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A theory of human cognitive processes in 
writing code for computer programs is presented 
which views behavior in terms of three processes: 
understanding, planning, and coding. Using this 
theory, a model of the coding process has been 
created which reproduces the code generation 
behavior of an experienced, human programmer 
working on a set of 2 3 FORTRAN problems. The 
model is stated as a computer program organized 
as a production system. 

A Theory of Human Computer Programming Behavior 

Programming is an activity which is engaged 
in, in one form or another, by more than a million 
people (Boehm, 1972). Surprisingly, research on 
human behavior in programming is very sparse and 
consists mainly of measurements of programmer 
performance. The research presented here takes a 
different approach than these previous studies. 
Instead of attempting to measure individual 
variables associated with programmer behavior, it 
presents a theory of the program writing process. 
The theory uses a set of ideas developed by Allen 
Newell (19 74) [1] and lies within the framework 
of the information processing approach to human 
problem solving (Newell & Simon, 1972). 

Before presenting the theory i t s e l f , a 
necessary prerequisite is definition of the class 
of tasks for which the theory is intended. Though 
computer programming has been spoken of as though 
i t were one task. In fact, a number of different 
tasks are included under this heading; they 
include, among many others, writing specifications 
for programs, writing programs given a set of 
specifications, debugging programs that another 
programmer has written, and writing documentation 
for programs. The particular task that has been 
selected for the focus of this theory is one In 
which the programmer is given a description of a 
function, or set of functions, which the program 
is to perform. The programmer must then find a 
method to perform the function and implement the 
method In the programming language. As a working 
situation, it is one which occurs by Itself 
frequently In scientific and educational programm­
ing environments and as a part of almost every 
other programming task. Limitations on research 
time and resources prevent inclusion of situations 
in which different parts of the task are performed 
by different people or of situations involving 
debugging behavior, though there are no obvious 
limitations of the theory which prevent doing so 
in the future. 

The theory consists of three basic processes: 
understanding, planning, and coding, though the 
work presented here focuses only on coding. Each 
of these processes occurs one or more times in 
every instance of the programming task. The 
operations performed by each of these processes 
and the way in which they invoke each other are 
described in the following section. 

Understanding 

When a problem-solver is presented with a 
problem he has a variety of sources of Informa­
tion, both internal and external, available about 
i t ; these include his general "world" knowledge 
about the general type of problem at hand, 
reference works such as programming language 
manuals, and last, but not least, written or 
spoken problem directions - Before he can actually 
start work on the problem, he must use these 
Information sources to build representations of 
the basic elements that the problem deals with 
and of their properties. Specifically, he must 
have representations of the i n i t i a l state of 
the problem, the desired final state or goal, and 
one or more operations which he can apply, appro­
priately, to begin the transformation on the 
i n i t i a l state. The process of building these 
representations is referred to as "understanding" 
in this theory. 

Planning 

When the building of representations that 
composes the understanding process is complete, 
the second of the three processes, planning, is 
invoked. The type of plan produced by it can best 
be described as a method for solving the program-
mlng problem; it consists of specifications of the 
way in which information from the real world is 
to be represented within the program and of the 
operations to be performed on these representa­
tions in order to achieve the desired effects 
of the program. These methods are used as schemas, 
or outlines, to guide the writing of the actual 
code in much the same way as plans are used to 
guide solutions of logic problems by GPS (Newell 
and Simon, 1972). The theory asserts, based on 
a sufficiency argument, that such a plan exists 
for nearly every programming problem which f i t s 
within the basic task definition. 

Plans are expressed in a functional language 
of the sort investigated by Newell and Freeman 
(1971); functions specified in the language 
invoke structures which, in turn, require other 
functions. This type of behavior may be character­
istic of the whole class of design problems. 
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Analogous concepts are the plans used In the 
p l a n n i n g v e r s i o n of GPS f o r the l o g i c t a s k (Newell 
& Simon, p. 428, 1972) and the language accepted 
by the F u n c t i o n a l D e s c r i p t i o n Compiler r o u t i n e 
of the H e u r i s t i c Compiler (Simon, 1972). 

Planning does not take p l a c e as a s i n g l e 
o p e r a t i o n ; i n s t e a d , a process of step-wise r e f i n e ­
ment takes place in which s t e p makes p a r t of the 
p l a n more d e t a i l e d . The t e r m i n a t i n g c o n d i t i o n 
f o r the r e f i n e m e n t i s t h a t some (reasonably l a r g e ) 
p a r t o f the p l a n i s s u f f i c i e n t l y d e t a i l e d s o 
t h a t the programmer f e e l s t h a t he knows how to 
t r a n s l a t e i t i n t o code, even though a l l o f the 
d e t a i l s o f the code are s t i l l unknown. At t h a t 
p o i n t the f i n a l process i n the w r i t i n g o f programs, 
coding, takes over. The coding process operates 
on a piece or p a r t o f a p l a n u n t i l e i t h e r code 
i s produced or some c r i t e r i o n i s met which causes 
the coding process t o r e p o r t f a i l u r e ; when f a i l u r e 
occurs i n f o r m a t i o n i s passed back t o the p l a n n i n g 
process which again attempts to produce a codeable 
p l a n . 

