
such a correction
the new protocol.

task, now,
given new protocols.
is possible.

is to correct this procedure,
In this case,
Let Figure 6 be

Figure € PAIRS ([[1[A '?']],B)
a, s«{{J(a '2'])]
b. P+ il\.
¢. NULL({(S) d. O+TL(S)
e. S+HD (S}
£. NULL(S)
o s
h. P+Nil
1. NULL(S) J. Qjm(s)
k.. S+RBD({S)
1. NULL(SJ‘/m./P*-HD(S}
n. S+TL(S)
o. S+¢HD{S)
p. 5= B q. SJ': R
r. RE*URN(P}
We would like to proceed as we did in the
construction process - first reducing the protocol
and then matching. Again, we do this by imagin-

ing that we have unwound our diagraph and have
represented it by an infinite tree. We then be-
gin as we did in construction, by reducing the
protocols (treating our infinite tree as a prot-
ocol) . We conclude that the start nodes are 1
and b; the node a has been added.

We then match our old procedure with our new
protocol. We find that 1 and b, 2 and ¢, 4 and
d, 5 and e, 2 and f all match, but that 3 and g do
not! This indicates that something is wrong.

Consider
nodes to form a

the consequences of identifying two
loop - we create a node which has
more than two predecessors or a root node with one
or more predecessors. We call such nodes
critical nodes. They will form the basis of our
correction process. The critical nodes in Figure
5 are: 1 - Y<-Nil, 2 - NULL(L), 3 - RETURN (Y),

9 - L X.

Now, continuing at the point of our match
where we found that 3 and g do not match, we pro-
ceed back along the matched path. We proceed until
we reach a critical node; in this case, node 2.
If we reach the start node without encountering a

critical node, then we fail.

We terminate our successful matches at the
predecessor of the critical node and its corres-
ponding node in the trace. We note which node
in the trace and which node of the procedure can-
not be paired. In our example, these are nodes
2 and f.

Pseudo-traces

If we had kept the previous traces, then we
could just use the construction procedure with the
new protocol and the previous ones. In practice
we would not want to retain all protocols, so this
approach is not possible. However, we still have
most of the information available in the con-
structed procedure. All we need to do is extract
it in some form to use with the construction pro-
cess. This is the purpose of the pseudo-traces.

A pseudo-trace is a tree beginning at a
critical node or the start node and contains all
the paths from that node to a node which either
has no successors or is a critical node. (This
notion is somewhat simplified, but for our dis-
cussion and example it is adequate. A more com-
plete discussion can be found in Figure 7

[11.)

contains the pseudo-traces of our procedure.
Again, we number the nodes for discussion purposes
Figure 7 1, Y+Nil
2. NULL(L) 3. Z+TL(L)
4. 1+HD(L)
5. mmr.(m"'/’:wnnm
7. 1~TL(L)
8. L+HD (L}
9, L=X 10. L=X 1l1. 142
12. Y+Nil
13. NULL(L) 15, L=X

14. RETURN(Y) l6, RETURN(Y)

We renumber cur matched sets in terms of the
numbers assigned to the nodes of the pseudo-traces.
This gives us the sets {1,b}, {2,c}, {3,4}, {4,e}
and we know that 13 and f cannot be i{dentified.

{We uge 13 instead of 2 or S becauge 13 is the rcot

of a pseudo-trace). Using the construction pro-
cess on these pseudo-traces and the protocol {ex-
cluding the reduction, matching and creaticn of
parameters) we find the following identifiable
sets of nodes: {1,12,b,h}, {2,13,c,1}, {3,4,3},
{4,e,x}, {5,£,1}, {6,m}, {7,n}, (8,0}, {9,10,15,
p.ql, {14,16,r}, {11,q}.

Taking each set in turn, we compute the sub-
stitutions to make the instructions labelling
nodes in the same set identical. This proceeds
smoothly until we try the set {9,10,15,p,q} which
is the set of instructions {L=X, L=X, L=X, S=B,

S e '?'}, We know that L is S by pravious sub-
stitutions. This means that X must have the
value of two different constants.

230

This implies that we have made an error in
replacing a constant by a variable (which, of
course, we did). We know that X is a parameter
in our constructed procedure, so this analysis is

reasonable. We note that B is also a parameter,

and so '?' must be a constant. As a result, node
10 becomes L='?".
We refine this set into two others, (9,15,p)

and
new

(10,9}, replace it by these two and add this
class to our set of identifiable sets, delet-
ing the old set (this is an example of "finding

the substitutions" in step 5 of the construction
algorithm as well). Of course, this new set of

sets will eventually be chosen (since all other
sets must also refine {9,10,15,p,q} in a like
manner).

