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Abstract

The paper describes MAGMA-Lisp, an extended Lisp
system proposed as an implementation tool for A.l.
languages exploiting nondeterministic techniques.
The main idea informing MAGMA-Lisp is that a tree
structure of conceptually indipendent computation
environments (contex tree) is the supporting struc
ture of any nondeterministic system. MAGMA-Lisp
proposes this structure in a quite virginal form,
so that the user can state his own techniques to
prune, select and explore the available alterna-
tives. In this sense, MAGMA-Lisp is to be viewed as
a "machine language".

The ideas of MAGMA-Lisp are contrasted with the
systems that most influenced its design. The tech-
nigue used in context implementation is described,
showing how a very flexible context mechanism can
be realized without an intolerable loss of efficien
cy. In particular, in spite of the complexity of
the system, garbage collection does not result much
more time consuming than in standard Lisp systems.

1. Introduction

Many original features, embedded in the lan-
guages developed for A.l. so far, involve nondeter-
minism <3.4,6,12>. In fact, features like "pattern
directed procedure invocation” and "associative
data-base retrieval"™ give rise to situations in
which many possibilities are open for the computa-
tion to proceed. Such a feature is typical of non-
deterministic procedures, which are characterized
by the presence of choice points, where the subse-
guent actions are not univocally determined.

The nondeterministic behaviour of A.l. systems
has been first realized by automatic backtracking.
Different alternatives are attempted one by one.
Whenever one fails, the state of the computation is
automatically restored as it was before the last
choice was done, and a new one is attempted. As a
matter of terminology, we say that each alternative
is attempted in a newly created context, while the
context in which the choice point has been encoun-
tered is "frozen" to maintain the state of the
computation as when the attempt begins.

Automatic backtracking, although superficially
attractive, turns out to be not adequate to face
the main problem with A.l. programming: that is,
the ability to prune the open alternatives, hope-
fully be exploiting informations gathered during
the execution of the program itself. In fact, pure
backtracking forbids the programmer's intervention
in the choice policy, limiting the system to an ex
haustive search of all the possibilities and lead-
ing to inefficient computations. A few features,
like failure messages, have been proposed since
PLANNER design <7>, to override this handicap. Any-
way, a really satisfactory solution seems to reside
in the design of languages in which the programmer
can state his own rules to prune, select and explore

556

the alternatives. From this viewpoint, the ability
of transferring informations from the context of
an alternative to another one turns out to be par-
ticularly important. It is this ability, indeed,
that allows to state rules not based upon a-priori
knowledge only, but also upon informations gath-
ered at run-time. MAGMA-Lisp has been designed in
order to provide a nondeterministic programming
frame in which these requirements are satisfied.

Systems aiming to solve the above problem have
been already proposed and realized. It is conven-
ient to discuss briefly some characteristics of
the systems that most influenced the design of
MAGMA-Lisp, in order to contrast it with them.

Bobrow and Wegbreit <2> proposed a very "fluid"
control structure that surely allows the user to
define his own heuristics and policies. There is
no notion of context, in the sense of a built-in
ability to save the state of computations. The
system provides instead a mechanism to save the
continuation point and the anonymous partial re-
sults of procedure activations, while the user is
in charge of restoring the state of the data base.

CONNIVER <14> provides a built-in mechanism(cno
text frame) to save and restore the data base in-
crementally, supported by a control structure
similar to that of Bobrow and Wegbreit. The genef
ation and the deletion of context frames are asso_
ciated with procedure invocations and returns. The
restoring mechanism appears, therefore, on the
same level of the contrql structure, while, more
generally, it should be able to save and restore
the control structure itself.

Both systems appear to lack the mechanism that,
strictly speaking, characterizes nondetermini stic
programming systems, i.e. the possibility to save
complete "snapshots" of computations to be resum-
ed afterwards if needed.

QA4 <12>, on the other hand, appears to be some_
what unbalanced; in fact, it is clearly oriented
towards nondeterministic programming, but his non-
deterministic feature are only partially controllji
ble, and, besides, provides a fully controllable
context mechanism, that, once again, does not
allow to save control informations.