Coding 

The t h i r d o f the t h r e e processes i n the 
t h eory is coding. For human programmers, the 
b a s i c c y c l e f o r the g e n e r a t i o n o f code c o n s i s t s 
of u s i n g the p l a n to s e l e c t and w r i t e a piece 
of code, a s s i g n i n g an e f f e c t or a c t i o n to the 
code t h a t has been w r i t t e n , and comparing the 
e f f e c t , o r a c t i o n , t o the s t i p u l a t i o n s o f the 
p l a n . The r e s u l t s of t h i s comparison are used 
to s e l e c t and w r i t e more code or to change the 
code t h a t has been w r i t t e n ; i n t u r n , a n e f f e c t 
is assigned to t h i s new code which is compared to 
the p l a n . This c y c l e continues u n t i l the cumula­
t i v e e f f e c t of the code meets the requirements of 
the p l a n o r u n t i l some c o n d i t i o n , such as e f f o r t 
e x p e n d i t u r e , i s met which i n d i c a t e s t h a t the p i e c e 
o f p l a n i s not codeable. 

The e f f e c t s t h a t are assigned to code are 
based on the d i f f e r e n t i a t i o n s among the data t h a t 
the program must a c t u a l l y make in order to accomp­
l i s h i t s purpose. Consider as an example a p r o ­
gram f o r p r i n t i n g a l l the odd numbers i n a s e t o f 
i n t e g e r s . The program must d i f f e r e n t i a t e between 
odd and even numbers in order to perform t h i s 
t a s k . An e f f e c t t h a t could be assigned to a l i n e 
o f code i n t h i s program might b e " i f the number 
is odd, t h i s branches to statement 50," a s t a t e ­
ment which uses the i n f o r m a t i o n about the odd-even 
d i s t i n c t i o n . As more l i n e s of code are w r i t t e n , 
t h e i r e f f e c t s are accumulated i n a manner which 
a l s o makes use o f these d i f f e r e n t i a t i o n s ; t h u s, 
the e f f e c t s , " t h i s loops through a l l the numbers" 
and " i f the number i s odd, branch t o statement 
50," might be combined to g i v e " t h i s t e s t s each 
number to see i f i t ' s odd." When e f f e c t s of t h i s 
type are assigned to whole segments to code, the 
r e s u l t is t h a t the code is executed w i t h symbols 
such as "odd number" r e p l a c i n g the r e a l data; 
hence, the whole process has been named "symbolic 
e x e c u t i o n . " 

These e f f e c t s are expressed i n a f u n c t i o n a l 
language. I t resembles c l o s e l y the language 
used to express p l a n s , w i t h the major d i f f e r e n c e , 
t h a t the a c t i o n s s t a t e d are ones t h a t have 

a c t u a l l y been achieved r a t h e r than ones which are 
i n t e n d e d . I n p r o t o c o l s o f programming b e h a v i o r , 
t h i s d i s t i n c t i o n between p l a n n i n g statements o f 
i n t e n t and coding statements of e f f e c t appears 
c l e a r l y enough s o t h a t i t may b e used t o i d e n t i f y 
which of the two processes is t a k i n g place at a 
given p o i n t . 

An example of a complete symbolic e x e c u t i o n 
c y c l e f o r the problem j u s t mentioned might s t a r t 
w i t h the p l a n element, " t e s t each number to see 
if i t ' s odd." For a FORTRAN program, the program­
mer would b e g i n by w r i t i n g DO 10 1-1,100 and 
a s s i g n i n g i t the e f f e c t , " t h i s loops through a l l 
the numbers." Given t h i s e f f e c t and the p l a n , 
the programmer might next w r i t e I F ( L ( I ) / 2 * 2 .NE. 
L ( I ) ) GO TO 20 and then a s s i g n it the e f f e c t , 
" t h i s t e s t s whether i t ' s odd and goes t o 2 0 i f i t 
i s . " F i n a l l y , a f t e r c l o s i n g the D O loop b y w r i t i n g 
10 CONTINUE, the programmer would summarize the 
e f f e c t o f a l l three l i n e s a s " t h i s loops through 
a l l the numbers and t e s t s each one t o see I f i t ' s 
odd." Since t h i s matches the p l a n element, p r o ­
gram w r i t i n g would proceed to the next p l a n 
element. 

