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Abstract

An Interactive Scene Interpretation System
(I'SI'S) is being developed by Stanford Research
Institute's Artificial Intelligence Center as a
tool for constructing and experimenting with mn-
cachine and automatic scene analysis methods
tailored for particular imge domains. Aregion
analysis subsystem was developed recently based
on the work of Brice and Fennema, and Yakl movsky.
Using this subsystem a series of experiments was
conducted t o determine good criteria for initially
partitioning a scene into atomc regions and merg-
ing these regions into a final partition of the
scene along object boundaries.  Semantic (problem
dependent) know edge is essential for complete,
correct partitions of comlex real-world scenes.
An interactive approach to semantic scene segmenta-
tion was developed and demonstrated on both [and-
scape and indoor scenese  This approach provides a
reasonabl e methodology for segmenting scenes that
cannot be processed completely automatically at
present and Is a promising basis for a future fully
automatic system.

. Introduction

Most computer analyses of real-world scenes
first attempt to partition the Image Into coherent

regions corresponding to known objects (1, 2, 3, 4).

Regions provide a convenient basis for semantic
analysis by reducing both the amount of detail and
the ambiguities of Interpretation found at the
picture-element level.

An Interactive Scene Interpretation System
(ISIS) is being developed by Stanford Research
Institute's Artificial Intelligence Center as a
tool for constructing and experimenting with man-
machine and automatic scene-analysis methods
tailored for particular image domains (5, 6). A
subsystem was developed to explore systematically
region-analysis techniques applied to several image
domains. We summarize our most informative find-
ings in this paper. A more complete presentation
of our results can be found in (6).

[ 1. Basic model

Following Brlce and Fennema (7), we divide
region analysis Into two stages: first partition
and region growing. The purpose of the first par-
tition stage is to obtain a conservative Initial
segmentation of the image where each region con-
sists of picture elements belonging to only one
object. In the region growing stage, adjacent

regions withsimilar characteristics are merged

into a single region to simplify further the organi-

zation. The desired result Is a set of regions
corresponding to distinct objects in the scene.

Region analysis is computationally expensive,
making |t desirable t o obtain a first partition
that is as coarse as possible without extending the
starting regions beyond object boundaries. The
conmon practice i s t o sample the picture t o reduce
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resolution and then Immediately combine adjacent
sanples with identical characteristics. \Wen data
are finely quantized or multidimensional (i.e.

when color and range data are available) demanding
strict equality on all attributes can lead to an
unnecessarily large number of regions, mny of

which are caused by quantization noise. It my be
hel pful, therefore, toclassifyeachsample into a
smal | number of categories and then to treat pic-
ture elements assigned t o t he sanme category as
identical (1, 3). W have conducted experiments
with several sampling and quantization schemes for
obtaining first partitions of landscape and office
scenes, and a few methods have proved empirically
to be adequate. We report our findings in Sec-
tion 111,

Fol lowing Yaklmovsky (3), our region-growing
al gorithmproceeds by serially selectingthe pair
of adjacent regions in the current organization
that are globally "most alike," and merging these
into a single region. The order in which regions
are merged | s determned by a function that com
pares the similarityof agivenpair of adjacent
regionswiththesimilaritiesof other pairs of
regions that remain to be merged. A variety of
criteriaforregionsimilarityhave been used,
including brightness contrast (7, 8) and average
color contrast (3). W present experimental re-
sults withvarious similarity functions i n Sec-
tion IV,

The experiments described in this report are
illustrated by the landscape and Indoor scenes in
Figure 1. The basic region analysis process is
shown i n Figures 2 through 5. The first partitiaon
in Figure 2 is based on the brightness values
associated with the landscape scene shown in Fig-
ure la, sanpled to a 40 x 40 resolution. This
partition Includes 806 Initial regions, half as
many regions as individual picture elements.
Region growing proceeds sequentially by merging
adjacent regions across the weakest remaining
boundary in the present partition. The boundary
strength Is based on average absolute brightness
and color difference. The results of merging arc
illTustrated, respectively, with 600, 450, and 250
regions remaining (see Figures 3 through 5).

