THE 2.PAK LANGUAGE:

GOALS AND DESCRIPTIONS

Lucio F.

Department of Computer

Melli

Science

University of Toronto

Toronto,

ABSTRACT

This paper describes a programming
language, 2.PAK, whose main aim is to
provide a set of primitives suitable
for Artificial Intelligence applications.
In addition, 2.PAK tries to incorporate
principles obtained from research into
programming languages in general. The
main features of the language include
a data base composed of directed labelled

graphs, hierarchical and heterarchical
control structures, backtracking
primitives (applicable to either control

structure), and a generalized form of
pattern matching.

1. INTRODUCTION

In 1973, a programming language
to facilitate Al research at the
University of Toronto was designed and
implemented. Although it was SNOBOL
[1] based, I[.PAK [2,3] offered many
features found in the more prominent
Al languages such as PLANNER [4],
CONNIVER [5], QM [6] and SAIL [7] since
these languages greatly influenced its
design. It thus possessed such features
as a data base composed of directed
labelled graphs, pattern directed
information retrieval, pattern-invoked
function calls and generators.

|.PAK shared another feature with
other Al languages; it was a disappoint-
ment. The language, used extensively
in a graduate course on Al and for a
Master's thesis [9], was heavily
criticized due to its lack of good
primitives. The primitives it did
provide were ill-defined and although
they seemed orthogonal, the combination
of some primitives yielded unexpected
results. In addition, some of the
primitives did too much for the user.
This resulted in the user losing control
of what was happening in the program
and having to depend on kludges to
constrain such primitives. It should
be noted that such criticisms apply not
only to I[.PAK but to other Al languages

549

Canada
as well, e.g. [8],
The problem thus seems one of
finding "good" primitives for Al

applications. This paper describes

a successor to |.PAK which tries to
provide some of these primitives.
2.PAK is a successor in the sense that
experience gained from |.PAK has been
used in the design of the new language.
2.PAK is not an extension of [.PAK.

2. LANGUAGE GOALS

2. PAK's goals center around two
major objectives. The first is to
provide a good set of primitives suit-
able for Al applications. The problem
here rests with the choosing of the
primitives to be offered. One must be
careful not to choose primitives that
are too low-level; otherwise the
convenience of the language user
suffers. On the other hand, the
primitives must not be too high-level;
otherwise the adaptability of the
language suffers. As example, one
could consider LISP's primitives as
being too low-level for Al applications
and PLANNER s primitives as being too
high-level. It was the dissatisfaction
with LISP that sparked the design of
higher level Al languages so that a
user could program his algorithms more
conveniently. However, PLANNER's
automatic backtracking and pattern
directed function calls proved to be so
high level and powerful that they
lacked the finesse the user required
and subsequently could not be used.
Thus the ideal solution is to find
primitives that strike a happy balance
between the two extremes and provide
facilities within the language for the
user to easily define any higher level
primitives that may be needed for a
specific application. The search for
these primitives was centered around
some of the previously mentioned Al
languages and others including QLISP
[10] and SIMULA [11]. Features offered
by these languages were examined and a
set of primitives was abstracted.

The second objective is one that
is overlooked by most Al languages.
2.PAK tries to accomodate principles
obtained from research into programming
languages in general. Such qualities
as efficiency, readability, reliability
and understandability are too important
to any language to be omitted from the
design stage and then be expected to
somehow emerge when the language is
completed. We believe that Al languages
can greatly benefit from the experiences
of programming languages in general,
and that they should not set themselves
apart and have to reinvent the wheel.

In the light of these two major
objectives, the general goals of the
language are:

1) Efficiency - of program creation and

execution.

2) Natural Syntax - to enhance read-

ability of programs.

3) Understandability and Readability -
through the use of simple

semantics.

4) Minimality - the language should be
concise.

5) Involution - consistent use of

language features.

6) Orthogonality - independence of
language features.

7) Simplicity - to aid in program
construction.

8) Implementability - the language
should be implementable

cheaply and efficiently.
More specific goals in terms of
desired features include:

1) A wide variety of data types,

2) Generalized pattern matching without
restriction to a set of data types
chosen by the language designer.
Generalized control structures ti-e.
hierarchical and heterarchical
control structures).

3)

4) Good abstraction capabilities to aid
in defining higher level primitives
required by specific applications.
5) Backtracking as it applies to
hierarchical and heterarchical
control structures.

