
S e c t i o n 12: P s y c h o l o g i c a l Aspects of
A r t l t i c i a l I n t e l l i g e n c e

A MODEL OF HUMAN COGNITIVE BEHAVIOR
IN WRITING CODE FOR COMPUTER PROGRAMS

Ruven Brooke
Department of I n f o r m a t i o n and Computer Science

U n i v e r s i t y o f C a l i f o r n i a - I r v i n e
I r v i n e , CA 92664

U.S.A.

A theory of human cognitive processes in
writing code for computer programs is presented
which views behavior in terms of three processes:
understanding, planning, and coding. Using this
theory, a model of the coding process has been
created which reproduces the code generation
behavior of an experienced, human programmer
working on a set of 2 3 FORTRAN problems. The
model is stated as a computer program organized
as a production system.

A Theory of Human Computer Programming Behavior

Programming is an activity which is engaged
in, in one form or another, by more than a million
people (Boehm, 1972). Surprisingly, research on
human behavior in programming is very sparse and
consists mainly of measurements of programmer
performance. The research presented here takes a
different approach than these previous studies.
Instead of attempting to measure individual
variables associated with programmer behavior, it
presents a theory of the program writing process.
The theory uses a set of ideas developed by Allen
Newell (19 74) [1] and lies within the framework
of the information processing approach to human
problem solving (Newell & Simon, 1972).

Before presenting the theory i t s e l f , a
necessary prerequisite is definition of the class
of tasks for which the theory is intended. Though
computer programming has been spoken of as though
i t were one task. In fact, a number of different
tasks are included under this heading; they
include, among many others, writing specifications
for programs, writing programs given a set of
specifications, debugging programs that another
programmer has written, and writing documentation
for programs. The particular task that has been
selected for the focus of this theory is one In
which the programmer is given a description of a
function, or set of functions, which the program
is to perform. The programmer must then find a
method to perform the function and implement the
method In the programming language. As a working
situation, it is one which occurs by Itself
frequently In scientific and educational programm­
ing environments and as a part of almost every
other programming task. Limitations on research
time and resources prevent inclusion of situations
in which different parts of the task are performed
by different people or of situations involving
debugging behavior, though there are no obvious
limitations of the theory which prevent doing so
in the future.

The theory consists of three basic processes:
understanding, planning, and coding, though the
work presented here focuses only on coding. Each
of these processes occurs one or more times in
every instance of the programming task. The
operations performed by each of these processes
and the way in which they invoke each other are
described in the following section.

Understanding

When a problem-solver is presented with a
problem he has a variety of sources of Informa­
tion, both internal and external, available about
i t ; these include his general "world" knowledge
about the general type of problem at hand,
reference works such as programming language
manuals, and last, but not least, written or
spoken problem directions - Before he can actually
start work on the problem, he must use these
Information sources to build representations of
the basic elements that the problem deals with
and of their properties. Specifically, he must
have representations of the i n i t i a l state of
the problem, the desired final state or goal, and
one or more operations which he can apply, appro­
priately, to begin the transformation on the
i n i t i a l state. The process of building these
representations is referred to as "understanding"
in this theory.

Planning

When the building of representations that
composes the understanding process is complete,
the second of the three processes, planning, is
invoked. The type of plan produced by it can best
be described as a method for solving the program-
mlng problem; it consists of specifications of the
way in which information from the real world is
to be represented within the program and of the
operations to be performed on these representa­
tions in order to achieve the desired effects
of the program. These methods are used as schemas,
or outlines, to guide the writing of the actual
code in much the same way as plans are used to
guide solutions of logic problems by GPS (Newell
and Simon, 1972). The theory asserts, based on
a sufficiency argument, that such a plan exists
for nearly every programming problem which f i t s
within the basic task definition.

Plans are expressed in a functional language
of the sort investigated by Newell and Freeman
(1971); functions specified in the language
invoke structures which, in turn, require other
functions. This type of behavior may be character­
istic of the whole class of design problems.

878

A b s t r a c t S t r u c t u r e of the Theory

Analogous concepts are the plans used In the
p l a n n i n g v e r s i o n of GPS f o r the l o g i c t a s k (Newell
& Simon, p. 428, 1972) and the language accepted
by the F u n c t i o n a l D e s c r i p t i o n Compiler r o u t i n e
of the H e u r i s t i c Compiler (Simon, 1972).

Planning does not take p l a c e as a s i n g l e
o p e r a t i o n ; i n s t e a d , a process of step-wise r e f i n e ­
ment takes place in which s t e p makes p a r t of the
p l a n more d e t a i l e d . The t e r m i n a t i n g c o n d i t i o n
f o r the r e f i n e m e n t i s t h a t some (reasonably l a r g e)
p a r t o f the p l a n i s s u f f i c i e n t l y d e t a i l e d s o
t h a t the programmer f e e l s t h a t he knows how to
t r a n s l a t e i t i n t o code, even though a l l o f the
d e t a i l s o f the code are s t i l l unknown. At t h a t
p o i n t the f i n a l process i n the w r i t i n g o f programs,
coding, takes over. The coding process operates
on a piece or p a r t o f a p l a n u n t i l e i t h e r code
i s produced or some c r i t e r i o n i s met which causes
the coding process t o r e p o r t f a i l u r e ; when f a i l u r e
occurs i n f o r m a t i o n i s passed back t o the p l a n n i n g
process which again attempts to produce a codeable
p l a n .