| 11 . First-PartitionExperimnts

The objective of the first partition stage is
to group adjacent picture samples having similar
attributes to obtain the fewest initial regions
without a false merge occurring. In the exanple
above, the picture was sampled to a 40 x 40 resolu-
tion; then adjacent sanples withidentical bright-
ness were combined to form homogeneous atomic
regions (Figure 2). We consider here some attempts
t o improve the quality of the first partition by
using different sampling methods and different
criteria for Judging the similarity of adjacent
sampl es.

*The research reported herein was supported by the
National Aeronautics and Space Administration under
contract NASW-2086.



Sampling Experiments

W experimented with modal, nean, and straight
sampling to determine which method is the most ad-
visable for first partition. All experiments were
performed on gray scale images using a 40 X 40 rec-
tangular sampling grid. Note that in scenes with
periodic texture a random sampling strategy would
have been necessary to avoid aliasing effects.

I'n modal sampling (Figure 6), the gray level
of each grid point is taken to be the most fre-
quently occurring value of gray level for nearby

points. The number of initial regions obtained in
this manner is significantly reduced (by about one-
third) because many small "noise" points (which
occurred in the treetop and the ground) disappeared.
Some fine detail and contrast boundaries were lost,
however, in the modal smoothing. Man sampling of
the gray level in a small neighborhood around each
grid point is a poor technique because it tends to
smooth di scontinuities (see Figure 7).

From experiments with the Imges presented
here and several others, we concluded that first
partitions based on a straight sampling of the
gray-scale Imge taken through a neutral density
filter contained most of the information necessary

to arrive at a conservative partition of real land-
scape and indoor scenes.
Color Quantization

The sampling experiments of the [ast section
were based entirely on brightness information. The

other extreme is to base the first partition exclu-
sively on color information, with brightness norm-
l'ized out. One way to accomplish this is to trans-
formthe original imge into a two-dimensional
color space based on the relative content of red,
green, and blue at each point [using the model des-
cribed in (5)]. This color space can be quantized
into uniformintervals, with image points falling
into the same color quantum grouped together into
regions. We found that the partitions obtained in
this manner were consistently worse than partitions
based on sanpled brightness. Major leaks occurred
between semantlcally distinct regions in both |and-

scape and indoor scenes. Moreover, because of tex-
tural irregularities, the total number of regions
in landscape scenes was greater than the number pro-

duced by partitions based on sampled brightness.

W tried to improve first partitions based on
color quantizationbyselectingquantizationinter-
vals corresponding to characteristic colors of
promnent objects. OQur attempts were unsuccessful
in both landscape scenes, hecause of the overlapping
hue distributions of the principal objects, and in
indoor scenes, because interior surfaces are gener-
all'y color coordinated and hues tend to cluster in
a narrow range.

Extraction of Distinguished Objects

Objects can often be extracted from the imge
prior to general partitioning by selecting conti-
guous col lections of imge points with distinguish-
ing properties. For example, the sky was the only
region in our landscape scenes that is brighter than
30 (on a scale of 31). Extraction is especially ef-
fective when multisensory data are available, in-
creasingtheprobabilitythat particular objects
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will be distinguished along sonme dimension. By ex-
tractingdistinguishedobjectssequentially(or, in
general, hierarchically) we can take advantage of
context reductions achieved by earlier predicates.
For example, although the picture on the wall In
Figure la is a complex pattern, we were able to ex-
tract it by simple conditions on height, hue, and
saturation once the wall samples were accounted for

Table 1 presents a set of sequentially applied
criteriadeveloped Interactivelyusing!ISISfor
Stanford Research Institute office scenes. Points
not classifiedbythecriteriagiveninTable 1
were partitioned on the basis of their samled
brightness. Figure 8 provides a comparison of the
partitionobtainedusingthesecriteriawththe
partition obtained by sampled brightness alone.