6) Flexibility to either compile or
interpret expressions within the
program.

550

7) Strong typing of variables whenever
possible to allow the system to

check for "illegal datatype" errors
and thereby reduce them.
8) Interactive facilities and tracing

facilities to aid in debugging and
program execution monitoring.

3. LANGUAGE OVERVIEW

2.PAK is a block structured
language whose main features will be
discussed according to the divisions:

data types, abstraction facilities,
basic statements, global control
structures, backtracking, pattern

matching and miscellaneous. A more
detailed description of 2.PAK is
available in [12].

3.1 DATA TYPES

2.PAK offers a wide variety of
data types so that the user can choose
what is best suited for the task at
hand. There are the standard data
types such as booleans, integers,
reals, strings, references (i.e.
pointers to user defined records or
coroutines), lists and arrays. In
addition there exist unevaluated
expressions and hash tables as in
SNOBOL, patterns which can be matched
or combined to form new patterns, and
records, which are user defined
aggregates of basic types. For example:

record BINARY TREE(
LLINK, RLINK ;

ref (BINARYJTREE)
string LABEL) ;

defines a record which can be used to
construct string labelled binary trees.

2.PAK also possesses a data base
in the form of a directed graph with

labelled nodes and edges. Such a
structure has shown itself to be very
convenient as a representational tool,
especially for semantic nets, and is
very similar to SAIL'S triples,
PLANNER'S assertions, CONNIVER's items
or QLISP's tuples and vectors. The

structure provides a restricted form

of associativity applicable to the nodes
of the data base, i1.e. for a given node,
one can determine all the nodes that
are related to that node by means of
edges either leaving or entering that
node. Thus associativity exists for
the nodes of the data base, but not

for the edges. This form of associat-
ivity is clearly less expensive than
that provided by SAIL's triples.

The basic units of the data base
are the nodes, and operations exist to
add or delete nodes to or from the
data base, add or delete edges to or
from a specific node, generate edge-
node pairs whose edges match a specified

pattern and enter
node and all
given radius.

or leave a specified
edges and nodes within a

All 2.PAK variables must
and typed to alleviate the problem
caused by illegal datatypes as arguments
to operations. One can view type
declarations as intentions of what
type of the variable is to be. The
system will then provide the necessary
checking either at compile or run time.
If the type of a variable is not known
or if it can be of more than one type,
one can declare it to be of type var
which allows that variable to take
values of any type.

the

3.2 ABSTRACTION FACILITIES

An abstraction facility is the
capability of grouping together entities
into a unit that can be assigned a name
for reference purposes. For data types,
record declaration is an absraction
facility since one can construct the
required record from primitive data
types and then use that record as a
primitive data item of the language.

For 2.PAK statements, there exist three
three types of abstraction facilities:
procedures, function procedures and
coroutines, Procedures and function
procedures are defined as in most
programming languages. Coroutines
differ from procedures in that they
can be used to achieve heterarchical
control structures (see section 3.4).
In addition, variables of a suspended
coroutine instance can be examined or
altered.

Lastly, macros provide an abstract-
ion facility for character strings with-
in the text of the source program. For
example:

macro '?' replaced by '%' ;
occurrences of
the macro definition,

will replace all
following

I?l.

by ;%".

3.3. BASIC STATEMENTS

2.PAK are
statements

The basic statements of
the assignment statement,

that control local sequencing (i.e. if,
while and case) and the 1/0O statements.
Most of these statements are fairly

standard as is shown by the examples:

if X -Y

then SAME = SAME + 1 ;
end ;

if X <Y

then Y :- X ;

else COUNT := COUNT + 1 ;
end ;

be declared

551

FLAG =
read X ;
write X ;
end ;

while true do

case PRIMARY_COLOUR of

'‘RED" : ...
YELLOW' : -
'BLUE' : -
else : MESSAGE :=

'NOT A PRIMARY COLOUR." ;
end ;

The example case statement will
examine the value of PRIMARY_COLOUR,
which must be of string type, and will
execute the case containing that value as
a case label. If the value is not in the
range of specified case labels, the case
having else as a case label will be
executecT!

