Section 12
Artlticial

Psychol ogi cal
Intelligence

Aspects of

A MDEL OF HUVAN COGNI Tl VE BEHAVI OR
| NVIRI T1 NG CCPE FCR GOMPUTER PROGRAVE

Ruven Brooke
Department of Information and Conputer Science

University of California - Irvine
lrvine, CA 92664
US A

Abstract

A theory of hunman cognitive processes i n
writing code for conputer prograns i s presented
whi ch views behavior in terns of three processes:
under standi ng, planning, and coding. Using this
theory, a nmodel of the codi ng process has been
creat ed whi ch reproduces the code generation
behavi or of an experi enced, hunan programmer
wor ki ng on a set of 2 3 FORIRAN probl ens. The
nodel is stated as a conputer program organi zed
as a production system

A Theory of Hunan Conput er Progranm ng Behavi or

Programmng i s an activity which i s engaged
in, inone formor another, by nore than a mllion
peopl e (Boehm 1972). Surprisingly, research on
hunan behavior i n programmng i s very sparse and
consi sts mainly of neasurenents of progranmer
performance. The research presented here takes a
di fferent approach than these previous studies.

I nstead of attenpting t o neasure individual

vari abl es associ ated wi t h programmer behavior, it
presents a theory of the programwri ti ng process.
The theory uses a set of ideas devel oped by All en
Newel | (1974) [1] and lies within the franmework
of the information processi ng approach t o hunan

probl emsol ving (Newell & S non, 1972).
Before presenting the theory itself, a
necessary prerequisite is definition of the class

of tasks for which the theory is intended.
conputer programmng has been spoken of as though
it were one task. I n fact, a nunber of different
tasks ar e included under this headi ng; they
include, anong nany others, writing specifications
for progranms, writing prograns given a set of
specifications, debuggingprograns t hat anot her
programmer has written, and writing documentation
for prograns. The particular task that has been
selected for the focus of this theory is one In
whi ch the programmer is given a description of a
function, or set of functions, which the program
i s toperform The programmer nmust then find a
nmethod to performthe function and inplenment the
nethod In the programmng | anguage. As a worKking
situation, it i s one which occurs by Itself
frequently I n scientific and educational programm
ing environments and as a part of al nost every

ot her programmng task. Limtations onresearch
time and resources prevent inclusion of situations
inwhich different parts of the task are performed
by different people or of situations involving
debuggi ng behavi or, though there are no obvi ous
limtations of the theory which prevent doing so
in the future.

Though

878

Structure of the Theory

The theory consists of three basic processes:
under st andi ng, pl anni ng, and codi ng, though the
work presented here focuses only on coding. Each
of these processes occurs one or nore tines in
every instance of the programmng task. The
operati ons perforned by each of these processes
and the way in which they invoke each ot her are
described in the follow ng section.

Under st andi ng

Wen a problem solver i s presentedwith a
problem he has a vari ety of sources of |nfornma-
tion, both internal and external, available about
I t ; theseincludehisgeneral "world" know edge
about the general type of problemat hand,
reference works such as programm ng | anguage
manual s, and | ast, but not |east, witten or
spoken probl emdi recti ons - Before he can actual ly
start work on the probl em he nust use these
| nformation sources to build representations of
the basic elenents that the problem deals with
and of their properties. Specifically, he nust
have representations of the initial state of
t he problem the desired final state or goal, and
one or nore operations which he can apply, appro-
priately, to begin the transformation on the
initial state. The process of building these
representations is referred to as "understanding"
in this theory.

Pl anni ng

Wien the building of representations that
conposes the understandi ng process is conplete,
t he second of the three processes, planning, is
i nvoked. The type of pl an produced by it can best
be described as a method for sol vi ng the program
mng problem it consistsof specificationsof the
way in which information fromthe real world is
to be represented within the program and of the
operations to be performed on these represent a-
tions in order to achieve the desired effects
of the program These nethods are used as schenas,
or outlines, to guide the writing of the actual
code i n nuch the sane way as plans are used t o
guide solutions of logic problems by G5 (Newell
and S non, 1972). The theory asserts, based on
a sufficiency argunent, that such a plan exists
for nearly every programmng problemwhich fits
wi thin the basic task definition.

