A CONTROL STRUCTURE FOR A QUESTION-ANSWERING SYSTEM

P. Medema

Philips Research Laboratories
Eindhoven, The Netherlands

Abstract in section 6, no formally defined
programming language is used. Most of
The control structure of a question- the symbols are borrowed from ALGOLG6S,
answering system is derived from a set the remaining ones are supposed to be
of basic assumptions. For its design and self-explanatory. For design and publi-
implementation, a normal algorithmic cation purposes, algorithmic descriptions
language is used. The design leads to that are easy to read for human readers
"symmetric" procedures, the resulting are preferred to algorithmic descriptions
programs use the stack mechanism for that can be processed by a compiler.
recursion to give the correct storage
allocation. Two strategies are discussed 1« A rough sketch of the
in more detail: a trivial well-known properties of the system
depth-first strategy and a new one,
called flexible decision tree strategy. The system (Ca”ed PHLIQA for
No linguistic aspects (either syntactic PHiLIps Question Answering) is able to
or semantic) of the system are discussed answer questions formulated in a natural
language (English), where the answers to
Introduc tion these questions are facts, either to be
found directly in a data base inside the
The author and his colleagues have system or to be derived from information
developed a prototype of a question- stored in the data base.
answering system. A document describing As in most present, day Ae1l e systerns,
the whole system and the considerations the ciaim is not that PHLIQA can under-
that have lead to the design has not yet stand the full natural language; it is
been published, but will appear before only capable of processing the questions
long. As this paper discusses the relating to the restricted universe of
algorithmic aspects on a fairly abstract discourse, as dictated by the contents of
level, only a rough sketch of the the data base. However, the system s
system's properties is needed. This designed in such a way, that a great part
sketch is given in section 1. In order of the program is independent of the
to be able to give some examples, actual universe of discourse; this may
section 1 also contains a superficial become clear at the end of this section.
(_Jlescription 'of some properties of the The process that answers a question,
inverse-of-discourse of our systom. The is divided into three subprocesses: the
reader.should howevgr reall_ze, that this interpretation of the question (resulting
paper is not - and is not intended to in an evaluable expression), the evalua-
be - a description of the system. tion of that expression (resulting in
o the value of the answer) and the formula-
Some of the charurteristies that tion of the answer. In the current paper,
seem to be common for all A.l. systems, only the interpretation process is
like the existence of local ambiguities, discussed. In order to get a transparent
are also present in our system. In and well-structured program, the inter-
contrast to what seems to be customary pretation process is too complicated to
Il%r Itihset p();rooncset;lsjicr;[égor}ar?gu:\g'el. (frggr%rpséne be performed in one giant step. Between
. . the natural language and the level of the
of its improvements PLANNER or CONNIVER) evaluable expregssigns, a number of inter-
was used. In the opinion of the author, mediate language levels has been designed

matters such as automatic backtracking
and garbage collection should kept

in sight. They may be present only impli-
citly - as opposed to being programmed
explicitly - but the programmer should
control them, as he controls some stora-
ge allocation mechanism via invocation
and termination of procedures, thereby
implicitly controlling the size of the The concrete definitions of the
stack. intermediate languages are not relevant
to this discussion, and are not given.All
these languages have one aspect in
common: except for the uppermost level

The conversion from an expression at a
certain language level to its equivalent
at the next lower level is performed by
program modules called converters. The
general and common aspects of the control
structure of those converters form the
topic of this paper.

One of the targets of the project
was to reach a clean, well-struetured
program by means of a "top-down" design

. . (the natural language) all expressions
Theethgg.ntrgllssfratjpcetrurcola{/vrgz ctjoerisvhg\(,iv r(]?;/]v an in these languages are re.presented as
informal way) from a small number of trees._AII converters (with the tr_|V|aI
basic assumptions exception qf the uppermost one) will have

' a tree as input and will produce a

For the notation of the algorithms

542

(converted) tree as output.