An a l t e r n a t i v e p o s s i b i l i t y in t h i s example 
i l l u s t r a t e s another aspect o f symbolic e x e c u t i o n . 
Suppose the programmer had known o n l y a t e s t f o r 
even p a r i t y . Since i t was the only p a r i t y t e s t 
a v a i l a b l e , he might have w r i t t e n I F ( L ( I ) / 2 * 2 .EQ. 
L ( I ) ) and assigned t o i t the e f f e c t , " t h i s t e s t s 
whether i t ' s even." N o t i n g t h a t the p l a n r e q u i r e s 
the o p p o s i t e e f f e c t , he would then a l t e r ".EQ." 
to ".NE." t o o b t a i n the t e s t f o r odd p a r i t y . The 
g e n e r a l p r i n c i p l e o f which t h i s i s a n example i s 
t h a t c o n f r o n t e d w i t h erroneous o r i n a p p r o p r i a t e 
code, the symbolic e x e c u t i o n process attempts to 
patch o r modify i t t o o b t a i n the d e s i r e d e f f e c t . 
This p a t c h i n g or m o d i f y i n g behavior is one of the 
main c h a r a c t e r i s t i c s t h a t d i s t i n g u i s h symbolic 
e x e c u t i o n from the s o r t o f goal t r e e b u i l d i n g and 
b a c k t r a c k i n g behavior seen h i s t o r i c a l l y i n p r o ­
grams such as the Logic T h e o r i s t (Newell and 
Simon, 1972) and,more r e c e n t l y , In systems such as 
PLANNER ( H e w i t t , 1971). These systems r e l y h e a v i l y 
f o r problem s o l v i n g power on the a b i l i t y t o back­
t r a c k to a p r e v i o u s , s u c c e s s f u l p o s i t i o n : back­
t r a c k i n g i s p r e f e r r e d over the c r e a t i o n o f new 
subgoals. In symbolic e x e c u t i o n , on the o t h e r 
hand, a t t e m p t i n g to modify or add on to what had 
a l r e a d y been done takes precedence, and b a c k t r a c k ­
i n g i s a n I n f r e q u e n t event. 

When b a c k t r a c k i n g does take p l a c e , I t may 
occur a t s e v e r a l l e v e l s . I n a d d i t i o n t o a t t e m p t i n g 
to code the p l a n element in an a l t e r n a t i v e way, 
the program w r i t e r may decide t h a t the p l a n i s a t 
f a u l t . When t h i s happens, a r e t u r n is made t o the 
p l a n n i n g process, and an attempt i s made t o f i n d 
a p l a n , or p i e c e of p l a n , which is e a s i e r to code. 
This new attempt in p l a n n i n g may even r e q u i r e a 
r e t u r n t o t h e u n d e r s t a n d i n g process t o r e i n t e r p r e t 
the problem. I f the understanding process i s 
considered to be a " t o p " l e v e l process and coding 
process a "bottom" l e v e l one, then t h i s a b i l i t y 
t o r e t u r n t o the p l a n n i n g and understanding process 
r e p r e s e n t s a "bottom-up" process, and b o t h bottom-
up and top-down processes take p l a c e in programming. 
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A Model of Coding 

With t h i s theory as a basis, a more d e t a i l e d 
model of the coding process has been constructed. 
This theory is described completely in Brooks 
(1975) and is summarized here. The model is 
intended to reproduce c e r t a i n c h a r a c t e r i s t i c s of 
the behavior seen in protocols of a programmer 
" t h i n k i n g aloud" while w r i t i n g a series of short 
programs in FORTRAN. These c h a r a c t e r i s t i c s 
include the order and s i r e of u n i t f o r code gen­
e r a t i o n . The model is stated as computer program 
in a d i a l e c t of the LISP programming language. 
The s t r u c t u r e of the model is based on the s t r u c ­

t u r e f o r human problem-solving systems presented 
and defended by Newell and Simon (1972). It 
consists of a short-term memory (STM) and a long-
term memory (LTM); the LTM consists of a produc­
t i o n system and two other s t r u c t u r e s , MEANINGS 
and CODE. 

STM is presumed to have a f i x e d capacity of 
a small number (less than 20) of chunks or sym­
bols, each of which can be used to access informa­
t i o n of a r b i t r a r y size and complexity in LTM. The 
s l o t s are ordered so that i n t r o d u c t i o n of new items 
at one end causes o l d ones to be l o s t o f f the 
other, a process analagous to one type of human 
f o r g e t t i n g behavior. 

In a d d i t i o n to the i n t r o d u c t i o n of new items 
two other processes, Item m o d i f i c a t i o n and 
rehearsal, a l t e r the contents of STM. Item 
m o d i f i c a t i o n consists of updating or adding to the 
information in an item already in STM, as c o n t r a s t ­
ed w i t h the a d d i t i o n of an item containing e n t i r e l y 
new information. Rehearsal takes an item from the 
middle or end of STM and places It at the begin­
ning so that it w i l l not be bumped o f f the end 
and l o s t . 

The most important s t r u c t u r e in LTM is the 
production system. A production system consists 
of sets of pairs of conditions and actions to be 
performed when the conditions are met. An appro­
p r i a t e decision r u l e is employed to i n s u r e t h a t 
only one aet of actions are performed at a time. 
Executing the actions r e s u l t s in some change i n 
the state of the world so that aa the system oper­
ates d i f f e r e n t conditions are met and d i f f e r e n t 
actions are invoked. None of the actions involve 
e x p l i c i t branching; r a t h e r , a l l c o n t r o l i s accomp­
l i s h e d through differences in the meeting of cond­
i t i o n s and the execution of associated actions. 

The theory asserts that a production system 
is the main i n t e r n a l c o n t r o l mechanism f o r deter­
mining the course of problem solving and the main 
knowledge s t r u c t u r e . An extensive defense of the 

• s u i t a b i l i t y o f t h i s p a r t i c u l a r c o n t r o l s t r u c t u r e 
f o r modeling human behavior is given in Newell and 
Simon (1972, p. 804). The conditions f o r the 
production system in t h i s theory are the presence 
or absence of c e r t a i n items in STM. The condi­
tions can describe items uniquely or they can be 
stated in terms of general classes of items. Dis­
j u n c t i v e or conjunctive s p e c i f i c a t i o n of combina­
tions of Items are also possible. An example of 
a condition i s : 

"any item which contains the word, PLAN-
ELEMENT, and the unique item which i s a 
pointer to MEANINGS." 