Making our substitutions and identifying
parameters results in the procedure of Filgure B,

Z+TL (L)

L+HD (L)

NULL (L)

Y

L+Z

¥+HD (L)
{L)
1L+~HD (L)}

IaX 1m'?’
_J

This process of "fixing" parameters by con-

stants is also incorporated into the matching
process of the correction procedure. In that
case, once the constant has been replaced, matching

continues as usual.

Summary of Correction

We briefly summarize the basic steps in the
correction process. Further details and explicit
descriptions can be found in [1].

1. Imagining the procedure as an infinite tree,
reduce the procedure and the new protocols.

2. Match the procedure and the protocols. Dur-
ing the matching check variables in the parameter
list of the procedure, seeing if they agree, when
they occur, in usage with the constants in the
same position of the argument list of each prot-
ocol. If a disagreement occurs, then replace
that variable in the instruction by the constant
in the same position of the protocol where the
disagreement was discovered. Also replace the
variable by the same constant in any substitutions
formed.

If we match without finding any contradictions
and each node of each protocol is paired with a
node in the procedure, then halt - our traces agree
with our procedure. If we find no contradictions,
but some of the nodes of the traces have not been
paired, then continue at step 4. Otherwise, we
find a contradiction, so we continue at step 3.

3. Using the critical nodes and critical pre-
decessors, back up the matched tree until we are
sure our match is successful. Record the set of
nodes we are sure match and the substitutions they

imply.
4. Form the pseudo-traces of our procedure.

5. Carry out steps 3 through 6 of the construct-
ion procedure, taking care to correct any para-
meters if necessary.

Conclusion

abstraction and correction
process described are domain independent.
form of the protocols has been rather rigid.
These characteristics of the protocols are the
results of the transformations we considered -
the first being a result of considering only
syntactic or structural transformations and
second resulting from the simplicity of the
formations.

The protocol
The

the
trans-

The transformations may not seem a ‘'part' of
the protocol abstraction problem and may seem an
additional burden. However, we feel that they
help to define the problem, that is, they help
specify what we mean by a protocol or trace and
tell us what we mean by 'abstraction’ inversion

of the transformations.

This approach can be extended to other syn-
tactic transformations (see [1]) and we feel that
it can be used to include semantic transformations
as well - for example, omitting "obvious" steps in
a certain domain. These permit more variety
among protocols and allow a larger class of prot-
ocols. Of course, the construction and correct-
ion processes must become more complex and use

more information about the domain - for example,
use hypotheses about 'likely' steps in the par-
ticular domain. Protocols in program synthesis,

aay from a dialogue with a person, may be differ-
ent from those using traces formed from solutions
by a problem solver. These differences may sug-
gest different transformations and therefore dif-
ferent abstraction processes. Some of these
problems, as well as work on seeking additional
transformations yielding broader classes of prot-
ocols and finding more general construction and
correction algorithms, are currently under invest-
igation.

References

1. M.A. Bauer,
Procedures from Protocols",
University of Toronto, 1975,

"A Basis for the Acquisition of
Ph.D. Thesis,

2. A.W. Biermann, "On the Inference of Turing
Machines from Sample Computations", Computer
Science Department, Stanford University,
STAN-AI-152, October, 1971.

3. J. Hartmanis and R.E. Stearns, Algebraic
Structure Theory of Sequential Machines,

Prentice-Hall, Inc., Englewood Cliffs,N.J.,

1966.

4. C. Hewitt,
Analysis (Using Schemata)

"Description and Theoretical

of PLANNER: A

231

Language for Proving Theorems and Manipulat-
ing Models in a Robot", AI-TR-258, Artificial
Intelligence Laboratory, MIT, April, 1972.

5. G. J. Sussman, "A Computational Model of
Skill Acquisition", AI-TR-297, Artificial
Intelligence Laboratory, MIT, August, 1973.

"Learning Structural Descript-
MAC-TR-76, Artificial
MIT, September, 1970.

6. p. H. Winston,
ions from Examples”,
Intelligence Laboratory,

*Work done while author was a student at the Uni-
versity of Toronto.