A few words on the universe of
discourse: the prototype of PHLIQA
contains a small data base on computer-
configurations and their users. A few
properties of both kinds of objects are
stored in this data base. Kor the confi-
purations there are, among others, the
name of its central processing unit
model, the number and type of its
peripherals and the name of the manufac-
turer. For the users, the data base

contains, among others, the company name,
the street address and country of the
si te.

To come back to
universe-of-discourse dependence,
mentioned earlier: the possible
structures of the tree (in other words:
the different types of branchings of its
nodes) are universe-of-discourse inde-
pendent. The only nodes that do have
universe-of-discourse dependence, are
the terminal ones, which represent
constants (e.g. for certain sots, ele-
ments of sets, functions on them). A
converter is therefore only universe-of-
discourse dependent in so far as it
manipulates those constants explicitly.
An example may clarify this point: a
certain sub-tree may represent a
expression, the semantics of which are
verbally given by"for the set of all

tho point of the

configurations, apply the function "name
of the C.P.U. model” to the elements of
this set, and consitute the set, consis-
ting of the results of this function-
application”. Now, the construet"run
through all elements of a set, apply a
function, and build up a hew set from
the results” is wuniverse-of-discourse

independent, where the concrete set
"configurations"” and the concrete
function "name of the C.P.U. model" are
univorso-of-discourse dependent,

2. Ha-sic assumptions

2.0. In order to be able to develop the
algorithmic structure of the converters,
a number ol design decisions have to be
made. Some of thorn are axioms: they have
to be postulated at the beginnin®.Other
design decisions only arise due to the
actual selection ol" the set of axioms.
We will start with our set of axioms,
and because we are not going to treat
them in a formal way with correctness

proofs, we prefer to call them basic
assumptions.
2.1. Each converter will perform its

task by means of transformations, opera-
ting on a sub-tree and producing the

lower level equivalent of that sub-tree,
(in most cases, only the top nodo of the
sub-tree is involved.) When all possible

sub-trees have been
converter is ready.

2.2. A basic difficulty in all A.Il.
systems is the existence of ambiguities.
In our system, wo may have ambiguities
inside any converter. A converter may

transformed, the

perform more than ono transformation on

a certain sub-tree without being ablo to
decide which transformation(s) is (are)
the correct one(s). These branching

points in the program constitute the
decision tree. After having selected a
certain decision (a branch at a branching
point of the decision tree) a converter
may meet another ambiguity, leading to a
new branching point in the decision

tree. The design decision made here is
twofold : (l) our system allows for
ambiguities in all converters, and (2)

in some way or another, all possibilities
at a certain branching point are elabo-
rated systematically. There might or
might not be any preference for the

order in which the transformations are

"tried", but all of them should have
their turn at soon as their predecessors
fail.

2.3. The back-tracking mechanism,

necessitated by the ambiguities, may be
implemented in several ways. We choose

for a set of (recursive) normal proce-

dures - as opposed to co-routines - where

each transformation procedure contains

three parts:

51) the transformation proper

2) the activation of the next transfor-
mation

(3) the cancellation of (1)

2.4. Within a converter, the possible

transformations will have no internal

static order. In other words, as soon as

we require that transformation TI
des transformation T2, TI
belong to different
As a consequence, the program is comple-
tely free to perform any transformation
of a converter as soon as it sees that
this transformation is applicable.
Furthermore, this assumption allows wus

prece-
and T2 have to
converters.

to have, for each converter, one central
procedure that Ilooks for the applicabili-
ty for all the converter's transforma-

tions while it searches the tree.
2.5- Transformation rules are formulated

in the form "if existence condition then
if applicability condition then transfor-
mation fi fi". As one can see, those two

conditions do not differ with
the system's reaction if they hold for a
certain sub-tree; their difference (which
one could not see from the simple state-
ment given above) is the reaction when
they do not hold. When for no sub-tree an
existence condition is true, the corres-
ponding converter is ready; the complete
expression is given to the next conver-
ter, if any. When for a certain sub-tree
the applicability condition is false

(and necessarily the existence condition
is true) this means that the <corresponding
sub-tree cannot be transformedi the
process is in a dead end of the decision
tree. The system should then back up to
the previous converter. Some converter
may use special cases of this general
construct: the topmost converter, which
will be called the parser below (although
it does more than just a syntactic parse)

respect to

have an existence condition for
separate sub-trees, or rather, the

exi stance condition is always true as
long as the complete input question has
not yet been reduced to one syntactic
symbol.