Coding

The t h i r d o f the t h r e e processes i n the
t h eory is coding. For human programmers, the
b a s i c c y c l e f o r the g e n e r a t i o n o f code c o n s i s t s
of u s i n g the p l a n to s e l e c t and w r i t e a piece
of code, a s s i g n i n g an e f f e c t or a c t i o n to the
code t h a t has been w r i t t e n , and comparing the
e f f e c t , o r a c t i o n , t o the s t i p u l a t i o n s o f the
p l a n . The r e s u l t s of t h i s comparison are used
to s e l e c t and w r i t e more code or to change the
code t h a t has been w r i t t e n ; i n t u r n , a n e f f e c t
is assigned to t h i s new code which is compared to
the p l a n . This c y c l e continues u n t i l the cumula­
t i v e e f f e c t of the code meets the requirements of
the p l a n o r u n t i l some c o n d i t i o n , such as e f f o r t
e x p e n d i t u r e , i s met which i n d i c a t e s t h a t the p i e c e
o f p l a n i s not codeable.

The e f f e c t s t h a t are assigned to code are
based on the d i f f e r e n t i a t i o n s among the data t h a t
the program must a c t u a l l y make in order to accomp­
l i s h i t s purpose. Consider as an example a p r o ­
gram f o r p r i n t i n g a l l the odd numbers i n a s e t o f
i n t e g e r s . The program must d i f f e r e n t i a t e between
odd and even numbers in order to perform t h i s
t a s k . An e f f e c t t h a t could be assigned to a l i n e
o f code i n t h i s program might b e " i f the number
is odd, t h i s branches to statement 50," a s t a t e ­
ment which uses the i n f o r m a t i o n about the odd-even
d i s t i n c t i o n . As more l i n e s of code are w r i t t e n ,
t h e i r e f f e c t s are accumulated i n a manner which
a l s o makes use o f these d i f f e r e n t i a t i o n s ; t h u s,
the e f f e c t s , " t h i s loops through a l l the numbers"
and " i f the number i s odd, branch t o statement
50," might be combined to g i v e " t h i s t e s t s each
number to see i f i t ' s odd." When e f f e c t s of t h i s
type are assigned to whole segments to code, the
r e s u l t is t h a t the code is executed w i t h symbols
such as "odd number" r e p l a c i n g the r e a l data;
hence, the whole process has been named "symbolic
e x e c u t i o n . "

These e f f e c t s are expressed i n a f u n c t i o n a l
language. I t resembles c l o s e l y the language
used to express p l a n s , w i t h the major d i f f e r e n c e ,
t h a t the a c t i o n s s t a t e d are ones t h a t have

a c t u a l l y been achieved r a t h e r than ones which are
i n t e n d e d . I n p r o t o c o l s o f programming b e h a v i o r ,
t h i s d i s t i n c t i o n between p l a n n i n g statements o f
i n t e n t and coding statements of e f f e c t appears
c l e a r l y enough s o t h a t i t may b e used t o i d e n t i f y
which of the two processes is t a k i n g place at a
given p o i n t .

An example of a complete symbolic e x e c u t i o n
c y c l e f o r the problem j u s t mentioned might s t a r t
w i t h the p l a n element, " t e s t each number to see
if i t ' s odd." For a FORTRAN program, the program­
mer would b e g i n by w r i t i n g DO 10 1-1,100 and
a s s i g n i n g i t the e f f e c t , " t h i s loops through a l l
the numbers." Given t h i s e f f e c t and the p l a n ,
the programmer might next w r i t e I F (L (I) / 2 * 2 .NE.
L (I)) GO TO 20 and then a s s i g n it the e f f e c t ,
" t h i s t e s t s whether i t ' s odd and goes t o 2 0 i f i t
i s . " F i n a l l y , a f t e r c l o s i n g the D O loop b y w r i t i n g
10 CONTINUE, the programmer would summarize the
e f f e c t o f a l l three l i n e s a s " t h i s loops through
a l l the numbers and t e s t s each one t o see I f i t ' s
odd." Since t h i s matches the p l a n element, p r o ­
gram w r i t i n g would proceed to the next p l a n
element.

An a l t e r n a t i v e p o s s i b i l i t y in t h i s example
i l l u s t r a t e s another aspect o f symbolic e x e c u t i o n .
Suppose the programmer had known o n l y a t e s t f o r
even p a r i t y . Since i t was the only p a r i t y t e s t
a v a i l a b l e , he might have w r i t t e n I F (L (I) / 2 * 2 .EQ.
L (I)) and assigned t o i t the e f f e c t , " t h i s t e s t s
whether i t ' s even." N o t i n g t h a t the p l a n r e q u i r e s
the o p p o s i t e e f f e c t , he would then a l t e r ".EQ."
to ".NE." t o o b t a i n the t e s t f o r odd p a r i t y . The
g e n e r a l p r i n c i p l e o f which t h i s i s a n example i s
t h a t c o n f r o n t e d w i t h erroneous o r i n a p p r o p r i a t e
code, the symbolic e x e c u t i o n process attempts to
patch o r modify i t t o o b t a i n the d e s i r e d e f f e c t .
This p a t c h i n g or m o d i f y i n g behavior is one of the
main c h a r a c t e r i s t i c s t h a t d i s t i n g u i s h symbolic
e x e c u t i o n from the s o r t o f goal t r e e b u i l d i n g and
b a c k t r a c k i n g behavior seen h i s t o r i c a l l y i n p r o ­
grams such as the Logic T h e o r i s t (Newell and
Simon, 1972) and,more r e c e n t l y , In systems such as
PLANNER (H e w i t t , 1971). These systems r e l y h e a v i l y
f o r problem s o l v i n g power on the a b i l i t y t o back­
t r a c k to a p r e v i o u s , s u c c e s s f u l p o s i t i o n : back­
t r a c k i n g i s p r e f e r r e d over the c r e a t i o n o f new
subgoals. In symbolic e x e c u t i o n , on the o t h e r
hand, a t t e m p t i n g to modify or add on to what had
a l r e a d y been done takes precedence, and b a c k t r a c k ­
i n g i s a n I n f r e q u e n t event.