3.4 GLOBAL CONTROL STRUCTURES

the
to or

Global control deals with
primitives that transfer control
from procedures and coroutines. For
procedures there exists the hierarchical
control structure provided by the pro-
cedure call, possibly recursive, and the
return statement. As is the norm for
procedures, a procedure's environment
destroyed when a return is executed.
the other hand, coroutines survive
transfers of control and are merely
suspended until control is returned.
Execution then commences at the point
where the coroutine was last suspended.

is
On

2.PAK offers two
types of control primitives which are in
many respects similar to those of SIMULA.
The hierarchical type, provided by

invoke and detach and similar to the call/
return of procedures, is ideal when it is
necessary to have a coroutine execute
under the control of some other block,
i.e. as is the case for generators. Thus
the invoke statement, like a call, carries
information to the invoked coroutine as

to where a detach should return. However,
the heterarchical primitive resume carries
no such information. The resumed co-
routine has no idea who resumed it and
assumes complete control of the computa-
tion. Thus one could consider different
coroutines as representing different
environments and use resume to transfer
control among these environments.

For coroutines,

3.5 PATTERN MATCHING

2.PAK offers a generalized pattern

matching facility not restricted to a
set of data types chosen by the language
designer, as is often the case. This s
achieved by letting the user have the

facility for defining the semantics of
required pattern matching primitives and
their evaluation sequences. Defining the
semantics of pattern matching primitives
reduces to defining a set of functions

that operate on the position of a cursor

within the subject structure. Such an
approach to pattern matching is applicable
to strings, lists, graphs or any user

defined structure. The evaluation
sequence of a pattern matching primitive
specifies when that primitive is to be
evaluated. The three possibilities are:
evaluate when the primitive is encountered
while the matcher is moving in the forward
direction (i.e. moving left to right
through the pattern), evaluate when en-
countered whil moving in the backwards
direction (i.e. backtracking), and
evaluate whenever encountered. Eor
example, the string pattern matching
primitives FENCE and SUCCEED of SNOBOL
exhibit the second type of evaluation
sequence, while the edge expressions of
|.PAK patterns show the third type. A
pattern in 2.PAK is therefore composed
of a sequence of boolean expressions with
associated evaluation sequences. The
2.PAK pattern matcher executes the
pattern in a backtracking mode whereby

if an expression evaluates to true the
matcher proceeds forward to the next
expression; if false the matcher back-
tracks.

For the convenience of the user,
some of the more basic pattern matching
primitives for strings, lists, and graphs
are provided. However, these primitives
should by no means be taken as dogmatic
and one is still free to define his own.
Sample 2.PAK patterns arc found in
section 4.2.

3.6 BACKTRACKING

2.PAK backtracking primitives are
completely disjoint from control
primitives since such a separation allows
one to combine the two in the manner that
produces the desired result in the most
efficient way. Backtracking is therefore
viewed as the means for manipulating state
changes made within what is termed a
context. Primitives provide facilities
for entering a new context, fo'r specifying
what changes are to be backtrackable with-
in a context, and when to back up to the
previous context and what to do with the
backtrackable changes. The context
feature is less prominent than CONNIVPR's
(where everything is carried out in a
backtrackable context) and we consider
more economical since the user
when to use the feature.

it
can choose

In addition, there are primitives
that can be used for the heterarchical
control structure provided by coroutines.
Preserve binds a context to a coroutine
instance and restore restores the bound
context of a specified coroutine instance.
Thus restore can be used in conjuction
with the resume statement to provide the
facility of transferring control within
multiple environments, each with it's own
context. Another use is the evaluation

552

of expressions outside the current
environment. This can be easily achieved
by restoring the desired environment,
evaluating the expression and then re-
storing the original environment. Note
that for such a task no transfer of
control is necessary and that none takes

place.

3.7 MISCELLANEOUS

In addition to the described
features, 2.PAK provides miscellaneous
built-in functions to aid the user.
These functions include:
apply - Similar to the apply function of
SNOBOL, this function provides a dynamic
function calling facility.
compile - This function accepts as
argument a string representation of a
2.PAK expression and returns its
equivalent unevaluated expression.

eva This function evaluates a 2.PAK
unevaluated expression and returns the
produced result.

trace This function allows the user
to enable tracing of changes made to a
specified variable or transfers or
control to or from a specific procedure
or coroutine.

The language also provides toggles
to facilitate extensive tracing. For
example, setting the toggle .CTRACE. to
10 will result in the tracing of the next
10 transfers of control made by any co-
routine of the program. Other toggles

include: trace all variable changes
(.TRACE.), trace all function calls and
returns (.FTRACE.), and trace the

evaluation sequence of pattern matches
(.PATTERN.).