What, in our opinion, distinguishes MAGMA-Lisp
system is its simplicity of conception. The main
idea underlying MAGMA-Lisp design is the notion
of context, to be thought of as a complete environ
ment capable of a "deterministic" computation,
inclusive of the control structure. Nondeterminism
is attained by exploring different alternatives in
different contexts. Generation, deletion, switch-
ing and communication among contexts are in charge
of the programmer, so that the choice-policy is
under user's control. In other words, the user has
the neat and intuitive notion of context as a bas-
ic programming concept: he can think of having a»



many indipendent computation environments as he

needs to attempt all the alternative paths to his
goal. On the other hand, the system enables him to
break the "apartheid*' among contexts, in order to
transfer useful informations from one to another.

2. MAGMA-Lisp: a user view

MAGMA-Lisp has been designed as an implemen-
tation support for the realization of sophisticat
ed programming systems allowing nondeterminism
and complex control regimes. This section sketches
the main features of MAGMA-Lisp, describing its
basic characterizing concepts: contexts and appli
cations.

2.1 The contex tree

Intuitively speaking, the simplest viewpoint
for the user of a nondeterministic language is the
following one: at each choice-point crossing, as
many new computation environments are created as
the alternatives to be explored are. So, a tree of
computation environments (context tree) grows and
contracts according to choice-point crossings and

failures. The initial state of newly created con-
texts is identical to the one in which the choice
point is encountered.

MAGMA-Lisp considers the context tree to be
the structure underlying any nondeterministic

system, brings it to the light and commits its
control to the user.
A small set of primitives allows adding and

dropping nodes to the context tree; this way, com-

putation environments can be created and destroyed.

The function newcxt(cxt) creates a new computation
environment, whose initial state is that of the
context identified by cxt (*). The newly created
context is added to the control tree as a son of
cxt. newcxt returns the identifier of the created
context: context identifiers are regarded as a
special data type, allowing the explicit manage-
ment of contexts.

The size of the context tree can be reduced
by the function contract(cxtl,cxt2) whose effect
is the substitution of the subtree rooted in cxtl
by the subtree rooted in cxt2 (**).

The format of this function reflects the non-
deterministic trend of MAGMA-Lisp. In fact, if
cxt2 is missing, contract allows to drop contexts
associateJ to failed computations, while, if cxt2
IS not missing and it is a leaf, contract allows
to draw the final consequence of a successful com-
putation, reducing the whole tree to the single
"ede cxt2. Any intermediate strategy can be pro-
grammed as well.

The context tree can be inspected from inside
any context, using the functions son(cxt) and

getcxt(n,cxt) that return the list of the context

(*) *M cxt is missing, the context in which newcxt
is executed is assumed.

(**) cxt2 must be a descendant of cxtl; if cxt2
is missing, the whole subtree rooted in cxtl
is dropped.
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identifiers of the sons of cxt and the n_-th ances-
tor of cxt in the context tree, respectively (*).

2*2 Applications and tree control structures

Each node of the context tree represents a
computation environment, which is essentially that
of a standard LISP system. That is, adding a new
node to the context tree results in creating a
new computation environment, whose state is ini-
tially a copy of its father (*'*). Computation
environments provided by MAGMA-Lisp differ from
that of standard LISP systems in what their nature
has been extend to allow growing a tree control

structure. In other words, inside each context it
is possible to depart from the normal last-in-
first-out discipline of LISP in order to define

more complex control regimes, like coroutines etc.

The basic component of tree control struc-
tures is the application, which is to be viewed
as a function activation frame. In fact, an appli-
cation contains:

- a function definition;

- a local environment, i.e. bindings and

locals;
- a return pointer, i.e. the identifier of

the application to which the value of
the function has be returned;

- an environment pointer, i.e. the pointer
to an association list;

- a continuation point in the application
itself.

An application A is a son of B in a tree control
structure if its return pointer is the identifier
of B. Applications are generated either implicit-
ly by calling a function defined as an EXPR, or

explicitely by invocation of apply. In the former
case, both the return and the environment pointer
are set according to the normal LIFU rule. In the
latter case, both pointers can be defined in the
invocation of apply.

Application identifiers can be obtained by
the function getap(n,appid) that returns the
identifier of the n_-th ancestor of appid (**#)
in the control tree.