When b a c k t r a c k i n g does take p l a c e , I t may
occur a t s e v e r a l l e v e l s . I n a d d i t i o n t o a t t e m p t i n g
to code the p l a n element in an a l t e r n a t i v e way,
the program w r i t e r may decide t h a t the p l a n i s a t
f a u l t . When t h i s happens, a r e t u r n is made t o the
p l a n n i n g process, and an attempt i s made t o f i n d
a p l a n , or p i e c e of p l a n , which is e a s i e r to code.
This new attempt in p l a n n i n g may even r e q u i r e a
r e t u r n t o t h e u n d e r s t a n d i n g process t o r e i n t e r p r e t
the problem. I f the understanding process i s
considered to be a " t o p " l e v e l process and coding
process a "bottom" l e v e l one, then t h i s a b i l i t y
t o r e t u r n t o the p l a n n i n g and understanding process
r e p r e s e n t s a "bottom-up" process, and b o t h bottom-
up and top-down processes take p l a c e in programming.

879

A Model of Coding

With t h i s theory as a basis, a more d e t a i l e d
model of the coding process has been constructed.
This theory is described completely in Brooks
(1975) and is summarized here. The model is
intended to reproduce c e r t a i n c h a r a c t e r i s t i c s of
the behavior seen in protocols of a programmer
" t h i n k i n g aloud" while w r i t i n g a series of short
programs in FORTRAN. These c h a r a c t e r i s t i c s
include the order and s i r e of u n i t f o r code gen­
e r a t i o n . The model is stated as computer program
in a d i a l e c t of the LISP programming language.
The s t r u c t u r e of the model is based on the s t r u c ­

t u r e f o r human problem-solving systems presented
and defended by Newell and Simon (1972). It
consists of a short-term memory (STM) and a long-
term memory (LTM); the LTM consists of a produc­
t i o n system and two other s t r u c t u r e s , MEANINGS
and CODE.

STM is presumed to have a f i x e d capacity of
a small number (less than 20) of chunks or sym­
bols, each of which can be used to access informa­
t i o n of a r b i t r a r y size and complexity in LTM. The
s l o t s are ordered so that i n t r o d u c t i o n of new items
at one end causes o l d ones to be l o s t o f f the
other, a process analagous to one type of human
f o r g e t t i n g behavior.

In a d d i t i o n to the i n t r o d u c t i o n of new items
two other processes, Item m o d i f i c a t i o n and
rehearsal, a l t e r the contents of STM. Item
m o d i f i c a t i o n consists of updating or adding to the
information in an item already in STM, as c o n t r a s t ­
ed w i t h the a d d i t i o n of an item containing e n t i r e l y
new information. Rehearsal takes an item from the
middle or end of STM and places It at the begin­
ning so that it w i l l not be bumped o f f the end
and l o s t .

The most important s t r u c t u r e in LTM is the
production system. A production system consists
of sets of pairs of conditions and actions to be
performed when the conditions are met. An appro­
p r i a t e decision r u l e is employed to i n s u r e t h a t
only one aet of actions are performed at a time.
Executing the actions r e s u l t s in some change i n
the state of the world so that aa the system oper­
ates d i f f e r e n t conditions are met and d i f f e r e n t
actions are invoked. None of the actions involve
e x p l i c i t branching; r a t h e r , a l l c o n t r o l i s accomp­
l i s h e d through differences in the meeting of cond­
i t i o n s and the execution of associated actions.

The theory asserts that a production system
is the main i n t e r n a l c o n t r o l mechanism f o r deter­
mining the course of problem solving and the main
knowledge s t r u c t u r e . An extensive defense of the

• s u i t a b i l i t y o f t h i s p a r t i c u l a r c o n t r o l s t r u c t u r e
f o r modeling human behavior is given in Newell and
Simon (1972, p. 804). The conditions f o r the
production system in t h i s theory are the presence
or absence of c e r t a i n items in STM. The condi­
tions can describe items uniquely or they can be
stated in terms of general classes of items. Dis­
j u n c t i v e or conjunctive s p e c i f i c a t i o n of combina­
tions of Items are also possible. An example of
a condition i s :

"any item which contains the word, PLAN-
ELEMENT, and the unique item which i s a
pointer to MEANINGS."