Pl ans are expressed in a functi onal |anguage
of the sort investigated by Newel| and Freenan
(1971); functions specified in the |anguage
i nvoke structures which, in turn, require other
functions. This type of behavior nay be character-
istic of the whole class of design probl ens.

Anal ogous concepts are the plans used In the
planning version of @S for the logic task (Newell
& Simon, p. 428, 1972) and the |anguage accepted
by the Functional Description Compiler routine

of the Heuristic Compiler (Simon, 1972).

Planning does not take place as a single
operation; instead, a process of step-wise refine-
ment takes place in which step mkes part of the
plan nore detailed. The terminating condition
for the refinement is that some (reasonably large)
part of the plan is sufficiently detailed so
that the programmer feels that he knows how to
translate it into code, even though al | of the
details of the code are still unknown. At that
point the final process in thewriting of programs,
coding, takes over. The coding process operates
on a piece or part of a plan until either code
I's produced or some criterion i s met which causes
the coding process to report failure, when failure
occurs information is passed back to the planning
process which again attempts to produce a codeable
plan.

Codi ng

The third of the three processes in the
theory is coding. For human programmers, the
basic cycle for the generation of code consists
of using the plan to select and write a piece
of code, assigning an effect or action to the
code that has been written, and comparing the
effect, or action, to the stipulations of the
plan. The results of this comparison are used
to select and write mre code or to change the
code that has beenwritten; inturn, aneffect
s assigned to this new code which is conpared to
the plan. This cycle continues until the cumla-
tive effect of the code meets the requirements of
the plan or until some condition, such as effort
expenditure, is met which indicates that the piece
of plan is not codeable.

The effects that are assigned to code are
based on the differentiations among the data that
the programmust actually make in order to acconp-
l'ish its purpose. Consider as an example a pro-
gram for printing all the odd numbers in a set of
integers. The programnust differentiate between
odd and even numoers in order to perform this

task. An effect that could be assigned to a line
of code in this program m ght be " i f the nunber
is odd, this branches to statement 50," a state-

ment which uses the information about the odd-even
distinction. As mre lines of code arewritten,
their effects are accumulated in a mnner which
al so makes wuse of these differentiations; thus,
the effects,"this loops through al | the numbers"
and " i f the number i s odd, branch to statement
50," might be combined to give "this tests each
number to see i f it's odd." Wen effects of this
type are assigned to whole segments to code, the
result is that the code is executed with symbols

such as "odd number" replacing the real data;
hence, the whole process has been named "symbolic
execution."

These effects are expressed ina functional
| anguage. It resembles closely the language
used to express plans, with the major difference,
that the actions stated are ones that have

879

actually beenachieved rather than ones which are
intended. In protocols of programmng behavior,
this distinction between planning statements of
intent and coding statements of effect appears
clearly enough so that it my be used to identify
which of the two processes is taking place at a
given point.

An example of a complete symbolic execution
cycle for the problemjust mentioned mght start
with the plan element, "test each number to see
ifit'sodd " For a FCRIRAN program, the program
mer would begin by writing DO 10 1-1,100 and
assigning it theeffect, "this loops throughal |
the numoers." Given this effect and the plan,
the programmer might next write IF(L(I)/2*2 NE
L(1)) GO TO 20 and then assign it the effect,
"thistests whether it's odd and goes to 20 if it
is." Finally, after closing the DO loop by writing
10 CONTINUE, the programmer woul d summarize the
effect of al | threelinesas "this [oops through
al |l the numbers and tests each one to see If it"'s
odd." Since this mtches the plan element, pro-
gramwriting would proceed to the next plan
el ement.