If STM contains items which meet that s p e c i f i c a ­
t i o n , then the actions associated w i t h i t would b e 
invoked. An example of a set of actions might be: 

"Rehearse the Item which contains PLAN-
ELEMENT and the Item which Is a p o i n t e r to 
MEANINGS. Replace PLAN-ELEMENT i n the f i r s t 
item by OLD-PLAN-ELEMENT." 

Other Long-term Memory Structures 

In a d d i t i o n to the production system the model 
makes use of two other long-term memory s t r u c t u r e s . 
The f i r s t of the two i s used f o r storage of the 
body of Information about the program that gets 
b u i l t up as the w r i t i n g of code proceeds. Some of 
t h i s information i s contained i n the code I t s e l f , 
but much of I t , such as the meanings of v a r i a b l e s 
and labels and the e f f e c t s of pieces of 
code, cannot be r e t r i e v e d from the w r i t t e n code 
alone and is used over much too long a time period 
f o r It to remain in STM, at l e a s t in an unencoded 
form. Because of the problem of dynamically adding 
information to a production system, in the program 
t h i s i n f o r m a t i o n is contained in a s t r u c t u r e out­
side the production system c a l l e d MEANINGS. MEAN­
INGS I s organized as a set of a t t r i b u t e - v a l u e p a i r s , 
one set f o r each v a r i a b l e or expression. Examples 
of the a t t r i b u t e s include the TYPE of the express­
ion - p o i n t e r , l a b e l , array, etc. - and the NAME 
that is a c t u a l l y used f o r I t i n the FORTRAN pro­
gram. Addition of infor m a t i o n to MEANINGS and 
r e t r i e v a l from it are accomplished by two s p e c i a l 
f u n c t i o n s , NEWMEANING and GETMEANING, which are 
cal l e d by the production system. 

The t h i r d major LTM knowledge s t r u c t u r e in 
a d d i t i o n to the productions and MEANINGS, CODE, i s 
a c t u a l l y information about how to access an 
e x t e r n a l memory, the code that the programmer has 
already w r i t t e n . I t I s q u i t e l i k e l y t h a t very 
l i t t l e of the actual code remains sccessible i n LTM 
once it has been w r i t t e n out on paper; when the 
subject In t h i s study wanted to r e w r i t e or reuste 
pieces of code, longer than a l i n e or so, that he 
had already w r i t t e n , he was almost never able to 
r e c a l l them d i r e c t l y from memory. Any use, m o d i f i ­
cation or c o r r e c t i o n to code which has been w r i t t e n 
must therefore r e t r i e v e the code from the paper 
e x t e r n a l memory; and the LTM must contain the 
information necessary to perform the r e t r i e v a l . 
The CODE s t r u c t u r e i n LTM contslns t h i s I n f o r m a t i o n . 
Since no experimental data were a v a i l a b l e on how 
subjects a c t u a l l y organize t h i s information i n 
memory, a s i m p l i f i e d s t r u c t u r e f o r CODE has been 
assumed; i t i s always searched l i n e a r l y , most 
recent code f i r s t . 

Knowledge Representations in the Model 

The preceding section describes the basic 
knowledge s t r u c t u r e s of the model. The f o l l o w i n g 
section describes the way knowledge is represented 
w i t h i n these s t r u c t u r e s . 

The Plan 

According to t h i s theory of programming, a 
plan consists of a sequence of operations which 
must be performed in order to achieve the desired 
e f f e c t of the program. In the model, a plan is 
represented b a s i c a l l y as a s i n g l e l i s t , each item 
of which is a s i n g l e operation of the plan. A 
production places these items one at a time i n t o 
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STM f o r c o d i n g . I n some s i t u a t i o n s I t I s necessary 
to i n d i c a t e t h a t a group o f these I tems is to be 
per fo rmed t o g e t h e r ; examples m igh t be to show t h a t 
a l l the I tems I n the group b e l o n g I n s i d e the same 
l oop o r t h a t they a re p a r t o f t he same b r a n c h o f 
a c o n d i t i o n a l . For t h i s pu rpose , s p e c i a l marker 
e lemen ts , somewhat l i k e BEGIN and END in ALGOL, a re 
p r o v i d e d wh ich may be p laced b e f o r e and a f t e r s e t s 
o f I tems t o I n d i c a t e t h a t they b e l o n g t o g e t h e r i n 
a g r o u p . 

