THE DESCRIPTION AND CONTROL OF CHANGING PICTURES

Gregory F.

Department of Electrical

University of California,

Abstract

DALI (Display Algorithm Language Inter-
preter) is a special-purpose programming
language extension for the creation and
control of changing pictures. DALI pic-
tures are composed of elements called
picture modules. These are analogous to
procedural activations or processes, and
contain arbitrary event-driven procedures
called daemons.

Introduction

DALI (Display Algorithm Language
Interpreter) is a high-level Ilanguage
extension for the creation and control of
changing pictures, particularly pictures
exhibiting complex static and dynamic
interactions among their elements. Prior
work on this subject has been performed
in the development of computer graphics
programming systems, e.g. |jl, 2, 3].
DALI differs strongly from such systems
in that a DALI picture is not a passive
data structure. Instead, a DALI picture
iIs a structure of active elements akin to
"processes”, containing user-written
procedures called daemons which are exe-
cuted in changing the picture. The se-
lection of daemons to run and the choice’
of their order of execution is defined by
a set of scheduling rules, built into the
language, which are based on Ilow-level
functional relationships among daemons.
A primary advantage of the DALI approach
iIs modularity: each picture element lo-
cally describes its own behavior, i.e.,
manner of change.

Objects Defined by DALI

A"® phase
will be
adds to

types

language extended by DALI
assumed here to be LISP. DALI
the base language four primary

objects: outputs, daemons,
picture modules (or just modules), and
picture functions.

Qutputs are locations where data can
be stored, and are primarily used for
communication. Outputs differ from
"normal® storage locations in that a
change in value of an output can be de-
tected as an event by one or more active
objects (i.e., daemons).

of

569

Pfister

Engineering and Computer Sciences

Berkeley, California

Daemons are parameterless procedures
executed in response to some event. A
typical event is a change in the value of
one or more outputs. Since a daemon can
alter the value of outputs in response to
a change in other outputs, computed
changes can be propagated through the
entire picture. A daemon which can
change a given output's value is said to
specify that output; and a daemon which
runs when a given output changes value is
said to watch that output.

Picture modules are
units which contain daemons, outputs, and
other picture modules in a hierarchical
fashion. The objects contained in a pic-
ture module are said to be owned by that
module. Picture modules also contain a
local environment, a mapping from identi-
fiers to values used only by the daemons
owned by a module.

Picture functions are
dures written by the user.
of a picture function creates,
a normal procedural activation,
module which remains in existence until
explicitly deleted. The <created picture
module is the value of an application of
a picture function. A picture module
created by a daemon is owned by the
daemon's owner; this creates a hierarchi-
cal structure analogous to the tree of
procedure activations created in languag-
es such as CONNIVFR [4] and OREGANO [5J .

Picture functions are defined by an
application of the function DEFPIC, as in

list) body) |,

organizational

valued proce-

Application
in lieu of
a picture

(DKFPIC name (argument

where name is the
picture function.
fines the local

created by

identifier naming the
The argument list de-
environment of the module
the picture function. The
body is a list of function applications
which are evaluated as part of applying

the picture function.
The structure created by applying
creating daemons,

picture functions,

etc. , is called the picture structure.
Picture structures can be diagrammed as
shown in Figures 1 and 2. The conven-
tions used are: picture modules are
outputs are small

cross-hatched circles,
open circles, and daemons are larger open

circles; modules are connected to the
modules they own by solid lines and to
the daemons they own by dotted

outputs are connected to daemons which
change t heir values by short solid lines;
and “dashed arrows lead from each output

to al | daemons which run when that output

changes val ue.
Exanpl es

Several examples of sihhle picture
functions will now be presented ,

The picture function RELP, which
appears below, ~ captures the notion of

relative position" in the following
sense: it causes an output's value to be
hatntatned as the sum of two other
outputs' values.
(DEFPIC RELP (P1L P2 "QJ" SWV
(CONTIN (QUCH SM (+ ,P1 ,P2))))

The picture structure created by applyin
PplsshownlnFlgurel y APPLYINS

RELP

P2~ _

= ';,O—o SUM

Wy s —

FIGURE 1

The above DEFPIC "declares”
picture function which takes two
nts: Pl and P2, these hust be out-
dueto the way i n which RELP uses
em Applying RELP creates a module
e local ‘environment holds Pl, P2, and
this is |nd|cated by their presence
t he argument |ist The designator
|nd|ca es that at the time of
ﬁELP's application,
y
val

RELP t O

SMistobeinitia
bmm% to a newly created output with a
ue 0

RELP s application of CONTIN creates
a daemon which watches Pl and P2, runnjng
when either or both change vaIue When
this daemon runs, i t Wil 'y GUO4
(Output val ue CHange) to change the v al u
of the SM output to" the sumof the I
ues of the outputs assigned to P and
P2. (Vector arithmetic is assumed.) The
comms (,) a eartngtrtthe CONTI N daenon
are syntactic or.an application of
the unc lon whi ch, apPI led toan
output, returns the val ue hat out -

570

ut. In addition to cr
%OMIN al so runs the bo
once before returning,

The designator "QJI,
icating an"init

| nadditionto
tiralization of al so
cates that the value of can be
| ned from the created picture mdule
[RELP has returned. h|s access of
RELP s local environment perforhed by
unction QJ, abbre VI ted b¥
point (!) hus,

he
| xed exclamation
a
(RELP DI SP1 !(RELP DI SP2 PT))

creates a "chain" of
two elements |ong.