An alternative possibility in this examle
il lustrates another aspect of symbolic execution.
Suppose the programmer had known only a test for
even parity. Since it was the only parity test
available, he mght have writtenlIF(L(I)/2*¥2 EHQ
L(1)) and assigned to it the effect, "this tests
whether i t' s even." Noting that the plan requires
the opposite effect, he would then alter ".EQ"
to ".NE" to obtain the test for odd parity. The
general principle of which this is an example is
that confronted with erroneous or inappropriate
code, the symbolic execution process attempts to
patch or modify it to obtain the desired effect.
This patching or modifying behavior is one of the
maincharacteristics that distinguishsymbolic
execution fromthe sort of goal tree building and
backtracking behavior seen historicallyinpro-
grams such as the Logic Theorist (Newell and
Simon, 1972) and,nore recently, In systems such as
PLANNER (Hewitt, 1971). These systems rely heavily
for problemsolving power on the ability to back-
track to a previous, successful position: back-
tracking is preferred over the creation of new
subgoal s. In symbolic execution, on the other
hand, attempting to modify or add on to what had
already been done takes precedence, and backtrack-
ing is an Infrequent event.

VWhen backtracking does take place, |t my
occur at several levels. Inadditionto attempting
to code the plan element in an alternative way,
the programwriter my decide that the plan is at
fault. Wen this happens, a return is nade to the
planning process, and an attempt is nmade to find
a plan, or piece of plan, which is easier to code.
This new attempt in planning my even require a
return to the understanding process toreinterpret
the problem If the understanding process is
considered to be a "top" level process and coding
process a "bottom" level one, then this ability
to return to the planning and understanding process
represents a "hottomup" process, and both bottom
up and top-down processes take place in programmng.

A Model of Coding

Wth this theory as a basis, a nore detailed
model of the coding process has heen constructed.
This theory is described completely in Brooks
(1975) and is summarized here. The model is
intended to reproduce certain characteristics of
the behavior seen in protocols of a programmer
"thinking aloud" whilewritingaseries of short
programs i n FORTRAN These characteristics
Include the order and sire of unit for code gen-
eration. The nodel is stated as conmputer program
in a dialect of the LISP programmng |anguage.
The structure of the model is based on the struc-
ture for humn problem solving systems presented
and defended by Newell and Sinon (1972). It
consists of a short-term menory (STM and a |ong-
termnmemory (LTM; the LTM consists of a produc-
tionsystemand two other structures, MEAN NGS
and QIE

SIM is presumed to have a fixed capacity of
a smal | nunber %Iess than 20) of chunks or sym
hols, each of which can be used to access informa-
tion of arbitrary size and complexity in LTM The
slots are ordered so that introduction of new items
at one end causes ol d ones to be lost off the
other, a process analagous to one type of human
forgettingbehavior.

In addition to the introduction of new items
two other processes, Item modification and
rehearsal, alter the contents of SIM [tem
modi fication consists of updating or adding to the
information in an itemalready in SIM as contrast-
ed with the addition of an itemcontaining entirely
new i nformation. Rehearsal takes an item from the
mddle or end of SIM and places It at the begin-
nidnglso that it will not be bunped of f the end
an 0st.

The most important structure in LTMis the
production system A production system consists
of sets of pairs of conditions and actions to be
performed when the conditions are met. An aﬁpro-
priate decision rule is enployed to insure thnat
only one aet of actions are performed at a time.
Executing t he actions results in some change i n
the state of the world so that aa the system oper-
ates different conditions are met and different
actions are invoked. MNone of the actions involve
explicit branching; rather, all control i s acconp-
lished through differences in the meeting of cond-
itions and the execution of associated actions.

The theory asserts that a production system
Is the min internal control mechanism for deter-
mning the course of problemsolvingand the min
know edge structure. An extensive defense of the
esuitability of this particular control structure
for modeling human behavior is given in Newell and
Simon (1972, p. 804). The conditions for the
production systemin this theory are the presence
or absence of certain items in SIM The condi-
tions can describe items uniquely or they can be
stated in terms of general classes of items. Dis-
junctive or conjunctive specification of conbina-
tions of Items are also possible. An exanple of
aconditionis:

“any itemwhich contains the word, PLAN
BELEMENT, and t he unique itemwhichi s a
pointer t o MEAN NGS. "