I n the p r o t o c o l s a s i n g l e , f u n c t i o n a l l a n g ­
uage i s used to t a l k about b o t h p lans and the 
e f f e c t s o f p i e c e s o f code. Th is I s r e f l e c t e d 
w i t h i n the model by u s i n g a s i n g l e n o t a t i o n a l 
system to r e p r e s e n t b o t h . The g e n e r a l fo rm t h a t 
p l an e lements expressed i n t h i s n o t a t i o n take I s : 

A f i n a l comment about t h i s n o t a t i o n as 
a p p l i e d t o p l ans i s t h a t i t makes n o d i s t i n c t i o n 
between p l a n e lements wh ich l ead to the g e n e r a t i o n 
o f a c t u a l program code; f o r example, " s e t the 
p o i n t e r e q u a l t o the i n d e x o f t he f i r s t odd 
number f o u n d , " and those wh ich o n l y r e s u l t i n the 
e s t a b l i s h m e n t o f da ta r e p r e s e n t a t i o n s , such a s , 
" c r e a t e a p o i n t e r t o keep t r a c k o f the l o c a t i o n 
o f the f i r s t odd number . " 
Templates 

S ince the p l a n i t s e l f i s presumed t o be 
l a n g u a g e - i n d e p e n d e n t , t he i n f o r m a t i o n about the 
s y n t a x and semant i cs o f t he language in wh ich the 
code i s a c t u a l l y w r i t t e n must b e c o n t a i n e d i n the 
p r o d u c t i o n sys tem. For s y n t a c t i c i n f o r m a t i o n 
t h i s i s done by means o f s t r u c t u r e s c a l l e d cod ing 
temp la tes wh i ch a re f o r m a l l y e q u i v a l e n t to a 
Backus-Normal f o rm d e f i n i t i o n o f t he language , 
u s i n g v e r y h i g h - l e v e l p r i m i t i v e s and ve ry few 
r e c u r s i o n s l o t s . Each t emp la te c o n s i s t s o f a 
s m a l l segment of code - at most 3 or 4 l i n e s -
s p e c i f i e d as a m i x t u r e o f t h r e e types o f i n f o r m a ­
t i o n : a c t u a l code elements, d e s c r i p t i o n s o r s p e c i ­
f i c a t i o n s o f code e lements wh ich are to be i n s e r t ­
ed in the code, and parameter s l o t s wh i ch can be 
r e p l a c e d b y d e s c r i p t i o n s o r s p e c i f i c a t i o n s a t the 
p o i n t when the t e m p l a t e i s a c t u a l l y used . The 
d e s c r i p t i o n s o f code e lements may. In f a c t , be 
ano ther t e m p l a t e . An example of a t emp la te i s : 

V e r i f i c a t i o n o f t he Model 

The model was v e r i f i e d u s i n g a da ta base 
c o n s i s t i n g o f p r o t o c o l s o f t he b e h a v i o r o f an 
exper ienced FORTRAN programmer w r i t i n g a s e t of 23 
s h o r t p rograms. The problems a l l i nvo l ved man ipu ­
l a t i o n s on an a r r a y , L , which c o n t a i n e d 100 random 
numbers. An a u x i l i a r y a r r a y , M, was used to 
i n d i c a t e c e r t a i n t h i n g s about the o p e r a t i o n s wh i ch 
had been per fo rmed L. A sample p rob lem f rom t h i s 
s e t i s : 

REARRANCE THE ARRAY SO THAT ALL ODD NUMBFS ARK AT THE BKCIMNINC. 
PLACE ONES IN THE CORRESPONDING POSITIONS IN M. 

W h i l e w o r k i n g on the p rob lems , the s u b j e c t 
had a v a i l a b l e b o t h paper and p e n c i l , a n d a t e r m i n a l 
connected to an i n t e r a c t i v e computer sys tem. For 
each program he was g i v e n a p rob lem d e s c r i p t i o n 
and the name o f a f i l e c o n t a i n i n g code to read in 
and w r i t e ou t the random numbers. H i s i n s t r u c ­
t i o n s were to w r i t e and debug the program and to 
" t a l k a l o u d " w h i l e d o i n g so. A v i d e o tape 
r e c o r d e r was used to r e c o r d the s u b j e c t s b e h a v i o r . 

T r a n s c r i p t i o n s o f the p r o g r a m - w r i t i n g p o r ­
t i o n s o f these p r o t o c o l s formed the b a s i c da ta 
f o r the v e r i f i c a t i o n . An example o f p a r t o f one 
o f these t r a n s c r i p t i o n s i s : 

From the 38 segments wh ich were i d e n t i f i e d 
as c o d i n g b e h a v i o r i n the 23 p r o t o c o l s , f o u r were 
s e l e c t e d f o r m o d e l i n g by the p rogram. 
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A number of c r i t e r i a were used f o r s e l e c t i o n , 
i nc l ud ing the extent to which they were represent ­
a t i ve of o ther coding segments and t h e i r s u i t a b i l ­
i t y f o r e f f e c t i v e l y t e s t i n g the theory . For each 
of these segments input to the program consis ted 
of a statement of the p lan der ived from the p ro to ­
co l and s ta ted in the no ta t i on descr ibed prev ious­
l y . (For a complete d e s c r i p t i o n of how t h i s was 
accomplished, see Brooks (1975). ) For the seg­
ment cons i s t i ng of l i n e s 15-60 of the p ro toco l 
j u s t presented, pa r t o f t h i s p lan appeared as: 