The simplificationof thepartitionisclear from
the comparison.

In landscape scenes objects are usually dis-
tinguished by texture and shape rather than by
features at the image point level. Consequently,
object extraction techniques are more difficult to
apply and we have not, as yet, been able to use
them successfully.

Y Merge Priority Experiments

The sequence of merges performed during region
growing is ordered by nonsemantic measures of region
similarity. The purpose of these experiments was
to determne conservative similarity measures, which
will defer questionable merges in the hope that the
decision will be clarified or even rendered unneces-
sary in the context resulting fromthe execution of
mrereliabl emerges-

We compared the quality of several different
measures of region similarity by performng a first
partition based on sampled brightness, and then by
applying a global, best-first merge order based on
each measure of similarity until only 250 regions
remained in the scene. The results of the merge
sequences were compared on the basis of how well
they honored the correct organization on the scene.

Figures 5 and 9 through 13 present the results
of merging, down to 250 regions with six different
measures of region similarity. Each figure legend
gives the formula used for computing the similarity
of adjacent regions in each case. In these formulas,
br . is the brightness seen through a neutral density
filter, of the i'" image point on the boundary of
region a, and brbi is the brightness of adjacent
image points in region b; rai, ga, and b, are the
brightnesses of the i'"™ boundary element from region
a seen through the red, green, and blue filters re-
spectively, and ry, gb, and by,; are the correspond-
ing brightnesses from region b, Ty £, and B, are
the average brightnesses over region a seen through
the red, green, and blue filters, and *,, K» and
B, are the corresponding averages over region b.

In Figure 11, the similarity of adjacent re-
gions was determined by averaging over sample points
along the common boundary the maximumcolor contrast
between any two picture elements drawn from the ori-
ginal, full-resolution, sampling neighborhoods on
opposite sides of the boundary. This method was ex-
pected to overcome errors resulting from inadequate
sampling; however, textured regions, such as the
ground and the treetop, failed to coalesce before



before distinct smooth regions grew together. Qur
best results were obtained using the measure of
similarity applied in Figure 13. In this case the
similarity of two regions was computed conservative-
ly using the mximum of both the boundary color con-
trast and the region color contrast as defined in
the legends of Figures 5 and 12.

V. Semantic Region Growth

W saw in the merge priority function experi-
ments of the previous section that, regardless of
the nonsemantic similaritycriterionused, aner-
roneous merge is proposed well before a final par-
tition is obtained. Semantics nust be used either
torefine the boundary strengthcriterion sothat
it proposes fewer erroneous merges (3) or to block
proposed merges that are incorrect. Stepping
through merges proposed by our best nonsemantic
similaritycriterion, weobservedthat serious
false merges seldom occurred until the regions
involved had grown sufficiently large to permit
semantic interpretations bhased on region proper-
ties. This suggested that merging errors could be
avoided on semantic grounds simply by refusing to
merge regions withdifferent interpretations. W
tested this ideainteractively by modifying the
region growing algorithm to check semantic conpata-
bility before performng a proposed merge.  Merging
is allowed only if both regions carry the same in-
terpretationor if at least one of the regions is
not yet interpreted. Newy merged regions inherit

the interpretationof their parents (or parent, if
only one region is interpreted). Wwen two uninter-
preted regions are merged, if the size of the re-

sultant regions exceeds a threshold, the program
requests the experimenter to supply manually a cor-
rect interpretation,

This interactive region-growing algorithm par-
titioned both a landscape and an indoor scene with
only minor errors (caused primarily by inadequate
spatial sampling). In both experiments, the size
threshold for manual interpretation was set empiri-
cally at seven samples. The final partitiondepict-

ed in Figure 14 was based on the first partition in
Figure 8b. Initially, manual Interpretations were
provided for the 20 (out of 253) first partition

regions that exceeded threshold size. About 20 ad-

ditional interpretations were provided during the
subsequent analysis when uninterpreted regions at-
tained threshold size by merging. Approximately
the same nunber of interpretations had to be sup-
plied initially and during region growing in the

| andscape scene. Wen our semantic region-growing
algorithm was applied to the first partition of
Figure 2, we obtained the results show in Figure
15, I'n both cases there were seven distinct inter-
pretations.