If STM contains items which meet that s p e c i f i c a ­
t i o n , then the actions associated w i t h i t would b e
invoked. An example of a set of actions might be:

"Rehearse the Item which contains PLAN-
ELEMENT and the Item which Is a p o i n t e r to
MEANINGS. Replace PLAN-ELEMENT i n the f i r s t
item by OLD-PLAN-ELEMENT."

Other Long-term Memory Structures

In a d d i t i o n to the production system the model
makes use of two other long-term memory s t r u c t u r e s .
The f i r s t of the two i s used f o r storage of the
body of Information about the program that gets
b u i l t up as the w r i t i n g of code proceeds. Some of
t h i s information i s contained i n the code I t s e l f ,
but much of I t , such as the meanings of v a r i a b l e s
and labels and the e f f e c t s of pieces of
code, cannot be r e t r i e v e d from the w r i t t e n code
alone and is used over much too long a time period
f o r It to remain in STM, at l e a s t in an unencoded
form. Because of the problem of dynamically adding
information to a production system, in the program
t h i s i n f o r m a t i o n is contained in a s t r u c t u r e out­
side the production system c a l l e d MEANINGS. MEAN­
INGS I s organized as a set of a t t r i b u t e - v a l u e p a i r s ,
one set f o r each v a r i a b l e or expression. Examples
of the a t t r i b u t e s include the TYPE of the express­
ion - p o i n t e r , l a b e l , array, etc. - and the NAME
that is a c t u a l l y used f o r I t i n the FORTRAN pro­
gram. Addition of infor m a t i o n to MEANINGS and
r e t r i e v a l from it are accomplished by two s p e c i a l
f u n c t i o n s , NEWMEANING and GETMEANING, which are
cal l e d by the production system.

The t h i r d major LTM knowledge s t r u c t u r e in
a d d i t i o n to the productions and MEANINGS, CODE, i s
a c t u a l l y information about how to access an
e x t e r n a l memory, the code that the programmer has
already w r i t t e n . I t I s q u i t e l i k e l y t h a t very
l i t t l e of the actual code remains sccessible i n LTM
once it has been w r i t t e n out on paper; when the
subject In t h i s study wanted to r e w r i t e or reuste
pieces of code, longer than a l i n e or so, that he
had already w r i t t e n , he was almost never able to
r e c a l l them d i r e c t l y from memory. Any use, m o d i f i ­
cation or c o r r e c t i o n to code which has been w r i t t e n
must therefore r e t r i e v e the code from the paper
e x t e r n a l memory; and the LTM must contain the
information necessary to perform the r e t r i e v a l .
The CODE s t r u c t u r e i n LTM contslns t h i s I n f o r m a t i o n .
Since no experimental data were a v a i l a b l e on how
subjects a c t u a l l y organize t h i s information i n
memory, a s i m p l i f i e d s t r u c t u r e f o r CODE has been
assumed; i t i s always searched l i n e a r l y , most
recent code f i r s t .

Knowledge Representations in the Model

The preceding section describes the basic
knowledge s t r u c t u r e s of the model. The f o l l o w i n g
section describes the way knowledge is represented
w i t h i n these s t r u c t u r e s .

The Plan

According to t h i s theory of programming, a
plan consists of a sequence of operations which
must be performed in order to achieve the desired
e f f e c t of the program. In the model, a plan is
represented b a s i c a l l y as a s i n g l e l i s t , each item
of which is a s i n g l e operation of the plan. A
production places these items one at a time i n t o

880

STM f o r c o d i n g . I n some s i t u a t i o n s I t I s necessary
to i n d i c a t e t h a t a group o f these I tems is to be
per fo rmed t o g e t h e r ; examples m igh t be to show t h a t
a l l the I tems I n the group b e l o n g I n s i d e the same
l oop o r t h a t they a re p a r t o f t he same b r a n c h o f
a c o n d i t i o n a l . For t h i s pu rpose , s p e c i a l marker
e lemen ts , somewhat l i k e BEGIN and END in ALGOL, a re
p r o v i d e d wh ich may be p laced b e f o r e and a f t e r s e t s
o f I tems t o I n d i c a t e t h a t they b e l o n g t o g e t h e r i n
a g r o u p .

I n the p r o t o c o l s a s i n g l e , f u n c t i o n a l l a n g ­
uage i s used to t a l k about b o t h p lans and the
e f f e c t s o f p i e c e s o f code. Th is I s r e f l e c t e d
w i t h i n the model by u s i n g a s i n g l e n o t a t i o n a l
system to r e p r e s e n t b o t h . The g e n e r a l fo rm t h a t
p l an e lements expressed i n t h i s n o t a t i o n take I s :

A f i n a l comment about t h i s n o t a t i o n as
a p p l i e d t o p l ans i s t h a t i t makes n o d i s t i n c t i o n
between p l a n e lements wh ich l ead to the g e n e r a t i o n
o f a c t u a l program code; f o r example, " s e t the
p o i n t e r e q u a l t o the i n d e x o f t he f i r s t odd
number f o u n d , " and those wh ich o n l y r e s u l t i n the
e s t a b l i s h m e n t o f da ta r e p r e s e n t a t i o n s , such a s ,
" c r e a t e a p o i n t e r t o keep t r a c k o f the l o c a t i o n
o f the f i r s t odd number . "
Templates