880

|f SIM contains items which neet that specifica-
tion, then the actions associated with it would be
invoked. An exanple of a set of actions mght be:

"Rehearse the Itemwhich contains PLAN
ELEMENT and t he Itemwhich |'s apointer to
MEAN NGS. Replace PLANEHEMENT | n t he first
itemby QLD PLAN ELEMENT. "

Other Long-termMenory Structures

In addition to the production system the model
makes use of two other long-termnenory structures.
The first of thetwo i s used for storage of the
body of Information about the program that gets
built u? as thewriting of code proceeds. Sone of
this informationi s contained i nthe code Itself,
but much of | t , such as the meanings of variables
and | abels and the effects of pieces of
code, cannot be retrieved fromthe written code
alone and is used over nuch too long a time period
for It to remin in SIM at least in an unencoded
form Because of the problem of dynamcally adding
information toa production system in the program
thisinformationis contained ina structure out-
side the production systemcalled MEAN NGS. MEAN
INGS | s organized as a set of attribute-value pairs,
one set for each variable or expression. Exanples
of the attributesinclude the TYPE of the express-
il on - pointer, label, array, etc. - and t he NAME
that is actually used for I't i nthe FORTRAN pro-
gram Additionof informationt o MEAN NGS and
retrieval fromit are accomplished by two special
functions, NEVWEAN NG and GETMEANLNG which ar e
called by the production system

The third major LTM knowi edge structure in
additiont otheproductionsand MEANNGS, GE, i S
actually information about how to access an
external menory, the code that the programmer has
already written. It Isquitelikely that very
little of the actual code remains sccessiblei nLTM
once it has beenwritten out on paper; when the
subject In this study wanted to rewrite or reuste
ﬁieces of code, longer than a [ine or so, that he
ad already written, he was almost never able to
recal | themdirectly frommenory. Any use, modifi-
cation or correction to code which has been written
mist therefore retrieve the code from the paper
external menory; and the LTMnust contain the
information necessary to performthe retrieval.

The GXE structure 1 n LTMcontslns this I nformation.
Since no experimental data were available on how
subjects actually organize this informationin
menory, asimplifiedstructure for GE has been
assumed; it is always searched | inearly, nost

recent code first,

Know edge Representations in the Mdel

The preceding section describes the basic
know edge structures of the model. The following
section describes the way knowledge is represented
withinthese structures.

The Pl an

According to this theory of programmng, a
plan consists of a sequence of operations which
must be performed in order to achieve the desired
effect of the program In the model, a plan is
represented basically as a single [ist, each item
of which is a single operation of the plan. A
production places these items one at a time into

STM for coding. In some situations It Is necessary
to indicate that a group of these Items is to be
performed together; examples might be to show that
all the Items In the group belong Inside the same
loop or that they are part of the same branch of

a conditional. For this purpose, special marker
elements, somewhat like BEGIN and END in ALGOL, are
provided which may be placed before and after sets
of Items to Indicate that they belong together in
a group.

In the protocols a single, functional lang-
uage is used to talk about both plans and the
effects of pieces of code. This Is reflected
within the model by using a single notational
system to represent both. The general form that
plan elements expressed in this notation take Is:

<function to be performed> <operands>

A few examples of actual plan elements, with
explanations, are given below:
». ORDER LIBT-OF-NUMBERS

"Ordet the List of numbers.™

b, BNANRCH-TF (EVEN-PARITY; (LIST-OFP-NUMRBERS; POINTER(NEXT-ODD)}}.
GOTQ LOJP--END

“If the slowment In list of numbers vhich {¢ poitnted to by the
pointer for the naxt odd nusber Lts even, go te the and of the
109’)“

. YIND-EXISTENCE ((FIRST POSITIVE); LIST-OF-NUMBERS) REGIR!
{OTHERWISE)
BET CONRESPONDING-EV.EMENT (AUX [LEARY ARRAY); VAKIABLE (LOOP-INDEX)
| 1
END! (FIMD-EXISTENCE-LOOP-THROUGH)

"Loop through the list of numbers until the firsr positive is
found. 1If a number 1a not pusitive, then set the corresponding
slement of the auxlllary array ta the valus of the loop index."