2.6. Transformations are done
tom-up order with respect to
of their operands in the tree. A node
will be transformed if all its descen-
dants are either transformed already or

do not need a transformation,

does not

in a bot-
the position

3- Basic assumptions
clarified by examples.

A certain convertor
to replace certain sets by other sets.
E.g. the set "computers" does not exist
at the data base level; it has to be
replaced by either the set of "configu-
rations" or the set of "C.P.U.s". The
transformation, mentioned in 2.1, is
simple in this case: a sub-troo repre-
senting "computers" is replaced by
another set. The ambiguity of assumption
2.2 is also present hore: the replacement
can be done in two ways. The general
strueture of the transformation procedure,
given in 2.3, will for example look Ilike
1) replace "computers" by "configuratime"
activate next transformation
replace "configurations" by

The net result of the execution of this
procedure is nil, but succeeding trans-
formations will process the correct tree,
because they are activated from the
central point of their predecessors,
not at the end.
Assumption 2.4 says
problem whatsoever to replace
same converter the set "users”
"corporations". However, it is dangerous
to combine the replacement of "computers”
by "C.P.U.'s" and the replacement of
"C.P.U.'s" by "model names" in the same
converter. The search process would then
have the task to scan the whole tree,

as soon as one of the converter's trans-
formations has boon performed. The
existence condition, mentioned j.n 2.5,
is very simple in this case: if there
an occurrence of the set "computers"”
the tree, the existence condition for
this converter holds. The applicability
condition could in this case 1look for the
context of the sub-tree to be replaced.
It is conceivable that the set "C.P.U.'s"
does not fit in the context, where
"configurations" would fit. We then say
that the applicability condition for the
first transformation is false, while it
is true for the second transformation.

inside the system has

" C OinputEE**

and

is no
in the
by

that there

is
in

4. Further design considerations

4.1. When designing a general control
strueturo, one of the fundamental deca -
sions to bo made is how the system should
react when a sub-1roe has more than one
applicable transformation. We will
elaborate on two alternative approaches:

544

the transformations
the process has to
this selection point

one of
it
to

select
and perform
be backed up

(1)

to perform one of the remaining
alternatives,;

(2) defer the selection decision and see
if there are other sub-trees for
which only one transformation is
applicable.

Although this paper mainly deals with

the second alternative (sections 5 and

6) we will make a few remarks here that

are either valid for both approaches ox*

only apply to the first approach.

The first alternative is well knwon. It

can be characterized by saying that the

program uses a depth-first strategy.lIts
use in the <current system is justified
by the additional observation that for

some converters, on almost
the number of applicable
is 1. This suggests that
mance of the depth-first
not much worse than the performance of
other strategies, while it avoides the
bookkepping overhead of those strate-
gied.
4.2.

all occasions,
transformations
the perfor-
stratogy is

The central
2.4, to bo called
will havo to search
Therefore, this condition procedure will
use recursion; at any moment, there will
be as many instances of the procedure as
the current node has ancestors in the

tree. As soon as an applicable trans-

procedure mentioned in
"condition procedure",
the complete tree,

formation is found, this transformation
is performed (4. 1-1).

4.3. The activation of the new search
process from a point inside a transfor-
mation procedure may be done by a recur-
sive call of the whole converter, which
always starts with an invocation of tho
central condition procedure. There are
as many instances of the convertor
active as there are successful trans-

formati ons .
4.4, As soon as
finds a dead end

the condition procedure
(which means that there

is a sub-tree for which the existence
condition holds and the applicability
condition does not hold, see 2*5), all
existing instances of the current conver-
ter have to be terminated.