Using t h i s segment or p ro toco l as an example, 
it is a lso poss ib le to see how the plans were 
der ived from the p r o t o c o l . In t h i s case, p lanning 
began very soon a f t e r the sub jec t rece ived the 
problem d e s c r i p t i o n ; I t takes place in l i n e s 8 
through 12 of the p r o t o c o l , about 30 seconds 
a f t e r the sub jec t received the problem d e s c r i p t i o n . 
Since t h i s is the only i d e n t i f i a b l e p lann ing be­
hav ior seen in the p r o t o c o l , i t i s assumed tha t 
p lanning was completed in t h i s segment and tha t 
t h i s same plan was used w i thou t m o d i f i c a t i o n 
throughout the w r i t i n g of the e n t i r e program. 
This segment shows that the p lan c o n s i s t s , in p a r t , 
of loop ing through the a r ray , t e s t i n g each number, 
and keeping a po in te r to the l a s t p o s i t i o n at 
which a non-odd occurs . The subject 's comments as 
he is w r i t i n g code in l i n e s 16 and 16 Ind i ca te 
that the p lan a c t u a l l y cons is ts of keeping two 
p o i n t e r s , one f o r the p o s i t i o n at which the next 
odd is to be placed and one which goes through the 
array p o i n t i n g at the next element to be t es ted . 
F i n a l l y , from h i s comments in l i n e s 52-59 (not 
shown) as he is checking over the program and from 
the code he a c t u a l l y w r i t e s , it may be i n f e r r e d 
t h a t , once he has found an odd number, he intends 
to Increment the po in te r to the next odd, swap the 
odd number w i t h the element po in ted to by the 
po in te r to the next odd, and then set the cor res ­
ponding element to 1* 

The product ion system takes the steps of 
t h i s plan one by one, places them i n t o STM and 
attempts to convert them i n t o code. A sample 
of a t race of the product ion system on the plan 
Just given i s : 

The product ion system models behavior in two 
respects . F i r s t , I t generates e s s e n t i a l l y the 
same code, i n c l u d i n g e r r o r s , as does the sub jec t ; 
the only d i f f e rences l i e in the areas o f v a r i a b l e 
names and some s l i gh t d i f f e rences in the order of 
code genera t ion . 

Second, the product ion system uses knowledge 
s t ruc tu res which correspond in s ize and general 
o rgan iza t i on to those used by the sub jec t . An 
example is the way in which IF statements are 
generated. In the product ion system t h i s code is 
generated w i t h 2 templates, one f o r the basic IF 
statement and GOTO, and a second one, invoked 
from w i t h i n the f i r s t , f o r the t e s t i n s i d e the 
IF statement. Corresponding behavior in the 
p ro toco l i nd i ca tes tha t the sub jec t a lso d i v ides 
t h i s knowledge i n t o the same two u n i t s . 

Asser t ions Made by the Model 

The mode makes 3 general asser t ions about 
coding behavior : 

1. Coding knowledge is organized as a very la rge 
number of unique plan elements, each of which 
has associated w i t h i t the s p e c i f i c In forma­
t i o n fo r t r a n s l a t i n g i t I n t o code. 

2. This t r a n s l a t i o n is accomplished by a symbol ic 
execut ion process In wh ich , as each l i n e of 
code is l a i d down, a recogn i t i on process 
assigns I t an e f f e c t . 

3. The In fo rmat ion about programming language 
syntax used in l ay i ng down the code la 
organized as a c o l l e c t i o n of smal l pieces of 
knowledge, each of which spec i fy how to w r i t e 
code f o r a des i red ac t i on or ope ra t i on . 

The major support fo r these asser t ions comes 
from the correspondence between the behavior of 
the model and the behavior of the sub jec t in the 
p r o t o c o l s . A d d i t i o n a l support fo r each of the 
asser t ions comes from the f o l l ow ing analyses: 

1. The aaser t lon about the s t r u c t u r e of coding 
knowledge was f u r t h e r v e r i f i e d by es t ima t i ng 
the number of new product ions tha t would be 
necessary to code the plans f o r four a d d i t i o n ­
a l segments. I t was found tha t a d d i t i o n a l 
product ions were necessary f o r each new p lan 
and segment, and tha t the nunber of a d d i t i o n a l 
product ions necessary d id not dec l ine as the 
t o t a l cumulat ive s i ze o f the product ion set 
grew. This is a s t rong i n d i c a t i o n of the 
la rge amount of knowledge s p e c i f i c to each 
p lan element tha t makes up a programmer's 
knowledge of how to create code. 

2. The asse r t i on about the r o l e of code c r e a t i o n 
in symbolic execut ion was f u r t h e r supported 
by asking an experienced FORTRAN programmer 
to Judge whether symbolic execut ion was 
v i s i b l e in the p r o t o c o l s . He was able to f i n d 
i t in 33 of 35 segments of coding behav io r , 
i n d i c a t i n g tha t symbolic execut ion is a 
ub iqu i tous fea tu re o f t h i s set o f p r o t o c o l s . 