The elements beginning with BEGIN! and END!
are the special marker elements mentioned pre-
viously.

A final comment about this notation as
applied to plans is that it makes no distinction
between plan elements which lead to the generation
of actual program code; for example, "set the
pointer equal to the index of the first odd
number found," and those which only result in the
establishment of data representations, such as,
"create a pointer to keep track of the location
of the first odd number."”

Templates

Since the plan itself is presumed to be
language-independent, the information about the
syntax and semantics of the language in which the
code is actually written must be contained in the
production system. For syntactic information
this is done by means of structures called coding
templates which are formally equivalent to a
Backus-Normal form definition of the language,
using very high-level primitives and very few
recursion slots. Each template consists of a
small segment of code - at most 3 or 4 lines -
specified as a mixture of three types of informa-
tion: actual code elements, descriptions or speci-
fications of code elements which are to be insert-
ed in the code, and parameter slots which can be
replaced by descriptions or specifications at the
point when the template is actually used. The
descriptions of code elements may. In fact, be
another template. An example of a template is:

881

PO “Llabed for (paramcter 1) doup” “varlable Tor loop {ndex™
= "Lbagine at (paramcter ?) ioop™, "evdw ot (pnrameter 37

Verification of the Model

The model was verified using a data base
consisting of protocols of the behavior of an
experienced FORTRAN programmer writing a set of 23
short programs. The problems all involved manipu-
lations on an array, L, which contained 100 random
numbers. An auxiliary array, M, was used to
indicate certain things about the operations which
had been performed L. A sample problem from this
set is:

REARRANCE THE ARRAY SO THAT ALL ODD NUMBFS ARK AT THE BKCIMNINC.
PLACE ONES IN THE CORRESPONDING POSITIONS IN M.

While working on the problems, the subject
had available both paper and pencil,and a terminal
connected to an interactive computer system. For
each program he was given a problem description
and the name of a file containing code to read in
and write out the random numbers. His instruc-
tions were to write and debug the program and to
"talk aloud" while doing so. A video tape
recorder was used to record the subjects behavior.

Transcriptions of the program-writing por-
tions of these protocols formed the basic data
for the verification. An example of part of one
of these transcriptions is:

82; REARRANGE THE ARRAY

£3:50 THAT ALL NIMBERS

ShtANE AT THE BECTNNTN

$5:PLACL- OH, 50 THAT AL!. ODD BUMBERS ARFE AT THE BECIMNING
S&:PLACE ONES 1IN THE CORKESPONDING POSITIONS IN M
S7tALRICHT, THAT SWOWLT Rh EASY ENDUCH

SH:CO THROULH THF ARRAY

SY:DETEXMINE }F A NUMRER'S OPD OR NOT

S10:HAVE A PPINTER TD THE LAST PLACE WILLKE TIEME'S ROT AN
£10:70- 1F IT'S RICAT AT THE BEGINNING THEN YOU KNOW HOW FAR YOU HAVE
$12:0N ODL AND HOW FAR YOU HAVE ON EVEN

$13:50,POINTER ONE

S04 FDINTER OIKF TS & POINTER TD

ALS: [WREITES PTRL)

S16:1T7T'S A POINTER FOR HEXT ODD

S§17:NEXT QLD

518:AND TWE OTHER ONF [S JUST GOING TO GO TUROUGH THE ARRAY 80
S19:17LL JUST WEI!TE THIS WEXT GDD

S20:START QUT AND

AZL: JWRITES NEXIODRDs]|

S22:POSITION OME LET'S JUST SAY

$23:00 18 1 BYUAL

§24:LET'S MAKE THIS A 29

A25:[WRITES DO 29 I=]_ 1P}

S26:1 EQUALS ONE TO 139

$27:7F THE TMING 1S ODD -1F

The code that the subject wrote in the prob-
lem from which this transcription was taken was:

NEXTODD={
DO 1¢ I=1,10¢
IF (L{I)/2%2.EQ.L(1))GOTO 1§
NEXTODD=NEXTODD+1
K=L(I)
L(1)=L(NEXTODD)
L {NEXTODD) =K
1¢ CONTINUE

From the 38 segments which were identified
as coding behavior in the 23 protocols, four were
selected for modeling by the program.