5- The flexible decision

tree strateqy

5.1. As stated before, a decision point
or a branching point in a program is a
point where a decision has to be made
with respect to the next action to be
performed, and more than one action
turns out to be feasible (in our Q.A.-

system: when a sub*tree has more than one
applicable transformation). So far, all
well-known strategies have one property
in common: the order in which the declaim
points are passed is dictated by the
structure of the algorithm. Given this
structure and a particular input and a
decision at a certain point, the next

decision point is completely determined.

Moreover, when the algorithm arrives at
this point, it has to make a decision
before it is able to continue. The
points in the decision tree have a fixed
order.

The alternative strategy we wish to
elaborate in this section is called the
method of the flexible decision tree.
This means that a new docision point is
riot necessarily added to the decision
tree when the algorithm meets it. A
decision point may remain "dangling" for
a while, and be added to the decision
tree at a lutei, more appropriato momont,
preferably at a moment that sufficient
information is available to make the

correct decision.

The main argument for this method
is to have an elegant way to improve the
overal 1 efficiency. Take the very simple

example of a decision tree with two
branching points A and B, where A happens
to have (for some actual input) 2 alter-
natives and lor B only one decision is
possible. We will prefer a tree where B
precedes A. In that case we perform the
actions following point B only one,
whereas in the case that A precedes B,
the actions following B are performed
twice, viz. once for each branch of A.
Thus, the main philosophy behind the me-
thod is to defer decisions as long as
one possibly can afford. It will be cleer,
that such a deferment only takes place if
the number of possible decisions is
greater than 1. 1In all cases where only
one decision can be taken, this should be
done immediately. Hopefully, such deci-
sions will duereaso the number 01 alter-
natives at other branching points.

We should realize that the name
"flexible decision tree" is appropriate
only with respect to the original level
of considered decisions. The defermont

of a certain decision is the consequence
of a (non-deferred) decision, existing
one meta-level higher. These "meta
derisions"” are ordered in a fixed
decision tree, just as each algorithm
has its fixed decision tree, dictated

by the strueture of the algorithm. At
this meta-levol, it is again true that
the algorithm has to make a decision

(concerning whether or not to defer a

decision of the lower level) before it
is able to continue.

3.2. The flexible decision tree strategy
implies the necessity of an explicit
(data) representation foar decisions,

because the program has to manipulate
them. Other strategies do not need such
a representation; their docision points
are implicitly present in the program.
A decision point is characterized
by two things: the sub-tree to be trans-
formed and the set of applicable trans-
formations for that expression. When a
sub-tree is cneountered fur the first

time, a condition procedure will tell
which transformations are applicable, if
any. Af a later stage, the property of a
decision point may change, i.e. the

945

number of still applicable transforma-

tions may decrease, or one of the trans-
formations may have been seleeted. Let
us therefore decide that the represen-

tation of a decision
reference of the

point consists of a
top node of the corres-

ponding sub-tree, a list of references
to still applicable transformations and
possibly the selected transformation.
5.3. The results of the Iloxible decision
tree strategy (in terms of the efficiency
of the complete program) might be impro-
ved if decisions influence each other.Tf
a certain transformation produces infor-

mation that is a help for
deferred decisions,

previously

by means of reducing
the number of alternative transformations
at that decision point, it is certainly
worthwhile to make use of this extra
information.

In general, it means that the condi-
tion procedure for its evaluation not
only malkes use of the information of the
sub-tree concerned, but also uses
information of other sub-trees. In our
system, where the flexible decision tree
strategy is used during the (bottom-up)
parsing process, we have a clear example
of such helpful extra information, viz.
the (syntactic) context of the node to
be reduced.

The existence of
information
may include
value is not

such helpful
implies, that the conditions
terms of which the truth
known, because the corres-
ponding information is not yet available.
This implies that the evaluation of these
conditions has to be done in a three-
valued logic: "true", "false", and
"unknown".