The "E lements Present In STM" are t h e 
elements wh ich se rved as the i n v o k i n g c o n d i t i o n s 
f o r the p r o d u c t i o n t h a t f i r e d o f f o n the 10 th 
c y c l e o f the p r o d u c t i o n sys tem. NEW-CODE-3 i s 
the a c t i o n p a r t o f the p r o d u c t i o n ; I t c o n s i s t s 
of changes to be made to the c o n t e n t s of STM and 
the o t h e r memory s t r u c t u r e s i n the sys tem. 
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3. To add support to the a s s e r t i o n about the 
r e p r e s e n t a t i o n o f s y n t a c t i c knowledge, a n 
e s t i m a t e was made o f the t o t a l number of 
templates necessary to r e p r e s e n t c o m p l e t e l y 
the s u b j e c t ' s knowledge o f FORTRAN syntax. 
The importance o f t h i s number i s t h a t i t 
i n d i c a t e s whether the template is an appro­
p r i a t e l y s i z e d u n i t f o r modeling syntax 
knowledge. When an enumeration of the syntax 
c o n s t r u c t i o n s , n o t observed i n t h e p r o t o c o l s , 
was used t o c o n s e r v a t i v e l y e s t i m a t e t h e t o t a l 
number of templates needed the r e s u l t was 54, 
s u g g e s t i n g an a b s o l u t e upper bound of no 
more than 150. This f i g u r e is of approximate­
l y the c o r r e c t magnitude, i n d i c a t i n g t h a t the 
template is of an a p p r o p r i a t e s i z e to r e p r e ­
sent s y n t a x knowledge. 

I m p l i c a t i o n s f o r A r t i f i c i a l I n t e l l i g e n c e 

Using P r o d u c t i o n s Systems to Model P a r a l l e l 
Processes 

One o f the c e n t r a l f e a t u r e s o f t h i s model i s 
the use of a p r o d u c t i o n system as b o t h the c e n t r a l 
c o n t r o l mechanisms and the p r i m r y knowledge 
s t r u c t u r e . A n i m p o r t a n t q u e s t i o n i s whether t h i s 
was an a p p r o p r i a t e choice. A primary c h a r a c t e r ­
i s t i c o f a p r o d u c t i o n system f o r modeling behavior 
i s t h a t , a t a g i v e n p o i n t , the s e l e c t i o n o f the 
n ext p i e c e o f b e h a v i o r i s made i n p a r a l l e l from 
a l l the p o s s i b l e a l t e r n a t i v e s . Any s e q u e n t i a l 
dependencies seen in the b e h a v i o r of a p r o d u c t i o n 
system i s the r e s u l t o f a s p e c i f i c implemenatlon 
and i s not a n i n h e r e n t c h a r a c t e r i s t i c o f the 
c o n t r o l s t r u c t u r e i t s e l f . A s t r u c t u r e t h a t was 
e s s e n t i a l l y d i f f e r e n t from a p r o d u c t i o n system 
would s e l e c t b e h a v i o r v i a a sequence of d e c i s i o n s 
t h a t was an i n h e r e n t p a r t of the c o n t r o l mechanism 
s t r u c t u r e . To argue t h a t p r o d u c t i o n systems are 
a p a r t i c u l a r l y good c h o i c e f o r r e p r e s e n t i n g 
coding behavior r e q u i r e s t h a t t h e r e be some aspect 
of t h e coding process which cannot be e a s i l y 
r e p r e s e n t e d i n s e r i a l f a s h i o n . 

I n t h i s case, a s t r o n g argument f o r e s s e n t i a l 
p a r a l l e l i s m can be made from the r e t r i e v a l o f 
knowledge about the a s s o c i a t i o n between p l a n 
elements and code. One of t h e main f i n d i n g s of 
t h i s study has been t h a t a programmer has a l a r g e 
body of knowledge about how to code p a r t i c u l a r 
p l a n elements. Since t h i s body i s s o l a r g e , 
s e r i a l processes i n s e a r c h i n g i t ought t o r e v e a l 
themselves b y extremely l o n g r e t r i e v a l times f o r 
i n f o r m a t i o n about how to code most p l a n elements, 
perhaps on the o r d e r of s e v e r a l minutes. A d d i t i o n ­
a l l y , the p r o t o c o l s ought t o c o n t a i n some evidence 
o f s e q u e n t i a l e l i m i n a t i o n o f unwanted i n f o r m a t i o n 
u n t i l the c o r r e c t s o l u t i o n i s found. I n t h i s s e t 
of p r o t o c o l s , once the s u b j e c t has a p l a n , coding 
o f i t seems t o s t a r t almost immediately w i t h o u t 
any u t t e r a n c e s which would i n d i c a t e t h a t the sub­
j e c t has t o expend e f f o r t t o f i g u r e out how t o 
b e g i n . A d d i t i o n a l l y , w h i l e t h e r e are s e v e r a l 
Instances in which the s u b j e c t considers a l t e r n a ­
t i v e methods o f doing coding, t h e r e i s n o evidence 
o f a f i x e d , s e q u e n t i a l e l i m i n a t i o n o f unwanted 
a l t e r n a t i v e s . 

This evidence s t r o n g l y suggests t h a t the 
search f o r coding i n f o r m a t i o n is made i n a 

p a r a l l e l manner. While i t i s t r u e t h a t i t i s 
p o s s i b l e to map a p a r a l l e l process onto a s e r i a l 
model, b o t h e v a l u a t i o n and e x p l i c a t i o n of the 
model can be accomplished more e f f e c t i v e l y when 
the correspondence between the model and the 
process is a c l e a r one. Given the p a r a l l e l 
n a t u r e of the search process in t h i s case, 
r e p r e s e n t i n g it w i t h a p r o d u c t i o n system is 
p a r t i c u l a r l y a p p r o p r i a t e . 