A number of criteria were used for selection,
including the extent to which they were represent-
ative of other coding segments and their suitabil-
ity for effectively testing the theory. For each
of these segments input to the program consisted
of a statement of the plan derived from the proto-
col and stated in the notation described previous-
ly. (For a complete description of how this was
accomplished, see Brooks (1975).) For the seg-
ment consisting of lines 15-60 of the protocol
just presented, part of this plan appeared as:

{CREATE (POINTER (MNEXT OLD)) (WECINNING (LISY OF WUMBERS)))
(LOOP- THROUCH {LTST OF NUMBERS))
CLP{{EVEN PARLTY)
(ARRAY- ELEMENT(1.IS5T OF NUMBERS))
(VAR IARLE{LOOP- iMDEX))))
(GOTO LOOM-END))
4. (BEGIN!{NOT-EVEN-PARITY))

-
-

Using this segment or protocol as an example,
it is also possible to see how the plans were
derived from the protocol. In this case, planning
began very soon after the subject received the
problem description; It takes place in lines 8
through 12 of the protocol, about 30 seconds
after the subject received the problem description.
Since this is the only identifiable planning be-
havior seen in the protocol, it is assumed that
planning was completed in this segment and that
this same plan was used without modification
throughout the writing of the entire program.

This segment shows that the plan consists, in part,
of looping through the array, testing each number,
and keeping a pointer to the last position at
which a non-odd occurs. The subject's comments as
he is writing code in lines 16 and 16 Indicate
that the plan actually consists of keeping two
pointers, one for the position at which the next
odd is to be placed and one which goes through the
array pointing at the next element to be tested.
Finally, from his comments in lines 52-59 (not
shown) as he is checking over the program and from
the code he actually writes, it may be inferred
that, once he has found an odd number, he intends
to Increment the pointer to the next odd, swap the
odd number with the element pointed to by the
pointer to the next odd, and then set the corres-
ponding element to 1*

The production system takes the steps of
this plan one by one, places them into STM and
attempts to convert them into code. A sample
of a trace of the production system on the plan
Just given is:

Cycle 16.

Elewents present in STM:
1. {NEW-CODE®ANY®)

2. (PLAN-ELEMENTH*REST®)
3. (CODE)

4. (MEANINCS)

Action performed:
NEW-CODE~ 3

The "Elements Present In STM" are the
elements which served as the invoking conditions
for the production that fired off on the 10th
cycle of the production system. NEW-CODE-3 is
the action part of the production; It consists
of changes to be made to the contents of STM and
the other memory structures in the system.

882

The production system models behavior in two
respects. First, It generates essentially the
same code, including errors, as does the subject;
the only differences lie in the areas of variable
names and some slight differences in the order of
code generation.

Second, the production system uses knowledge
structures which correspond in size and general
organization to those used by the subject. An
example is the way in which IF statements are
generated. In the production system this code is
generated with 2 templates, one for the basic IF
statement and GOTO, and a second one, invoked
from within the first, for the test inside the
IF statement. Corresponding behavior in the
protocol indicates that the subject also divides
this knowledge into the same two units.

Assertions Made by the Model

The mode makes 3 general assertions about
coding behavior:

1. Coding knowledge is organized as a very large
number of unique plan elements, each of which
has associated with it the specific Informa-
tion for translating it Into code.

2. This translation is accomplished by a symbolic
execution process In which, as each line of
code is laid down, a recognition process
assigns It an effect.

3. The Information about programming language

syntax used in laying down the code la
organized as a collection of small pieces of
knowledge, each of which specify how to write
code for a desired action or operation.