5.k. If wo do have dangling decision
points, what is the appropriate moment
to reconsider them ? One could think of
a very general control structure whore all
dangling decisions are reconsidered an

soon as any other decision has been made.
This set-up will presumably lead to
inefficiencies because derisions arc then
reconsidered many times, without new
information becoming available. A better
approach is to let decisions tell which

other decisions they might influence,and
to reconsider only the indicated deci-
si ons.

Instead of developing a general
"theory" for these influences, we will
see immediately what this means in the
case of a bottom-up parser. It is
immediately clear' that two neighbours
(two consecutive terms in a partially

reduced sentence) might influence each
other: one of them might belong to the
context that is needed to make a correcf

decision for the other’. A successful
transformation on a certain node (in
this case: a syntactic reduction or

another parsing decision) is the appro-
priate occasion to re-evaluate the condi-
tions for its neighbours.

3.5- As long as we cannot prove that for
all the sub-trees to be transformed a
situation will be reached in which only

one transformation is applicable, the
system's control structure should be able
to handle those ambiguities. Their

number might decrease by an intelligent
use of helpful information, but they do
not - at least in our system - complete-
ly vanish. This means that the program

has to make an (arbitrary or "best")
choice for one of the dangling decisions.
In that case, it will use the strategy

to select the decision point having the
lowerst number of alternative transfor-
mations. This strategy is used by human

beings when they
puzzles and keeps

solve cryptarithmetic
the decision tree as
small as possible. The selection of the
next sub-tree to be transformed can now
be done by one selection process, both
for unambiguous and ambiguous sub-trees.
As unambiguous sub-trees only have one
applicable transformation, they will
automatically be selected prior to any
ambiguous sub-tree,

flexible
parser

6. The algorithm of a
decision tree

6.0. In
program
strategy,

parser of

the parser
contrast to the other
system, the parser
which itself has

show the
decision tree
the bottom-up
The decisions of
syntactic nodes. In
converters of the
produces sub-trees on
to operate, as long as
the final reduction to the syntactic
"sentence" has not yet been made. Each
time a new syntactic node is produced,
its corresponding decision point is
to a set of dangling decisions, called
"DAD". Obviously, when
is ready, this set is empty. The exis-
tence condition for the parser is true,
as long as the set DAD is not yet empty.
6.1. A decision point is represented by
a structure, declared by mode decision

point = (ref node trafo top,
trafos

[''T ref proc

ref proc condition,
int selected,

bool trafos

The variables "selected" and
known" indicate the status of a decision
point. If "selected"”™ / 0, the correspon-
ding value indicates the number in the
list of trafos that has been selected,In
this case, a decision has been made, so
the decision point does not belong
If "selected” = 0, the decision point
belongs to DAD. There are however two
kinds of dangling decisions: those for
which all applicable trafos
those for which that is not
(This is the three-valued
in 3-3.) The difference s
the variable "trafos known". If "trafos
known" is false, not enough information
was available to determine which trans-
formation were applicable; in that case,
sooner or later the procedure in the
field "condition"” has to be

this section, we will
lor the flexible
as applied to
our system.

relate to

known) ;

"trafos

the
logic
indicated by

case.

node

added

to DAIX

are known,and

mentioned

the parsing process

(re* Jactivated.

546

The re-evaluation of
condition
lead to

6.2. The

the corresponding
expression may or may not
"trafos known" is true.
parser starts with the construc-
tion of decision points for all the
words of the input question, and places
these decision points in DAD. In
algorithmic form, the main program of
the parser looks like
proc parser =:
for word
sentence
do add
do next action;
end of the parser.
In this program,
the name of

thru all words of input

to DAD (word) od;