, Nw a picture
fined which mnages a hardware display
file entr% causing a visible line to he
drawn. This picture function, defined
below as LINE, takes two arguments, both
of which are outputs contalning posi-
tions, and draws a [ine connecting its
arguments' val ues.

(DEFPIC LINE (Pl P2 "AX' LINEIR%
ESFTQ LI NEI'D (MKEENTRY ,Pl , P2)
AS- NEEDED

CHANE ENTRY LINEID , Pl ,P2))
(ONC DELETF
(DESTROY-ENTRY LI NEI D)))

Of

relative positions

function will be de-

ture structure created by an ap-
on of LINE is shown in Figure 2.

FIGRE 2

"AUX', I n LINF's argument [ist, i n-
| cates that LINEID is an Auxiliary iden-
i fier whichis tobe retainedin the
o cal for by . daenons.
| NEI D h ldsadisplay-file-entryidenti-
| rt rt]urated| byf hﬁKE—E%WRN; TrIvvhtch
reates the displa e entr e a
||cat|on of PAS*\EEDED createsy daerrt?n
| ke CONTIN but does not init |M|y run
The, created daemn watches
and wi |l apply the function

envi ronment use

daenon.
| and P2

CHANGE-ENTRY t o alter the display file
entry whenever necessary. The applica-
tion of ON (for ON Condition) creates a
daemon which is run as part of the pro-
cess of deleti n? a LINE module; this dae-
mon applies the tunction DESTRCY-ENTRY t o
deallocate the display file entry.

A relative line can now Dbe defined
as follows;

(DEFPI C RELI NE (BASE DELTA)
(LI NE BASE ! (RELP BASE DELTA)))

RELINE creates no daemons; it effec-
tively delegates the authority to handle
the creation of the relative line to the
modules it created. Such delegation need
not be total. As an example, consider
the picture function WATCHP3 bel ow:

(DEFPI C WATCHP3 (P1 P2 P3
"AUXO' FI LTER)
(CONTI N

(COND ((SAFE? , P3)
OUCH FI LTER , P3;)
(T (DRASTI C-ACTION)) "))
LINE Pl P2)
LINE P2 FILTER)
LINE FILTER P1))

The "AUXO' ar
makes FILTER an
like "AUX', but
contain an output of
WATCHP3 draws a triangle connecting
three argument outputs Pl, P2 and
, provided that P3 has some range of
"safe" values as checked by the predicate
SAFE?. If P3's value is not "safe", the
daemon performs some "drastic action".
|t should be noted that the CONTIN daemon
of WATCHP3 runs only when the value of P3
changes; changes to the values of Pl and
P2 do not cause this daemon t o run, but
instead are responded to directly by dae-
mns in the LINE modules created by
VWATCHP3.

The previous examples illustrate no
mechani sm bK which outputs can be passed

gument [t
AUXiliary
initializes
value NIL.

designa
ldentif]

ato
I TTET
FILTER t

or
0]

I ts

back throug multiple levels of picture
function invocation, For example, the
output created by HELP i n RELINE -- t he
computed endpoi nt of the line my be
of interest to RELINE's caller. This
output passing is achieved via another
argument 1i st de3|£nator "QUTU', for
OUTput Uninitialize QUTU" operates
like "QUT", i n that the values o the

i dentifier(s) it designates arereceiva-

ble by using the function QU é!); but
"QUTU' does not initialize its designated
ldentifiers, instead allowing thento be

assigned values by the picture function

body. A RELINE passing i ts computed end-

?oipt back wusing "OQUTU'" can be coded as
ol lows:

(DEFPI C RELI NEL (BASE DELTA "QUTU' EP)
SETQ EP ! (RELP BASE DELTA))
LI NE BASF EP))

Thus the fragment

571

(RELINE D1 !(RELINF1 D2 PT))
chain of relative
embedded HELP daenmons
This s shown in
which shows the picture struc-
the above fragment.

creates a 2-element

lines 1 n whichthe
are directly connected.
Figure 3,
created by

ture

FIGURE 3

The Acyclic Daemon Scheduling Rules

The DALl daemon scheduling rules
define which daemons are to be run and
the order in which they are to be run,
Here we will deal only with scheduling
rules for a special case: the situation
when inter-daemon relationships are
acyclic, i.e., no daemon can change an
output value and i n so doing cause Itself
to berun again at some future time.
Unrestricted — in particular, cyclic —
relationships can be handled in DALl in a
manner that leads to iteration, or
"relaxation"; this more general situa-
tion is discussed in [6], The acyclic
rules described here form the basis of
the treatment of the cyclic case, and
occur i n very many situations of inter-
est .