The major support for these assertions comes
from the correspondence between the behavior of
the model and the behavior of the subject in the
protocols. Additional support for each of the
assertions comes from the following analyses:

1. The aasertlon about the structure of coding
knowledge was further verified by estimating
the number of new productions that would be
necessary to code the plans for four addition-
al segments. It was found that additional
productions were necessary for each new plan
and segment, and that the nunber of additional
productions necessary did not decline as the
total cumulative size of the production set
grew. This is a strong indication of the
large amount of knowledge specific to each
plan element that makes up a programmer's
knowledge of how to create code.

The assertion about the role of code creation
in symbolic execution was further supported
by asking an experienced FORTRAN programmer

to Judge whether symbolic execution was
visible in the protocols. He was able to find
it in 33 of 35 segments of coding behavior,
indicating that symbolic execution is a
ubiquitous feature of this set of protocols.

3. To add support to the assertion about the
representation of syntactic know edge, an
estimate was made of the total number of
templ ates necessary to represent completely
the subject's know edge of FCORTRAN syntax.
The importance of this number is that it
indicateswhether the template is an appro-
priately sizedunit for modeling syntax

knowl edge. Wen an enumeration of the syntax
constructions, not observed in the protocols,
was used to conservatively estimate the tot al
number of templates needed the result was 54,
suggesting an absolute upper bound of no

mre than 150. This figure is of approximate-
'y the correct magnitude, indicating that the
template is of an appropriate size to repre-

sent syntax knowl edge.

Implications for Artificial Intelligence
Using Productions Systems to Model Parallel
Processes

e of the central features of this model is

the use of a production systemas both the central
control mechanisms and the primry knowl edge
structure. An important question is whether this
was an appropriate choice. A primary character-

i stic of aproduction systemfor modeling behavior
is that, at a given point, the selection of the
next piece of behavior is nade in parallel from
all thepossiblealternatives. Any sequential
dependencies seen in the behavior of a production
systemis the result of a specific implemenatlon
and is not an inherent characteristic of the
control structure itself. A structure that was
essentiallydifferent froma production system
would select behavior via a sequence of decisions
that was an inherent part of the control mechanism
structure. To argue that production systems are
aparticularly goodchoice for representing

coding behavior requires that there be some aspect
of the coding process which cannot be easily
represented inserial fashion.

In this case, a strong argument for essential
parallelism can be made from the retrieval of
knowl edge about the association between plan
el ements and code. (One of the main findings of
this study has been that a programmer has a |arge

body of know edge about how to code particular
plan elements. Since this body is so large,
serial processes in searching it ought to reveal

themselves by extremely long retrieval times for
information about how to code most plan elements,
perhaps on the order of several minutes. Addition-
ally, the protocols ought to contain sone evidence
of sequential elimination of unwanted information
until the correct solution is found. In this set
of protocols, once the subject has a plan, coding
of It seems to start almost immediately without
any utterances which would indicate that the sub-
ject has to expend effort to figure out how to
begin. Additionally, while there are several
Instances in which the subject considers alterna-
tive methods of doing coding, there is no evidence
of a fixed, sequential elimination of unwanted
alternatives.

This evidence strongly suggests that the
search for coding information is made in a

883

parallel mnner. While it is true that it is
possible tomp a parallel process onto a serial
model, both evaluation and explication of the
model can be accomplished more effectively when
the correspondence between the model and the
process is a clear one. Given the parallel
nature of the search process in this case,
representing it with a production systemis
particularly appropriate.

I'mplications for the Use of Backtracking

One of the most common ways to organize a
problem solving systemis as a backtracking
subgoaler. Systems with this organization attempt
to solve problems by reducing them to a set of
subproblems, whose solution imply the solution
to the Initial problem Wen the system falls at
a subproblemwhich it has attempted to solve, it
returns or backtracks to some prior, successful
state. Systems of this type vary considerably
along such dimensions as the strategy used to
generate and select subgoals, the amount and kind
of informationretained fromfailures, and the
point towhichreturnfromfailureoccurs (Nilsson,
1971; Newell & Simon, 1972).