S ince the p l a n i t s e l f i s presumed t o be
l a n g u a g e - i n d e p e n d e n t , t he i n f o r m a t i o n about the
s y n t a x and semant i cs o f t he language in wh ich the
code i s a c t u a l l y w r i t t e n must b e c o n t a i n e d i n the
p r o d u c t i o n sys tem. For s y n t a c t i c i n f o r m a t i o n
t h i s i s done by means o f s t r u c t u r e s c a l l e d cod ing
temp la tes wh i ch a re f o r m a l l y e q u i v a l e n t to a
Backus-Normal f o rm d e f i n i t i o n o f t he language ,
u s i n g v e r y h i g h - l e v e l p r i m i t i v e s and ve ry few
r e c u r s i o n s l o t s . Each t emp la te c o n s i s t s o f a
s m a l l segment of code - at most 3 or 4 l i n e s -
s p e c i f i e d as a m i x t u r e o f t h r e e types o f i n f o r m a ­
t i o n : a c t u a l code elements, d e s c r i p t i o n s o r s p e c i ­
f i c a t i o n s o f code e lements wh ich are to be i n s e r t ­
ed in the code, and parameter s l o t s wh i ch can be
r e p l a c e d b y d e s c r i p t i o n s o r s p e c i f i c a t i o n s a t the
p o i n t when the t e m p l a t e i s a c t u a l l y used . The
d e s c r i p t i o n s o f code e lements may. In f a c t , be
ano ther t e m p l a t e . An example of a t emp la te i s :

V e r i f i c a t i o n o f t he Model

The model was v e r i f i e d u s i n g a da ta base
c o n s i s t i n g o f p r o t o c o l s o f t he b e h a v i o r o f an
exper ienced FORTRAN programmer w r i t i n g a s e t of 23
s h o r t p rograms. The problems a l l i nvo l ved man ipu ­
l a t i o n s on an a r r a y , L , which c o n t a i n e d 100 random
numbers. An a u x i l i a r y a r r a y , M, was used to
i n d i c a t e c e r t a i n t h i n g s about the o p e r a t i o n s wh i ch
had been per fo rmed L. A sample p rob lem f rom t h i s
s e t i s :

REARRANCE THE ARRAY SO THAT ALL ODD NUMBFS ARK AT THE BKCIMNINC.
PLACE ONES IN THE CORRESPONDING POSITIONS IN M.

W h i l e w o r k i n g on the p rob lems , the s u b j e c t
had a v a i l a b l e b o t h paper and p e n c i l , a n d a t e r m i n a l
connected to an i n t e r a c t i v e computer sys tem. For
each program he was g i v e n a p rob lem d e s c r i p t i o n
and the name o f a f i l e c o n t a i n i n g code to read in
and w r i t e ou t the random numbers. H i s i n s t r u c ­
t i o n s were to w r i t e and debug the program and to
" t a l k a l o u d " w h i l e d o i n g so. A v i d e o tape
r e c o r d e r was used to r e c o r d the s u b j e c t s b e h a v i o r .

T r a n s c r i p t i o n s o f the p r o g r a m - w r i t i n g p o r ­
t i o n s o f these p r o t o c o l s formed the b a s i c da ta
f o r the v e r i f i c a t i o n . An example o f p a r t o f one
o f these t r a n s c r i p t i o n s i s :

From the 38 segments wh ich were i d e n t i f i e d
as c o d i n g b e h a v i o r i n the 23 p r o t o c o l s , f o u r were
s e l e c t e d f o r m o d e l i n g by the p rogram.

881

A number of c r i t e r i a were used f o r s e l e c t i o n ,
i nc l ud ing the extent to which they were represent ­
a t i ve of o ther coding segments and t h e i r s u i t a b i l ­
i t y f o r e f f e c t i v e l y t e s t i n g the theory . For each
of these segments input to the program consis ted
of a statement of the p lan der ived from the p ro to ­
co l and s ta ted in the no ta t i on descr ibed prev ious­
l y . (For a complete d e s c r i p t i o n of how t h i s was
accomplished, see Brooks (1975).) For the seg­
ment cons i s t i ng of l i n e s 15-60 of the p ro toco l
j u s t presented, pa r t o f t h i s p lan appeared as:

Using t h i s segment or p ro toco l as an example,
it is a lso poss ib le to see how the plans were
der ived from the p r o t o c o l . In t h i s case, p lanning
began very soon a f t e r the sub jec t rece ived the
problem d e s c r i p t i o n ; I t takes place in l i n e s 8
through 12 of the p r o t o c o l , about 30 seconds
a f t e r the sub jec t received the problem d e s c r i p t i o n .
Since t h i s is the only i d e n t i f i a b l e p lann ing be­
hav ior seen in the p r o t o c o l , i t i s assumed tha t
p lanning was completed in t h i s segment and tha t
t h i s same plan was used w i thou t m o d i f i c a t i o n
throughout the w r i t i n g of the e n t i r e program.
This segment shows that the p lan c o n s i s t s , in p a r t ,
of loop ing through the a r ray , t e s t i n g each number,
and keeping a po in te r to the l a s t p o s i t i o n at
which a non-odd occurs . The subject 's comments as
he is w r i t i n g code in l i n e s 16 and 16 Ind i ca te
that the p lan a c t u a l l y cons is ts of keeping two
p o i n t e r s , one f o r the p o s i t i o n at which the next
odd is to be placed and one which goes through the
array p o i n t i n g at the next element to be t es ted .
F i n a l l y , from h i s comments in l i n e s 52-59 (not
shown) as he is checking over the program and from
the code he a c t u a l l y w r i t e s , it may be i n f e r r e d
t h a t , once he has found an odd number, he intends
to Increment the po in te r to the next odd, swap the
odd number w i t h the element po in ted to by the
po in te r to the next odd, and then set the cor res ­
ponding element to 1*