2.3 The function apply

MAGMA-Lisp is supposed to be a uniprocessor
system, so, at any time, there is only one context
in which the computation is proceeding (active
context). Switching among different contexts can
be obtained by apply. In our system apply is
generalized both to manage tree control structures
and to execute switching among contexts.

(*) If cxt is missing, the context in which the
function is executed is assumed.

(**) It goes without saying that this is only a
user's view. Contexts are simulated as de-
scribed in sect. 3.

(***)If appid is missing the identifier of the
actual application is assumed.



The format of apply is the following:
apply(fn,argil;envp,retp.cxt) where envp and retp
are application identifiers and cxt a context
identifier. It activates a new application to ap-
ply £n_ to args. The new application is added to

the control tree of context cxt as a son of retp,
while envp defines the environment pointer. The

environment is built up appending bindings and
locals to the association list pointed by applica-

tion envp. If the last argument is missing, the
active context is assumed.
Apply is the only means to execute context

switching and to depart from the normal LIFO rule
inside any single context. Then, it is the basic
tool for the user to control the nondeterministic
features of the system, and, at the same time, to
define procedures that exploit non-standard re-

gimes of control.

2.4 Communications between contexts

Contexts, as they are provided by MAGMA-Lisp,
must be thought of as nodes in a tree structure

of indipendent environments. The computation can
proceed in the leaves as well as in the other
nodes. Actions in any context do not affect the

state of any other, unless the programmer explici_t
ly states the contraries.

Information can be transferred between con-
texts via apply: in this case there is a control
transfer too. To make information transmission

easier, the functions put and get have been ex-
tended in MAGMA-Lisp by an additional argument,

specifying the context in which properties are to
be set or inspected. As a rule, changes performed
by put are localized to a single context, accord-
ing to the general philosophy. In many cases,
however, it seems useful that modifications be
global, i.e. they propagate from a context to all
its descendants. This happens if the additional
argument of put is a list (of a single context
identifier) instead of a context identifier.

3. Context implementation

This section describes some techniques used
in the implementation of the system. The main
problems that have been faced have Co do with the
tree control structure and the context mechanism.
Here special emphasis is given to the solutions

adopted to realize the context mechanism.
Before discussing the details, it is worth
to outline the general approach used to implement

MAGMA-Lisp. The system has been realized in two
quite distinct subsequent steps. First, a LISP

system extended by a tree control structure was
implemented, then the context mechanism has been
superimposed on this basic support.

Context mechanism
simple and general way:

is realized in a very
informations having a

contextual nature are referred to in an indirect
way, through tnulti defined value lists (MVL).
MVLs are lists providing all the values in the

different contexts, with a technique that some-
what recalls that of QM <12>. MVL's organization
will be discussed in details, and it is such to
guarantee efficient search and bookkeepirj This
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technique is applied throughout the whole system,
control information included. In other words,
there is a unique tree control structure in the

system. Any element of the tree may belong to more
than one context. In such a case, the correspond-
ing memory block may contain a few pointers to
MVLs. Typically, the continuation point is a
text depending information.

con-

No sophisticated techniques have been studied

in order to implement the tree control structure,
using instead a straightforward list organization.
Whenever a function is invoked (either implicitly

or explicitly via apply) an application block is
allocated to store basic information (i.e. the
function definition, the return and environment
pointers and the continuation point) together with
a suitable amount of memory for bindings and lo-
cals. Finally, auxiliary memory may be allocated

during the computation for intermediate results.

Memory is obtained from areas organized in
free lists. Returning from a function application,
the corresponding memory is given back to the free
lists, in the simplest situations; otherwise, its
recovery is deferred to garbage collection.

The technique of retention is quite simple:
if an application A has undergone a getap (see
set. 2.2), A and all the applications on the path
from A to the root are retained; recovery, if
that will be the case, will occur at garbage col-
lection time.

3.1 Summary of MVL techniques

Whenever a piece of information (e.g. the
property of an atom) has different values depend-
ing on the context, the cell which should point
to the value points instead to an MVL.

An MVL is a list of dotted pairs (c.v.)
where ¢ is a context identifier and j/ the value
of the’information in ¢c. When a new context is
created, no memory is allocated at all. Memory
will be allocated, by growing or generating MVLs,
only when updating is actually performed in that
context. Moreover, the size of an MVL depends on
the number of contexts in which updating occurred;
in other words, it does not depend on the number
of existing contexts, i.e. on the size of the
context tree.