4. EXAMPLES

4.1 A ONE-ARMED BANDIT

The concept of a generator is an
important one for Al applications. A

generator is a function that on successive
calls will produce and return elements
from a specified range. We wish to
demonstrate that 2.PAK's coroutines are
more than adequate substitutes for
generators. This is done by presenting

a coroutine that simulates a one-armed
bandit slot machine. The example is to be
judged not on efficiency, since much more
efficient formalizations can be obtained,
but rather on its merits as a generator.

The first thing one needs for the
bandit are the rings which display the
generated sequence. A bandit usually
contains three such rings which are
themselves generators of elements from
the ordered set composed of the fruits
cherry, lemon, orange and apple. Such a

generator is simulated by the coroutine:
coroutine FRUIT_GEN()
begin
string FRUIT ;
FRUIT :- 'CHERRY' ;
detach ;
while true do
case FRUIT of
'CHERRY": FRUIT := 'LEMON! ;
'‘LEMON'": FRUIT := 'ORANGE® ;
'ORANGE": FRUIT :- 'APPLE'
'APPLE': FRUIT :- 'CHERRY' ;
end ;
detach ;
end ;
end ;
The first invocation of FRUIT GEN

generates the string value * CHERRY' in

the variable FRUIT and then control is

returned to the invoking block by means
of a detach. On the second invocation,
the coroutine enters the while statement
and executes the case statement which

uses the old value of FRUIT to generate
the next value. Note the cyclic nature
of the generator and how easily this is
achieved with a case statement. After

the new value for FRUIT has been
generated the coroutine detaches.
sequent invocations will commence
execution after this detach, thereby
remaining within the generating loop.

Sub-

What is now needed is a mechanism
for "spinning" these rings. We have
only defined the prototype ring but we
can obtain multiple copies of it).
Consider the following procedure:

procedure SPIN(ref (FRUIT_GEN) RING ;
integer 1)
begin
while | > 0 do

invoke RING ;

Il =1 - 1 ;

end ;

end ; /* OF SPIN. */

The above procedure takes as arguments a
reference to an instance of a FRUIT_GEN
and an integer |I. It then proceeds to
invoke the specified FRUIT_GEN instance

| times and thereby achieve the effect of
spinning the ring.

Finally we can now define the bandit
itself:

coroutine
begin

coroutine FRUIT_GEN() ... ;
procedure SPIN ... ;

ref (FRUIT_GEN) FIRST, SECOND,
THIRD ;

string RESULT ;

integer RAND1, RAND2, RAND3 ;

BANDITQ

FIRST :- FRUIT GEN() ;

SECOND :« FRUIT GENQ ;

THIRD :- FRUIT GEN() ;

RESULT := 'CHERRY LEMON ORANGE* :
detach

while true do

[* GENERATE 3 POSITIVE RANDOM
INTEGERS IN RAND1, RAND2
AND RAND3. */

SPIN(FIRST , RAND1L) ;
SPIN(SECOND , RAND2) ;
SPIN(THIRD , RAND3) ;

if (FIRST.FRUIT = SECOND.FRUIT)
$ (FIRST.FRUIT = THIRD.FRUIT)

then RESULT :* 'JACKPOT' ;
else RESULT :* FIRST.FRUIT
I * ' It SECOND.FRUIT
|| " " || THIRD.FRUIT ;
end ;
detach ;

end ; end; /* OF BANDIT */

First the coroutine declares the pro-
cedures, coroutines and variables it
needs. The variables FIRST, SECOND and
THIRD are references to instances of
FRUIT_GEN and represent the three rings
the bandit needs. RESULT will contain the
result of playing the bandit. On the
first invocation, BANDIT sets up its
three ring generators and generates a

losing value. (It is assumed that the
management will absorb this first loss by
initializing the bandit before letting

anyone play). The generator then

detaches. On subsequent invocations,
BANDIT will generate three integer random
numbers (unspecified and left to personal

preference as to which method to use),
and spins its rings by the obtained
values. It then generates 'JACKPOT'

if all three fruit values are the same
or generates the string obtained by
concatenating the generated values. The
generated values are retrieved by using
the dot notation for accessing coroutine
variables, i.e. FIRST.FRUIT represents the
variable FRUIT in the coroutine instance
referenced by FIRST. Note that the
generated values depend on the previous
states of the rings. Good luck.