"do next action" s
a procedure that is the
heart of the flexible decision tree
strategy; its algorithm is given in
6.k. It is important to realize, that
when the program is executed and the
semicolon following the call of "do
next action" is met, all alternative
transformations on all nodes have been
performed. We could replace the semi-
colon by "; output ("aJl interpretations
of the current question have been
tried");".
6.3. We will first proceed with
procedure "add to DAD". We do not only
need it for the words of the input
sentence, but also for the (top of
partially reduced subsentence.
proc add to DAD = (ref node node):
decision point dp;
determine the condition procedure,
that belongs to this node; apply
this condition procedure;
its result may be:
true: all transformations
found to

the

the)

that have

be applicable,are

stored in the list "trafos"

of dp; trafos known:=true;

no transformations were appli-

cable, the parser is in a

dead end of its decision tree;

trafos known := true;

not enough context of

node was available to

the condition;

this very condition

is stored in

dp;

trafos known :=
selected ojf dp := O0;
the decision point dp is
added to DAD

end of the procedure "add to DAD"

We will not give the details of the

condition procedure; there is one condi-

tion procedure for each syntactic cate-

gory and they use more than Just syntac-

tic information. We only remark that

they only work with applicability condi-

tions; the existence condition for the

parser is used on one central place,viz.

the procedure "do next action".

6.J4. The procedure "do next action"™ has
the responsibility to select the next
decision point that has to be added to
the decision tree. Each of the appxicaoie

false:

this
evaluate

unknown:

procedure
"condition" of

false;

now

transformations should have its turn.
Together with the test for the existence
condition, this leads to something like:
proc do next action =:
if DAD is empty
then the existence condition is not
longer true, so activate the
converter that succeeds the
parser
else among the decision points in
DAD with trafos known, select
dec!sion point d with the
minimum number of applicable
trafos; remove d from DAD;
for t thru applicable trafos
of d
do perform trafo t on node
of d od;
d is added to DAD again

fi
end of procedure "do next action".
The central point is this procedure is
the activation of a transformation, in
the program abovo stated by "perform
trafo t on d". Here again, coming back
to the calling program means that all
alternatives resulting from transforma-
tion t have been tried, either leading
or not loading to a complete interpre-
tation of the whole question. This
central point is at the same time the
most important point of the structure of
the whole program. Due to this invocation
of a transformation procedure, which inits
turn invokes "do next action" (as is
shown in 6.5; both procedures are
mutually rocursive), there is one instan-
ce of "do next action" for each level of
the decision tree. In this way, a stack
mechanism that deals with recursion
enables us to have a clean and correct
program that systematically elaborates
all alternative transformations. This
style of programming, called symmetric
programming, was postulated in sub-
section 2.3- In the procedure "do next
action", the symmetry shows up in the
fact that addition to DAD is the mirror
image of removal from DAD. As the reader
may have noticed, no special care is
needed for dead ends of the decision
tree. Such a dead end occurs, when a
decision point has no applicable trarafbrma-
tions at all. Such a decision point will
bo selected immediately, while it certain-
ly has the minimum number. The Iloop
through the transformations will be
performed zero times, so the procedure
immediately backs up; another instance
of the same procedure will than proceed
by performing the next possible trans*
formation related to a decision point
higher up in the decision tree.
6.5. The transformation procedures are,
in the same way as the condition proce-
dures were, dependent of the syntactic
category they have to process. We will
show the general structure of such a
procedure:

947

proc trafo = (ref
perform the syntactic

node node):

fromnode and zero or mo

left-hand
node n;
add to DAD
point d;

neighb
(n),

do next action:
from DAD;

remove d
delete n;:

ours to

leading

end of a transformation proce
new node a new

The fact that f
decision point

or the
shoul d

that this decision po
any explanation. The

should not need

by cons
int s

reduction

re of 1 ts
a new

to decision

dure.

tructed, and
added to DAD,

symmetry of the procedure, already
discussed in 6.4, is more obvious here
6.6. Not al |l transformations of the

parser produce a new syntactic node

there I s one exc

mation, called "shift",

syntactic node i

that t he node concerned will

eption.