Sonme definitions ar e needed prior to
the presentation of the acyclic daemon
scheduling rules:

A daemon A is the father of a
daemon B if and only if A specifi
an output watched by B.
A daemon A is an ancestor of
daemn B if and only if _TTTeTe___X| S
a sequence of daemons D(0
) ,Dgn) such that D(0) =
or every i |n the ran
) is a son of D(i).
s said to be acyc||c
It contains no daemon
own ancestor.

a
S

t
),
Al
ge

- |
re
f

The acyclic daemon scheduling rules

are:

Rule 1 (selection) A daemon will be run
i fand only if one or more of the
outputs 1 t watches 1 s QOUCHed;
once run, it does not run again
until such an QUCH occurs after
| ts execution has terminated,

Rule 2 (noninterruption) OnceadaemonD
begins executiron, no daemn an-
cestrally related to D my run
until D terminates of I ts oun
accord.

Rule 3 (ancestors first) | f daemons A
and Bare toberun, and Ai s a
ancestor of B, then A is fun he-
fore B. i

Rule 4 (closure) If two daemons @€ 10O

be run and they are not related

in ancestry, they my run in any

order.
~There is a simple method for imple-
menting the acyclic daemn scheduling
rules on a single-processor system. Each

daemon s assigned an unchanging integer
priority at its creation according to the
following rules: (X the priority of the
application program considered as the
"root daemon" ancestral to all other dae-
mons, 1 s 0; (2) the priorityof a daemon
the largest of its

s one greater than

fathers' priorities. Whenever an output
| s OUCHed, each daemon watching that out-
put is immediately placed on a global

daemon queue in order of increasing dae-
mon priority. The running of daemons
then consists of removing the daemon at
the head of the queue fromthe queue and
running it , repeating this until the
queue s empty.

The scheduling achieve

rul es above

two very important goals:

(1) Daemons <can be considered as
defining invariant relationships between
their watched and specified outputs.
This i s critical to making DALl programs
operate in a comprehensible manner. |t
means, for example, that wherever and
whenever a RELP module is used, the SWM

output can reliably be used in place of a
computation of the sum of the module's
inputs. This goal is primarily guaran-
teed by the ancestors first rule.

. (2) Daemons operate in a stable en-
vironment. This is taken here to nmean
that the only data value changes which

during that daemon's execution are
t he daemon itself. This
ensures that despite the fact that DAL
B a multiple-environment,
"multiple-process" system, each individu-
al daemon can bewritten asi f 1 t were
running on the simplest possible single
program counter machine lacking any form
of multiple processing or interrupts.
Races, hazards, and other synchronization
worries are defined out of existence from
the start.

The"stable environment" and
‘relationship" goals are as much a virtue
as a necessity: a system [i ke DALI, whe-

occur
performed by

re use of hundreds of separate
"processes” 1s implied, would 1literally
be unusable if the "bugs" associated with
coroutine or multiple-process systems
could occur with their wusual frequency.
It should be noted that even given these
goals, the ancestors first and c¢losure
rules do provide for the possibility of
true parallel operation of daemons in a
multiple~processor environment.

Environment Structure

The structure of the environment in

which a DALl daemon operates is composed
of four parts: the primitive environment,
the global environment. the local
environment and the temporary
environment ~ These are considered fo Dbe
eranged In a stack, as shown in Figure
PRIMITIVE
/ GLOBAL 7
L e
LOCAL
= TEMPPRARY ——]
FIGURE 4

The primitive environment consists
of those identifier-to-value mappings
which are fixed for all time in the base
language, it would typically include the
ldentifier "+" in interpreted LISP,
this environment s null.

The global environment contains
identifier-to-value mppings which are
defined by the user, and are generally
static for the duration of an execution
of a program The names of procedures
generally [ie here. In LISP, this envi-
ronment s unstructured; in a language
with static block structure, such as AL-
con the global environment woul d be
structured in accordance with the static
block structure.

temporary environment s

A separate .
modul e, and retains

associated with each
I ts contents across daemon executions,
The temporary environment contains purely
temporary storage for use by daemons; it
s empty when a daemon begins execution,
and is emptied when the daemon finishes
execution. Here we assume a stack-struc-

turedtemporaryenvironment; some modi f |
cation of this organization would be ne-
cessary I f FORTRAN, which IS not
stack-structured, were the hase | an-
guage.