I m p l i c a t i o n s f o r the Use o f B a c k t r a c k i n g 

One of the most common ways to o r g a n i z e a 
problem s o l v i n g system is as a b a c k t r a c k i n g 
subgoaler. Systems w i t h t h i s o r g a n i z a t i o n a t t e m p t 
to s o l v e problems by r e d u c i n g them to a s e t of 
subproblems, whose s o l u t i o n imply the s o l u t i o n 
t o the I n i t i a l problem. When the system f a l l s a t 
a subproblem which i t has attempted t o s o l v e , i t 
r e t u r n s or b a c k t r a c k s t o some p r i o r , s u c c e s s f u l 
s t a t e . Systems o f t h i s type v a r y c o n s i d e r a b l y 
a l o n g such dimensions as the s t r a t e g y used to 
generate and s e l e c t subgoals, the amount and k i n d 
o f i n f o r m a t i o n r e t a i n e d from f a i l u r e s , and the 
p o i n t t o which r e t u r n from f a i l u r e occurs ( N i l s s o n , 
1971; Newell & Simon, 1972). 

While the model presented here is n o t 
o r g a n i z e d a s a b a c k t r a c k i n g subgoaler, i t i s o f 
i n t e r e s t t o i n q u i r e what r o l e b a c k t r a c k i n g p l a y s 
i n coding b e h a v i o r . I n i t s p u r e s t form, back­
t r a c k i n g i n programming would c o n s i s t o f complete­
l y abandoning some piece o f code b y e r a s i n g i t o r 
c r o s s i n g i t out and b e g i n n i n g again a t some 
e a r l i e r p o i n t , up to which the code was known to 
b e c o r r e c t . I n these p r o t o c o l s , t h i s type o f 
b e h a v i o r o c c u r r e d in o n l y one problem. A f a r 
more common occurrence, t a k i n g place in 21 t o 23 
of the p r o t o c o l s , was t h a t the u n s a t i s f a c t o r y 
code i s m o d i f i e d b y i n s e r t i o n o f l i n e s , c r o s s i n g 
o u t , changing names, e t c . , u n t i l i t i s c o r r e c t e d . 
I n the p r o d u c t i o n system t h i s behavior i s 
accomplished by p r o d u c t i o n s which hsve as t h e i r 
i n v o k i n g c o n d i t i o n s the e f f e c t s t h a t have been 
assigned to the u n s a t i s f a c t o r y code and w h i c h , as 
t h e i r e f f e c t s , modify the e x i s t i n g code. 

The p o i n t to be emphasized about t h i s be­
h a v i o r is t h a t , when a f a i l u r e t o generate c o r r e c t 
code occurs, as much of the o l d s o l u t i o n a t t e m p t 
as p o s s i b l e is saved and reused. This is in 
s t r o n g d i s t i n c t i o n to systems such as GPS 
( E r n s t & N e w e l l , 1969) and PLANNER (Hewitt,1972) 
which, when f a i l u r e o c c u r s , d i s c a r d the o l d 
s o l u t i o n a t t e m p t e n t i r e l y . The c o n t r a s t i n g way 
i n which the s u b j e c t and the model i n t h i s study 
behave has the e f f e c t r e d u c i n g the number of 
goals attempted a t any one l e v e l since the i n f o r ­
mation o b t a i n e d from a t t e m p t i n g one goal is 
a v a i l a b l e in the form of w r i t t e n code f o r use by 
successive g o a l a t t e m p t s . The goal " t r e e " thus 
becomes more of a s t r a i g h t l i n e . G e n e r a l i z i n g 
from t h i s , human computer programming suggests 
t h a t a paradigm o f "patch and move f o r w a r d " i s 
b e t t e r s u i t e d t o some tasks than the wide-spread 
" b a c k t r a c k and s u b g o a l . " 
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Directions for Further Work 

The model presented here covers only the 
coding process and is, strlckly speaking, applic­
able only to this one subject. Future work should 
attempt to broaden it both in terms of the process­
es covered and generality for other individuals. 
Some of the research questions ought to be: 

1. How are plans created by human programmers? 
In particular, is the creation of new plans 
an active problem solving process or does it 
involve primarily retrieval of stored plan 
Information? 

2. To what extent and in what ways does the 
programmer's knowledge of the programming 
language he is using affect the plans he 
uses? 

3. Is the generation of code by symbolic execu­
tion an invariant across programmers and 
situations or are there other methods of 
coding that human programmers use. 

Not only do answers to these questions re-
present intriguing problems in their right, but 
the answers to them may prove useful in applied 
work on improving software technology. 

Footnotes 

The elements of the Newell theory t h a t 
are used here are: 

1. Development of plans by h e u r i s t i c 
search c o n s i s t i n g of successive function­
al e l a b o r a t i o n in which f u n c t i o n a l 
s p e c i f i c a t i o n s invoke s t r u c t u r e s which, 
i n t u r n , require f u r t h e r functions. 
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Generation of code by a symbolic execution 
process i n which f i r s t , code i s l a i d down 
and then consequences are generated from i t . 
The consequence generation produces a large 
number of subproblems. 

Solution of these subproblems by a r e c o g n i t i o n 
process. Together w i t h symbolic execution, 
t h i s implies goal c o n t r o l dependent on the 
problem s t r u c t u r e , rather than v i a a goal 
stack. 
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