4.2 LIST PATTERNS

We now demonstrate how one can
achieve some of the list pattern matching
facilities offered by CONNIVER. This is
accomplished by taking sample patterns
from the CONNIVER reference manual [5]
and presenting their 2.PAK equivalents.
Before proceeding, some list pattern
matching primitives have to be defined.
(Note that, in this example, list atoms
for 2.PAK are assumed to be strings).

bg(l)le)an procedure MATCH ATOM(string
¥ THIS FUNCTION MATCHES ATOMS IN A
LIST AND ADVANCES THE CURSOR. V

begin
if type (CURSOR) — STRING;
then return false ;
else if car(CURSOR) - Sl
then QUROR = cdr(CURSOR) ;

return true ;
else return false
end
end;
end ; [* OF MATCH ATOM ¢/
boolean procedure DOWN pattern Pl)
* FUNCTION THAT DESCENDS ONE LEVEL IN
THE LIST AND MATCHES THE PATTERN PI.
*
begin
if type(CURSOR) /=
then return false ;

'LIST'

end ;
if match (Pl , car(CURSOR))
then QURSOR :- cdr(CURSOR) ;

return true ;
else return false
end ;
[* OF DOWN.

end ; */

boolean procedure SET(var X)

F THIS FUNCTION ASSIGNS TO X THE CAR
bOF_ THE LIST CELL BEING MATCHED. *
egin
if type(CURSOR) -« 'LIST!
thendreturn false
end ;

X - car(CURSOR) ;
AOROR :- cdr (CURSOR) ;
return true ;
end ; [* OF SET. */

boolean procedure REM(var X
£ THIS FUNCTION ASSIGNS TO X THE
REMAINDER OF THE LIST BEING MATCHED.
*]
begin
if type(CURSOR) -=
then return false ;
end ;

X - AQROR ;
AQROR :- null ;
return true ;

end ; /[* OF REM.

'LIST?,

*/

In the following examples atom
denotes an arbitrary atom and list
denotes an arbitrary list.

1. (MATCH '(FOO I>X) '(FOO BAR)?]

- The pattern, denoted by the second
list element, matches lists of the form
atom). The subject is the list

EKKT and after the match X will be
associated to the atomic value BAR.
The equivalent 2.PAK Eat}ern match
match(f:l\/LATCH ATOM('FO0"),SET(X):> ,
<'FOO", 'BAR'>);
After the match X has the value 'BAR*.

iS:

554

2. ((FREDS !>X) . I>REST)

- This pattern matches lists of the
form: _

(FREDS atom) list)

The equivalent 2PAK pattern is:

<: DOWN(MATCH ATOM(FREDS)
SET(X):>) , REMIREST)>

3. (GRANDFATHER !I>X I,X)
- This pattern matches

form:
(GRANDFATHER atom atom)

lists of the

where the two atom values are equal. The
equivalent 2.PAX pattern is:
<: MATCH ATOM(GRANDFATHER) , SET(X) |,

MATeH_ ATOM(X) >

4. >(CREATURE (FEATHERLESS s CREATURE)
EQ (UMBER OF LEGS !,CREATURE) 2))

- This pattern matches
form:

(atom (FEATHERLESS atom) (EQ (NUMBERM
OFTEGS atom) 2))

where the three atom values are equal.
The equivalent 2.PAK pattern is:

< SET CREATUREg , DOWN(<: MATCH ATOM
(FEATHERLESS') , MATCH ATOM(CREATURE)

. DOWN(<: MATCH ATOM(E
BOWRE AT L OF

lists of the

ATOMCNUVBER OF LEGS'
I\(/IAéT()ZH_AT)OM(CREATURE) :>) , MATCHVTI
1 1 > >

The above 2.PAK patterns are
usually much longer than their counter-
parts since we have used mnemonic names
rather than «i = v One could

define the primitives with shorter names
or use macros to shorten the expressions
that need be written. Note also that all
of the example 2.PAK patterns happen to
have primitives with evaluation sequence
"evaluate when encountered while moving
forward". Since this seems to be the
most common evaluation Sequence, it is
assumed by default and has no syntactic
specification.

The above are by no means all of the
available list matching primitives of
CONNNVER and are only meant to give a
flavour of how one can extend 2.PAK
pattern matching to suit a specific
structure.