The total environment structure ex-
I sting when no daemon is executing, 11 -

lustrated in Figure 5a (on a |later page),
is a broad but shallow tree with one tem
porary environment for each existing no-
dule. During any execution sequence that
does not include picture function appli-
cation, the total onvironment appears as
shown in Figure 5b: one temporary envir-
noment exists, that of the currently run-
ning daemon. \Vhen picture functions are
being applied, several temporary envirno-
ments can exist simultaneously in a nest-
ed fashion as shown in Figure 5c. This
occurs because each picture function body
executes as if it were a daemon.

From the viewpoint of physical st
rage al location, the situation with't
DALI envi ronment structure is simpl
than the above discussion mkes it ap-
Bear. While the local environments must
e allocated out of a heap, they are
created and destroyed realtively seldom
and do not vary in size during execution.
M the other hand, the much more rapidly
varying temporary environments can be
allocated in a single stack, since the
only occurrence of multiple temporary
environments s nested.

The sharp distinctiaon
between local and temporary
thus makes the environmental
the Iangu%? allocation
space and i dentifier lookup
ficient .

0
he
er

DALI makes
environments
aspects of
of storage
quite ef-

Current Implementat ion

Li ke any
cannot be
until a body of

other programmng Ianguag
considered truly "teste
users have anlled |t
their problems. Unfortunately, no usab
I mplementation of DALl exists at th
writing. An experimental version of DAL
has been programmed using the langua
MUDDLE [7) on a Digital Equipment Corp
ration PDP-10 in the Programming Techno
ogy Group of MI.T. Project MC Thi
i mplementation was primarily intended
find out if the various pieces of
together in a reasonable manner,
t an estimate of the size of the
I me system needed; the latter was
i fyingly small, amounting to approxi-
ly 6500 words of fairly "loose" PODP-
rogram. However, this 1mplementation
n interpreter written in an inter-
eter, and compares favorably in speed
ly with continental drift. Recent at-
mpts at compiling the DALl interpreter
however, produced sufficient ?ains
speed to justify the claims to effici-
cy made earlier 1n this paper.

DALI

o wm

t
DALI
and

t
ge
-

573

Acknowl edgement s

The author would 1ike to thank Pro-
fessor Michael Dertouzos of MT lor his
aid in the course of the work reported
here, esFeciaIIy in untangling into a
presentable dissertation the snarl of
| deas that were DALI. Professor J.C R
Licklider of MT provided the computer
resources needed for the experimental
i mpl ementation of DALI. The work of
Christopher Reeve and other members of
the MAC Programming Technology roup on
MUDDLE and 1ts compiler made t DAL
interpreter possible. The research re-
ported here was supported in part by Pro-
ject MAC, an MI.T. research rogram
sponsored by the Advanced Research Pro-
jects A?ency of the Department of Defense
under Oftice of Naval Research Contract

NO0O014- A-0362-0006.

References

1 Thomas, E L., TENEX EoS Display
Software, Bolt, Beranek , and Newman,
['nc., 50 Moulton St Cambridge, MA

2 RuIIy A D "A Subroutine Package
for FORTRAN," |BM Systems Journal Vol.
7, Nos. 3 and 4 (1968) p. 248,

3 Christensen, C, Picson, EE,
"Multi-Function Graphlcs for a Large
Computer System", 1967 Fal l Joint
Comput er Conference, Thompson Books,
Washington, DC, pp. 697 ff

4 McDermott, D, and Sussman, G J., The
CONNI VER Reference Manual, MT Artifi-

cral TnftelTigence Laboratory Meno 259,
My 1972

5 Berry, D M, troduction to OREGA-
NO', Proceedings of a_ Symposium on
Data Structures In Programmng Lan-
guages . AOM STGPLAN Nofices Vol. 6 No.
2 (Feb. 1971) pp. 171-190.

6 Pfister, G F., The Computer Control
of Changing Pictures, MT Project MNC
Technical Reporf TR-135, Project MC
M T, Cambridge, M, 1974,

7 Pfister, GF, A MJUDDLE Primer, Pro-
ject MC Programmng Technology Group
document SYS.11.01, Dec. 1972, Project
MAC, Cambridge, M

(oo~ ed

A1 QUIESCENT STATE

BEEEEEE UU%[_]LJ

CURRENT MODULE

B| NON-ADDITIVE CHANGE

20°:000,0.0-0.0.90-0_90-0-0_0-029.0.0_0.0-0_0.0.0.0.9.0_0.0.90-¢_ 0,
?0?s’"g‘g‘a’.’4‘.‘;’.’&’.‘0’.‘.’.‘A‘:’:"’A’Q’a’&""’A’:’A’:‘

NI

— — i ——

CLURRENT MODULE

INDICATES
C| ADDITIVE CHANGE T T T ONESTING

FIGURE 5

S7h