The product ion system takes the steps of
t h i s plan one by one, places them i n t o STM and
attempts to convert them i n t o code. A sample
of a t race of the product ion system on the plan
Just given i s :

The product ion system models behavior in two
respects . F i r s t , I t generates e s s e n t i a l l y the
same code, i n c l u d i n g e r r o r s , as does the sub jec t ;
the only d i f f e rences l i e in the areas o f v a r i a b l e
names and some s l i gh t d i f f e rences in the order of
code genera t ion .

Second, the product ion system uses knowledge
s t ruc tu res which correspond in s ize and general
o rgan iza t i on to those used by the sub jec t . An
example is the way in which IF statements are
generated. In the product ion system t h i s code is
generated w i t h 2 templates, one f o r the basic IF
statement and GOTO, and a second one, invoked
from w i t h i n the f i r s t , f o r the t e s t i n s i d e the
IF statement. Corresponding behavior in the
p ro toco l i nd i ca tes tha t the sub jec t a lso d i v ides
t h i s knowledge i n t o the same two u n i t s .

Asser t ions Made by the Model

The mode makes 3 general asser t ions about
coding behavior :

1. Coding knowledge is organized as a very la rge
number of unique plan elements, each of which
has associated w i t h i t the s p e c i f i c In forma­
t i o n fo r t r a n s l a t i n g i t I n t o code.

2. This t r a n s l a t i o n is accomplished by a symbol ic
execut ion process In wh ich , as each l i n e of
code is l a i d down, a recogn i t i on process
assigns I t an e f f e c t .

3. The In fo rmat ion about programming language
syntax used in l ay i ng down the code la
organized as a c o l l e c t i o n of smal l pieces of
knowledge, each of which spec i fy how to w r i t e
code f o r a des i red ac t i on or ope ra t i on .

The major support fo r these asser t ions comes
from the correspondence between the behavior of
the model and the behavior of the sub jec t in the
p r o t o c o l s . A d d i t i o n a l support fo r each of the
asser t ions comes from the f o l l ow ing analyses:

1. The aaser t lon about the s t r u c t u r e of coding
knowledge was f u r t h e r v e r i f i e d by es t ima t i ng
the number of new product ions tha t would be
necessary to code the plans f o r four a d d i t i o n ­
a l segments. I t was found tha t a d d i t i o n a l
product ions were necessary f o r each new p lan
and segment, and tha t the nunber of a d d i t i o n a l
product ions necessary d id not dec l ine as the
t o t a l cumulat ive s i ze o f the product ion set
grew. This is a s t rong i n d i c a t i o n of the
la rge amount of knowledge s p e c i f i c to each
p lan element tha t makes up a programmer's
knowledge of how to create code.

2. The asse r t i on about the r o l e of code c r e a t i o n
in symbolic execut ion was f u r t h e r supported
by asking an experienced FORTRAN programmer
to Judge whether symbolic execut ion was
v i s i b l e in the p r o t o c o l s . He was able to f i n d
i t in 33 of 35 segments of coding behav io r ,
i n d i c a t i n g tha t symbolic execut ion is a
ub iqu i tous fea tu re o f t h i s set o f p r o t o c o l s .

The "E lements Present In STM" are t h e
elements wh ich se rved as the i n v o k i n g c o n d i t i o n s
f o r the p r o d u c t i o n t h a t f i r e d o f f o n the 10 th
c y c l e o f the p r o d u c t i o n sys tem. NEW-CODE-3 i s
the a c t i o n p a r t o f the p r o d u c t i o n ; I t c o n s i s t s
of changes to be made to the c o n t e n t s of STM and
the o t h e r memory s t r u c t u r e s i n the sys tem.

882

3. To add support to the a s s e r t i o n about the
r e p r e s e n t a t i o n o f s y n t a c t i c knowledge, a n
e s t i m a t e was made o f the t o t a l number of
templates necessary to r e p r e s e n t c o m p l e t e l y
the s u b j e c t ' s knowledge o f FORTRAN syntax.
The importance o f t h i s number i s t h a t i t
i n d i c a t e s whether the template is an appro­
p r i a t e l y s i z e d u n i t f o r modeling syntax
knowledge. When an enumeration of the syntax
c o n s t r u c t i o n s , n o t observed i n t h e p r o t o c o l s ,
was used t o c o n s e r v a t i v e l y e s t i m a t e t h e t o t a l
number of templates needed the r e s u l t was 54,
s u g g e s t i n g an a b s o l u t e upper bound of no
more than 150. This f i g u r e is of approximate­
l y the c o r r e c t magnitude, i n d i c a t i n g t h a t the
template is of an a p p r o p r i a t e s i z e to r e p r e ­
sent s y n t a x knowledge.