CONCLUSIONS
In this paper, we have introduced
and briefly described 2.PAK, a language

that provides a set of programming
primitives suitable for Al application,
and that makes use of experiences gained
in the design of programming languages

in general = Since it is not yet clear
what primitives are essential to Al
aPpllcat!O_ns, we have chosen the approach
of examining existing Al languages and

abstracting from them a set of primitives
that can be easily combined to produce
many of the language features now deemed

important. We are even optimistic
that some of our primitives, i.e. co-
routines and the heterarchical control

primitives, can be used to achieve a form
of actors [13].) We hope that the
language description and the examples
demonstrate that some success was achiev-
ed, especially in realizing the specific
goals presented in section 2.

The general
guided the overall
Influence is evident throughout 2.PAK.
For example: orthogonality led to the
separation of backtracking primitives
from control primitives, and to the
realization that pattern-directed pro-
cedure invocation is composed of a
pattern match and the use of a function
such as apply; minimality reduced the
set of heterarchical control primitives
to three; etc. We would like to stress
again that we believe Al languages can

goals of the language
design and their

greatly benefit from the experiences of
programming languages in general and hope
that this is evident in 2.PAK.

2.PAK is currently in the process
of being implemented as a interactive
language. Plans are to implement a
kernel of the language and then boot-
strap the rest. The kernel will probably
be implemented in SPITBOL [14] since it

proved to be a convenient and adequate
language to use when 1,PAK was
implemented. It is expected that an
implementation and
answer many of the questions regarding
the appropriateness of the provided
primitives for Al applications.

ACKNOWLEDGEMENTS

| would like to thank Professor
John Mylopoulos for all his help, and the
National Research Council

A7905) for supporting this research.
REFERENCES
1. Griswold, R.E., Poage, J.F. and
Polonsky, [.P.; The SNOBOL4 Program-

Prentice-Hall
New Jersey,
256 pages.

ming Lanquage;
Englewood CIliff,
(second edition),

Inc.,
1971

2. Badler, N., Berndl, W., Melli, L. and
Mylopoulos, J.,; The 1.PAK Reference
Manual; TR 55, University of Toronto,
Dept. of Computer Science, August
1973, 145 pages.

3. Mylopoulos, J., Badler, N., Melli, L.
and Roussopoulos, N.;
based Programming Language for
Artificial Intelligence"; [JCAI 3,
Stanford University, Stanford,

nia, August 1973, pp.691-696.

its subsequent use will

of Canada (grant

"[.PAK: A SNOBOL-

Califor-

555

10.

11.

12.

13.

14.

Hewitt, C.; Description and Theore-
tical Analysis (Using Schemata) of
PLANNER: A Lanquage for Proving
Theorems and Manipulating Models in a
Robot; Al TR-258, MIT, Artificial
Intelligence Laboratory, April 1972,
408 pages.

D.V. and Sussman,C.J.:
MIT

McDermott,
The CONNIVER Reference Manual;

Al Lab Memo No. 259a, May 1972 (up-
dated Jan. 1974), 146 pages.
Rulifson, J.F., Derksen, J.A. and
Waldinger, R.J.; QA4. A Procedural
Calculus for '"AY7Atiye ReasoningT"
Technical Note 73, SRI Al Center,
Nov. 1973.

Swinehart, D. and Sproull, B.; SAIL;
Operating Note No. 57.2, StanforH

Al Project, January 1971.

Sussman, G.J. and McDermott, D.V.;
Conniving is Better _than Planning;

MIT Al Lab Memo No" 255A, April 1972;

31 pages.

Cohen, P.R.; A Prototype Natural

Language Understanding System; TR 64,
University of Toronto, Dept. of
Computer Science, March 1974, 149
pages.

Reboh, R. and Sacerdoti, E. ;: A
Preliminary OLISP Manual: ArtiTicial
Intelligence Center, Technical Note

81, SRI Project 8721, August 1973,
35 pages.
Dahl, O0.J. and Hoare, C.A.R.;

"Hierarchical Program Structures":

in Structured Programming, Academic
Press Inc., London, 1972, pp.175-220.
Melli, L.F.; The 2.PAK Language:

Primitives for Al Applications;
University of Toronto, Dept. of
Computer Science, Dec. 1974, 151 pages.

Hewitt, C.,
"A Universal
Artificial Intelligence",;
Stanford University, Stanford,
August 1973, pp.235-245.

TR 73,

Bishop, P. and Steiger,
ACTOR Formalism for
3,

|IJCAI
Calif.,

R.;

Dewar, R.B.K.; SPITBOL, Version 2.0;
IIlinois Institute of Technology,
1971.