nto a

This t

status

rightmost and controlling con
reduction. On

of a syntactic

that have this "shifted"

act as (left) context
s. This means,

hand) neighbour
a node receives
excellent moment

wing algorithm:
proc shift = (r
change stat
re-evaluat

this st

of thei

atus,

ransfor-

transforms the

that means

not be t he

stituent
l'y nodes

status, may

r(right-
that when
this Is an

to re-evaluate the
condition procedure of
neighbour. This brings us to t

us of n

Its ri

ef node node)

ode to

ght-hand
he foll o-
"shifted";

e the condition procedure

of the righ-hand
do next action;
cancel the resul't
ation;
change status of
shifted";

end of procedure "shif
To illustrate th

flexible decisi
parsing of the
use computers ?

neighbo
s of th
node to

t"

ur of node

e re-eval u-

not

e working of the

on tree parser, the
question "Does Philips
" is shown:
CL
G
CLR
__45///f5\\4£‘s
CLR” NP
l 10 14
CLC NOMR
13
NOM
12
PROPN VERB NOUN
la l« 5
PHILIPS USE COMPUTERS

In this figure, vortical and diagonal
linos denote syntactic reductions,

horizontal lines denote the shift-trans-

formation. (This paper is not the
appropriate place to explain to names

of the syntactic categories.) The numbers
indicate the order in which the decisions

actually were made by the parser. The

final reduction has the number 16, which

shows that the decl!sion tree has 16
levels. This decision tree is not shown

hero; the only decisions having more thai

1 applicable transformation are those
with the numbers 6, 7, 9 10 and 11.
Worth noting iis that decision 5 (the
reduction from COMPUTERS to NOUN)
procodes decision 6; in a conventional
lolt-to-right parser, decision 5 would
have boon made alter decision 11. The
doferment of decision 1 2, although
having only 1 applicable transformation
for this example, is due to the i'act
that it needs some context to reach
that conclusion. This context is not
available before the shift transforma-
tion of decision 11. Actually, about
the only gain for the flexible
decision tree strategy in this example
in the fact that the transformation of
decision 5 is performed only once
instead of some 6 times in the case of
a conventional parser. Fortunately,
more complicated examples lead to better
results.

7.Concluding remarks

By means of "symmetric programming"”,

one is able to construct clean, well
structured programs for a question-
answering system. The symmetry is possi-
blo because ali procedures that perform
actions know how to activate the next
action; there is a central starting
point lor the next action, Procedures
are terminated only when their results
may be destroyed; this allows the pro-
grammer to store the results as local

guantities, leaving the responsibility
for storage allocation to the.stack

mechanism. In the case that an explicit
separate stack mechanism is needed, it

is easy to program it correctly: duo to

the symmetry, the statements that care

for cancellation are just a few lines

lower on the programming sheet than the

statements that care for the creation.

The programming language used lor

implementation of these ideas, should

have

- recursion

- struetures (records)

- pointers (references)

- mforoneOH to procedures (entry
vnrLablos).

I'ot our system, wo used an internal

dialect of PL/I, the concrete choise

being not too important.

As far as the strategy is concerned,
we might observe that intelligent systems

should use an intelligent strategy to

solve their decision problems; from this
point of view, the flexible docision

tree strategy is certainly more promising
than simple depth-first and breadth-
frist strategies. There exists a striking
and attractive similarity between this
strategy and the way in which human
beings solve certain combinatorial
problems like cryptarithmetic ones.

It is clear on the other hand, that

the flexible decision tree is not the
final solution for decision problems.

the author's opinion, intelligent

strategies should have at least adequate
solutions for the following two problems:

to know to what extent decisions are
dependent of other decisions; one
could think of an implementation in
which decisions are no longer linearly
ordered in one single decision tree,
but where there exist as many separate
decision trees as there are mutually
independent chains of decisions.

to know, at a dead end, at which
decision point (presumably many levels
higher in a decision tree) a wrong
decision was made, so that the program
can immediately back up to the correct
point, instead of trying useless
alternatives Ilower down in the decision
tree.