I m p l i c a t i o n s f o r A r t i f i c i a l I n t e l l i g e n c e

Using P r o d u c t i o n s Systems to Model P a r a l l e l
Processes

One o f the c e n t r a l f e a t u r e s o f t h i s model i s
the use of a p r o d u c t i o n system as b o t h the c e n t r a l
c o n t r o l mechanisms and the p r i m r y knowledge
s t r u c t u r e . A n i m p o r t a n t q u e s t i o n i s whether t h i s
was an a p p r o p r i a t e choice. A primary c h a r a c t e r ­
i s t i c o f a p r o d u c t i o n system f o r modeling behavior
i s t h a t , a t a g i v e n p o i n t , the s e l e c t i o n o f the
n ext p i e c e o f b e h a v i o r i s made i n p a r a l l e l from
a l l the p o s s i b l e a l t e r n a t i v e s . Any s e q u e n t i a l
dependencies seen in the b e h a v i o r of a p r o d u c t i o n
system i s the r e s u l t o f a s p e c i f i c implemenatlon
and i s not a n i n h e r e n t c h a r a c t e r i s t i c o f the
c o n t r o l s t r u c t u r e i t s e l f . A s t r u c t u r e t h a t was
e s s e n t i a l l y d i f f e r e n t from a p r o d u c t i o n system
would s e l e c t b e h a v i o r v i a a sequence of d e c i s i o n s
t h a t was an i n h e r e n t p a r t of the c o n t r o l mechanism
s t r u c t u r e . To argue t h a t p r o d u c t i o n systems are
a p a r t i c u l a r l y good c h o i c e f o r r e p r e s e n t i n g
coding behavior r e q u i r e s t h a t t h e r e be some aspect
of t h e coding process which cannot be e a s i l y
r e p r e s e n t e d i n s e r i a l f a s h i o n .

I n t h i s case, a s t r o n g argument f o r e s s e n t i a l
p a r a l l e l i s m can be made from the r e t r i e v a l o f
knowledge about the a s s o c i a t i o n between p l a n
elements and code. One of t h e main f i n d i n g s of
t h i s study has been t h a t a programmer has a l a r g e
body of knowledge about how to code p a r t i c u l a r
p l a n elements. Since t h i s body i s s o l a r g e ,
s e r i a l processes i n s e a r c h i n g i t ought t o r e v e a l
themselves b y extremely l o n g r e t r i e v a l times f o r
i n f o r m a t i o n about how to code most p l a n elements,
perhaps on the o r d e r of s e v e r a l minutes. A d d i t i o n ­
a l l y , the p r o t o c o l s ought t o c o n t a i n some evidence
o f s e q u e n t i a l e l i m i n a t i o n o f unwanted i n f o r m a t i o n
u n t i l the c o r r e c t s o l u t i o n i s found. I n t h i s s e t
of p r o t o c o l s , once the s u b j e c t has a p l a n , coding
o f i t seems t o s t a r t almost immediately w i t h o u t
any u t t e r a n c e s which would i n d i c a t e t h a t the sub­
j e c t has t o expend e f f o r t t o f i g u r e out how t o
b e g i n . A d d i t i o n a l l y , w h i l e t h e r e are s e v e r a l
Instances in which the s u b j e c t considers a l t e r n a ­
t i v e methods o f doing coding, t h e r e i s n o evidence
o f a f i x e d , s e q u e n t i a l e l i m i n a t i o n o f unwanted
a l t e r n a t i v e s .

This evidence s t r o n g l y suggests t h a t the
search f o r coding i n f o r m a t i o n is made i n a

p a r a l l e l manner. While i t i s t r u e t h a t i t i s
p o s s i b l e to map a p a r a l l e l process onto a s e r i a l
model, b o t h e v a l u a t i o n and e x p l i c a t i o n of the
model can be accomplished more e f f e c t i v e l y when
the correspondence between the model and the
process is a c l e a r one. Given the p a r a l l e l
n a t u r e of the search process in t h i s case,
r e p r e s e n t i n g it w i t h a p r o d u c t i o n system is
p a r t i c u l a r l y a p p r o p r i a t e .

I m p l i c a t i o n s f o r the Use o f B a c k t r a c k i n g

One of the most common ways to o r g a n i z e a
problem s o l v i n g system is as a b a c k t r a c k i n g
subgoaler. Systems w i t h t h i s o r g a n i z a t i o n a t t e m p t
to s o l v e problems by r e d u c i n g them to a s e t of
subproblems, whose s o l u t i o n imply the s o l u t i o n
t o the I n i t i a l problem. When the system f a l l s a t
a subproblem which i t has attempted t o s o l v e , i t
r e t u r n s or b a c k t r a c k s t o some p r i o r , s u c c e s s f u l
s t a t e . Systems o f t h i s type v a r y c o n s i d e r a b l y
a l o n g such dimensions as the s t r a t e g y used to
generate and s e l e c t subgoals, the amount and k i n d
o f i n f o r m a t i o n r e t a i n e d from f a i l u r e s , and the
p o i n t t o which r e t u r n from f a i l u r e occurs (N i l s s o n ,
1971; Newell & Simon, 1972).