It is fundamental that MVLs are generated
only when they are really needed, both with re-
spect to execution time and memory space. There
are two cases: the global data base and the local
environments. MVLs are generated to record prop-
erties in property-lists (the global data base)
when the context tree is not trivial, i.e. there
are more than one context. MVLs are generated to
record items of information in locals environ-
ments, only if the involved application is to be
retained even if it is exited. By this simple
techniqgue, MVLs are generated almost only when
they are really needed.

To find the value corresponding to a context
£ in a MVL, a pair (c.v) is looked for firstly;
if it does not exists, then, accordingly to the
user-view of the context tree, it is enough to



look for the pair corresponding to the nearest
ancestor of £. Thus, the crucial point with regard
to efficiency is to find a MVL organization capa-
ble to speed up searching an element or its nearest
ancestor actually present in the MVL.

The following subsections describe an organi-
zation that allows to search and update MVLs with
a satisfactory efficiency.

3.2 The context table

MAGMA-Lisp memorizes the context tree in an
array (context table) indexed by context identi-
fiers. Each row stores pointers in order to memo-
rize the context tree as a binary tree. Moreover,
row £ associates context £ with a pair of integers,
that will be denoted by r(c) and s(c):

- r(c) is the number of nodes preceeding £
in the preorder traversal <8> of the
context tree;

- s(c) is the r-number of the last descendant
of ¢ in the preorder traversal, i.e.
s(cT is the largest r-number among
c's descendants; s(c) is set to r(c)
if £ has no descendants.

r-numbers and s-numbers are characterized by
the following property: given two context £* and
£", £* is a descendant of £ if and only if

r(c") < r(c') <_s(c").

3.3 Searching MVLs

MVL's components are listed by decreasing
values of r-numbers.

The following algorithm searches a MVL for
the value in context £.

Algorithm 1

1) scan the MVL until a pair (c'.v") s
found, such that

r(c’) < r(c)

2) restarting from (c'.v'), scan the MVL
until a pair (c".v") such that

s(c") > r(c)

is found.
This way, c¢" is either £ or the ancestor of
£ with the greatest r-number, i.e. the nearest
ancestor of £, actually present in the MVL, is
found.

3.4 Updating MVLs

In updating a MVL with respect to £, care
must be paid so that the modification does not
propagate to any descendant of £, or does propa-
gate to all its descendants, according to the
assigning modality (see set. 2.A). In the first
case, for each son of £ not already in the MVL a
pair must be added to preserve the old value in
context c¢. In the second case all the descendants
of ¢ must be eliminated from the MVL. In both
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cases the operation can be performed in a single
scanning of the MVL. This is obvious in the sec-
ond case. In the first one the operation can be
performed by algorithm 2, that needs the list of
sons of ¢ ordered by decreasing r-numbers. Such
a list can be drawn from the context table
directly.

Algorithm 2

1) while there are sons of £: search, by r-
numbers, the pair corresponding to the
son of £ with the greatest r-number; if
there is no such a pair, insert it and
push the pointer to it on a stack, say S;

2) when all the sons have been considered,
look for the value in c¢ (algorithm 1),
store it in all the pairs pointed by
stack S, finally update the value in c
(inserting a pair, if missing).

Because of MVLs? ordering, the search of the
(itl1)-th son of £ can restart from the pair corre_
sponding to the i-th one.

Assuming the number of accesses to the
context table as a measure of the complexity of
search and updating algorithms, it follows from
the previous discussions that the complexity has
an upper bound which is linear with the length
of the MVL, whereas it does not depend on the
size of the context tree. This is one of the most
interesting advantages offered by MAGMA-Lisp
organization. Another advantage, estimable in a
system designed to allow sophisticated explora-
tions of goal trees, is that switching among
contexts is practically gratis, consisting in
changing the active context indicator.

A small overhead is imposed in creating new
contexts, since the context table must be up-
dated. We note, however, that this task can be
accomplished by a single scanning of the context
table. In fact, the rule to update the context
table in order to add a node c¢' as a son of c is:

1) let re and sc denote
respectively;

r(c) and s(c)

2) for each row:
if r.<rc and s>sc then increment s by 1;

if sc<r then increment r and s by 1;
3) finally set r(c') and s(c') to s(c).