VI, Conclusion and Future Plans

Several experiments in automatic and inter-
active scene analysis using ISIS were performed.
Qur positiveresultswiththe interactive, semantic

region grower suggest two directions for future work
First, this method can be used as the basis for
a practical approach to cooperative (man-machine)

segmentation of scenes that are too complex to
process completely automatically, or too detailed
to segment rapidly by hand. W th relatively [ittle
effort a user could crudely outline and | abhel major
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regions. These outlines would provide most of the
required region interpretations and also serve as a
good initial partition from which detailed boundar-
les can be grown rapidly.

Second, the semantic region growing algorithm
provides a promising basis for a future automatic
system in which region interpretations are deduced
fromlocal attributes and contextual constraints
imposed by previously interpreted regions. The
automatic systemwill have to deal with regions
that are ambiguous at a given stage of partitioning.
Merges involving such regions will be deferred until
the ambiguity has been resolved as a result of other,

mre reliable merges. The use of semantics for
blocking merges, rather than for altering the order
in which merges are proposed [ cf. (3)J, should sim

plify training, since region labeling criteria and
contextual constraints can be introduced or refined
indirect response to specific merging errors as
these errors are observed .
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Figure la. lLandscape Scene (Monterey, Cal ) Figure 1b. SRI Office Scene
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Plgure 2. VFirst Partition of landscvape Scene

(H06 Regions) Figure 3. Partitioned landscape Scene After

206 Merges (600 Regions Remalning)

Figure 4. Partiticned Landscape Scene After

150 Additional Merges (450 Regions) Figure 5. Partitioned Landscape Scene After

200 Additional Merges (250 Regions), "Boundary
Color Contrast"” Similarity Criterion =

N
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Figure 6. First Partition of landscape Scene Figure 7. Sampled landscape Scene with kKach
Produced from Modal Samples (See Figure 5) Sample Ni=splaved at the Averapgse Hripghtness

Over a 3 x 3 Neighborhood
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Figure Ba. ¥First Partition of SRI Qffice Figure 8b. First Partition bagsed on sequential
Scene (Figure 1b) Based on Sampled Brightness classifivation of Image poants in SHT Offjce
(583 Regions) Bcene (235 Hegions)

Figure 9. landsceape S5cene Partitioned by Figure 10. landscape Scene Partitioned by
"Brlghtness Contrast.’ Similarity Criterion= "Boundary Color Contrast.’' Similarity Critcerion-
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Figure 11. landscape Scene Partitjoned by Figure 12. Landscape Scene Partitioned by
Maximum Boundary Color Contrast Computed at "Region Color Contrast.  Similarity Critcrions

Full Spatial llesolution {see text) Ir ~-r l+lg . -6 .1+ IE -b
T aid bi ai

ai bi: bi,

Figure 13. lLandscape Scene Partitioned by Figure 14, Final Semantic Partitloning of
Meximum of Boundary and Region Color Contrast SR1 Office Scene
Functions.

TABLE 1

Sequential Classification Criteria for Figure 8b

(1) Extract floor samples by height (0.1 foot)

(2) Extract chairseat samples by characteristic
height and horizontal orientation

(3) Extract tabletop samples by characteristic
height and horizontal orientation
(4) Extract picture samples in two passes:

(n) DBy characteristic height and saturation
greater than maximum saturation for wall

() By characteristic height and hue outside

the hue ranpge of wall

(5) Extract chuirback samples by characteristic
height, vertical orientation, and saturuation

(6) Partition remaining samples by brightness
Figure 15. Final Semantic Partitioning of
Landscape Scene
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