While the model presented here is n o t
o r g a n i z e d a s a b a c k t r a c k i n g subgoaler, i t i s o f
i n t e r e s t t o i n q u i r e what r o l e b a c k t r a c k i n g p l a y s
i n coding b e h a v i o r . I n i t s p u r e s t form, back­
t r a c k i n g i n programming would c o n s i s t o f complete­
l y abandoning some piece o f code b y e r a s i n g i t o r
c r o s s i n g i t out and b e g i n n i n g again a t some
e a r l i e r p o i n t , up to which the code was known to
b e c o r r e c t . I n these p r o t o c o l s , t h i s type o f
b e h a v i o r o c c u r r e d in o n l y one problem. A f a r
more common occurrence, t a k i n g place in 21 t o 23
of the p r o t o c o l s , was t h a t the u n s a t i s f a c t o r y
code i s m o d i f i e d b y i n s e r t i o n o f l i n e s , c r o s s i n g
o u t , changing names, e t c . , u n t i l i t i s c o r r e c t e d .
I n the p r o d u c t i o n system t h i s behavior i s
accomplished by p r o d u c t i o n s which hsve as t h e i r
i n v o k i n g c o n d i t i o n s the e f f e c t s t h a t have been
assigned to the u n s a t i s f a c t o r y code and w h i c h , as
t h e i r e f f e c t s , modify the e x i s t i n g code.

The p o i n t to be emphasized about t h i s be­
h a v i o r is t h a t , when a f a i l u r e t o generate c o r r e c t
code occurs, as much of the o l d s o l u t i o n a t t e m p t
as p o s s i b l e is saved and reused. This is in
s t r o n g d i s t i n c t i o n to systems such as GPS
(E r n s t & N e w e l l , 1969) and PLANNER (Hewitt,1972)
which, when f a i l u r e o c c u r s , d i s c a r d the o l d
s o l u t i o n a t t e m p t e n t i r e l y . The c o n t r a s t i n g way
i n which the s u b j e c t and the model i n t h i s study
behave has the e f f e c t r e d u c i n g the number of
goals attempted a t any one l e v e l since the i n f o r ­
mation o b t a i n e d from a t t e m p t i n g one goal is
a v a i l a b l e in the form of w r i t t e n code f o r use by
successive g o a l a t t e m p t s . The goal " t r e e " thus
becomes more of a s t r a i g h t l i n e . G e n e r a l i z i n g
from t h i s , human computer programming suggests
t h a t a paradigm o f "patch and move f o r w a r d " i s
b e t t e r s u i t e d t o some tasks than the wide-spread
" b a c k t r a c k and s u b g o a l . "

883

Directions for Further Work

The model presented here covers only the
coding process and is, strlckly speaking, applic­
able only to this one subject. Future work should
attempt to broaden it both in terms of the process­
es covered and generality for other individuals.
Some of the research questions ought to be:

1. How are plans created by human programmers?
In particular, is the creation of new plans
an active problem solving process or does it
involve primarily retrieval of stored plan
Information?

2. To what extent and in what ways does the
programmer's knowledge of the programming
language he is using affect the plans he
uses?

3. Is the generation of code by symbolic execu­
tion an invariant across programmers and
situations or are there other methods of
coding that human programmers use.

Not only do answers to these questions re-
present intriguing problems in their right, but
the answers to them may prove useful in applied
work on improving software technology.

Footnotes

The elements of the Newell theory t h a t
are used here are:

1. Development of plans by h e u r i s t i c
search c o n s i s t i n g of successive function­
al e l a b o r a t i o n in which f u n c t i o n a l
s p e c i f i c a t i o n s invoke s t r u c t u r e s which,
i n t u r n , require f u r t h e r functions.

884

Generation of code by a symbolic execution
process i n which f i r s t , code i s l a i d down
and then consequences are generated from i t .
The consequence generation produces a large
number of subproblems.

Solution of these subproblems by a r e c o g n i t i o n
process. Together w i t h symbolic execution,
t h i s implies goal c o n t r o l dependent on the
problem s t r u c t u r e , rather than v i a a goal
stack.

Bibliography

Boehm, B. W. Software and I t s Impact: A
Qu a n t i t a t i v e Assessment. RAND Corp. 1972.

Brooks, R. A Model of Human Cognitive
Processes in W r i t i n g Code f o r Computer
Programs. Doctoral d i s s e r t a t i o n . Psychology
Dept. Carnegie-Mellon U n i v e r s i t y , 1975.

Ernst, C. W. & Newell, A. GPS: A Case Study
in Generality and Problem Solving, Academic
Press, New York, 1969.

Freeman, P. & Newell, A. A Model f o r
Functional Reasoning in Design. Proc.
International Joint Conference on Artificial
Intelligence, 1971.

Hewitt, C. Description and T h e o r e t i c a l
Analysis of PLANNER. Doctoral D i s s e r t a t i o n ,
Massachusetts I n s t i t u t e of Technology, 1971.

Newell, A. Notes on the Psychology of
Programming. Computer Science Department
Carnegie-Mellon U n i v e r s i t y (forthcoming).

Newell, A. & Simon, H. A. Human Problem
Solv ing , P r e n t i c e - H a l l , New York, 1972.

Nilason, N. J. Problem Solving Methods in
Artificial Intelligence, McGraw-Hill, New
York, 1971.

Simon, H. A. The H e u r i s t i c Compiler, in
Simon, H. A. & Sikloesy, L. (Eds.) Represen­
tation and Meaning, P r e n t i c e - H a l l , Englewood
C l i f f s , New Jersey, 1972.

1.

2.

3.

A.

5.

6.

7.

8.

9.

2.

3.

[1]