While the model presented here is not
organi zed as a backtracking subgoaler, it is of
interest toinquirewhat role backtracking plays
in coding behavior. In its purest form back-
tracking in programmng would consist of complete-
| y abandoning some piece of code by erasing it or
crossing it out and beginning again at some
earlier point, up to which the code was known to
be correct. In these protocols, this type of
behavior occurred in only one problem A far
more conmon occurrence, taking place in 21 to 23
of the protocols, was that the unsatisfactory
code i s modified by insertionof lines, crossing
out, changing names, etc.,until it is corrected.
In the production systemthis behavior is
accomplished by productions which hsve as their
invoking conditions the effects that have been
assigned to the unsatisfactory code and which,
theireffects, modify the existing code.

as

The point to be emphasized about this be-
havior is that, when a failure to generate correct
code occurs, as nmuch of the old solution attempt
as possible is saved and reused. This is in
strong distinction to systems such as &S
(Ernst & Newell, 1969) and PLANNER (Hewitt, 1972)
which, when failure occurs, discard the old
solution attempt entirely. The contrasting way
inwhich the subject and the model in this study
behave has the effect reducing the number of
goals attempted at any one level since the infor-
mation obtained from attempting one goal is
available in the formof written code for use by
successive goal attempts. The goal "tree" thus
becomes more of a straight line. Generalizing
from this, human computer programm ng suggests
that a paradigm of "patch and nove forward" is
better suited to some tasks than the wide-spread
"backtrack and subgoal."

Directions for Further Wak 2. Generation of code by a symbolic execution
process i n which first, code i s laid down

The nodel presented here covers only the and then consequences are generated fromi t .
coding process and is, strlckly speaking, applic- The consequence generation produces a large
able only to this one subject. Future work shoul d number of subprobl ens.
attenpt to broaden it both in terns of the process-
es covered and generality for other individuals. 3. Solution of these subproblems by a recognition
Sone of the research questions ought to be: process. Together with symbolic execution,

this implies goal control dependent on the
1. Huw are plans created by human progranmmers? problemstructure, rather thanvia a goal
In particular, is the creation of new plans stack.

an active problemsol ving process or does it
involve primarily retrieval of stored plan

| nf or mati on? Bi bl iography
2. To what extent and in what ways does the 1. Boehm B. W Software and | t s | mpact: A
programrer' s know edge of the programm ng Quantitative Assessment. RAND Corp. 1972.
| anguage he is using affect the plans he
uses? 2. Brooks, R AMdel of Himan Cognitive
Processes inWiting Code for Conputer
3. Is the generation of code by symbolic execu- Programs. Doctoral dissertation. Psychology
tion an invariant across programmers and Dept. Carnegie-Mellon University, 1975,
situations or are there other methods of
coding that hunan programmers use. 3 Ernst, C W & Newell, A GPS A Case Sudy
in Generality and Problen Solving, Academ c
Not only do answers to these questions re- Press, New York, 1969,
present intriguing problems in their right, but
the answers to themnay prove useful in applied A Freeman, P. & Newell, A A Mdel for
work on inproving software technol ogy. Functional Reasoning in Design. Proc

[nternational Joint Conference on Artificia
Intelligence, 1971.

Foot not es
5. Hewitt, C. Descriptionand Theoretical
[1 The elements of the Newell theory that Anal ysis of PL R Doctoral Dissertation,
re used here are: Massachusetts I nstitute of Technology, 1971.
1. Devel opment of plans by heuristic 6. Newell, A Notes on the Psychology of
search consisting of successive function- Programming. Conputer Science Department
al el aborationinwhichfunctional Carnegie-MellonUniversity(forthcom ng).
specificationsinvokestructureswhich,
in turn, require further functions. 7. Newell, A & Sinmon, H A Human Problem

Solving, Prentice-Hall, New York, 1972.

8. Nilason, N J. Problem Solving Methods in
Artificial Intelligence, McGraw-Hi ||, New
York, 1971.

9. Simon, H A The Heuristic Compiler, in
Simon, H A & Sikloesy, L (Eds.) Represen-
tation and Meaning, Prentice-Hall, Englewood
Cliffs, Nw Jersey, 1972,

884