3.5 Garbage collection

The function contract deletes contexts only
from the user's viewpoint. In reality, contract
simply marks the rows of the context table corre-
sponding to deleted contexts, making it possible
to detect attempts of further use of references
to dropped contexts (illegal references). Rear-
rangement of the context table is deferred to
Garbage Collection time, as well as the rearrange
ment of MVLs, i.e. the actual elimination of the-
pair corresponding to deleted contexts.

The direct extension of the standard garbage
collection philosophy to a system supporting a



context mechanism would result in repeated tracing
of the whole system. The direct extension, indeed,
is the following: first, trace and mark all items
reachable starting from the actual "position" in
the active context; then, trace the system again
and again until all contexts whose identifiers
have been found in previous tracing have been con
sidered. Finally go through the system once more
to rearrange MVLs.

MAGMA-Lisp garbage collector <13> takes
instead advantage of the fact that the management
of the control tree is completely committed to the
user. The system is traced only once, since the
context tree defines explicitely the context to be
retained.

The main input information of the garbage
collector are:

- the list of the contexts to be retained;
- a list oi starting points (application
identifiers) in the tree control structure.

The first list is drawn from the context table.
The second list contains the identifiers of all
the applications, which have undergone a getap
operation and are still legally referable in one
context at least. This list is handled by the
system according to the following philosophy,
which defines, from the user's viewpoint, the
behaviour of the tree control structure inside
each context: whenever an application is exited,
the subtree rooted in it is dropped from the con-
trol tree. This is only a user's view; the system
has instead a mechanism to update the list of
starting points in the unique tree control struc-
ture actually existing in the system.

Finally we note that the rearrangement of
MVLs is not a trivial business. In fact, it is not
sufficient to eliminate the pairs corresponding
to deleted contexts. In many cases, the pair corre
sponding to a deleted context ¢ must be retained
and updated with regard to the context identifier
in it, since it is possible that pairs correspond-
ing to surviving descendants of c¢ are not present
in the MVL. The rearranging algorithm exploits the
ordering by decreasing r-numbers of MVLs and the
fact thaL the list of the contexts to  be retained
is ordered in the same way: MVLs are rearranged
in a single scan and the number of accesses to the
context table is linear with the sum of the length
of the MVL and the number of contexts to be re-
tained.

Conclusions

The main idea informing MAGMA-Lisp is that a
tree of conceptually indipendent computation envi-
ronments is the supporting structure of any pro-
gramming system allowing nondeterminism. MAGMA-
Lisp provides this basic support in a quite virgin
al form: in this sense it must be considered as
a "machine language”. The language has neither
primitives to set up choice points in programs nor
primitives to fail, etc.. There are, instead,
primitives that add and delete nodes from the con-
text tree and facilities to switch and transfer
informations among environments. So, the user can
tune the power of the system to match his own re-

quirements by the definition of a suitable set of
functions, expressing his own techniques to ex-
plore the available alternatives.

Experiments in this line are presently in
progress. A language for nondeterministic programm
ing, ND-Lisp <10>, has been defined. ND-Lisp is
much more problem-oriented than MAGMA-Lisp, provid?
ing specific ways to set up choice points, primi-
tives to fail and to suspend and resume alterna-
tives. ND-Lisp enjoys a fine structure and still
allows complete freedom in the choice-policy de-
finition. This is obtained filtering the wildness
of MAGMA-Lisp, that ND-Lisp users are not encourajj
ed to employ directly, through a few functions
realizing the primitives of ND-Lisp. Besides, a
pattern-matching language (SNARK <9>), which is,
more generally, a formalism for the definition of
symbolic interpreters, and a proof-checker 17
which allows a high degree of intervention of the
user in the proof, are presently being implemented
in  MAGMA-Lisp.

In the light of these experiments, MAGMA-Lisp
shows itself as a good tool for the implementation
of A.l. systems (*). This is mainly due to its
nice balancing of clarity and intuitiveness of its
basic programming concepts, on one hand, and a
reasonable level of efficiency on the other.
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