THE USE OF A SEMANTIC NETWORK IN A DEDUCTIVE QUESTION-ANSWERING SYSTEM

James R. McSkimin

Bell Telephone Laboratories
Columbus, Ohio
43209
Abstract

The use of a semantic network to aid in the
deductive search process of a Question-Answering
System is described. The semantic network is
based on an adaptation of the predicate calculus.
It makes available user-supplied, domain-dependent
info mat ion so as to permit semantic data to be
used during the search process.

Three ways are discussed in which semantic
information may be used. These are:
(a) To apply semantic information during the
pattern-matching process.
(b) To apply semantic well-formedness tests to
query and data inputs.
(c) To determine when subproblems are fully-
solved (i.e., they have no solutions other
than a fixed, finite number).

An example is provided which illustrates the
use of a semantic network to perform each of the
above functions.

1. Introduction

Semantic Networks have been used primarily
in natural language applications to help disam-
biguate sentences and to understand natural
language text. In this paper we consider the use
of a semantic network to aid in the deductive
search process of a Question-Answering (QA Sys-
tem. The semantic network is based on an adapta-
tion of the predicate calculus and is described
only briefly in this paper and more extensively
by McSkimin and Minker (McSkimin [19761, and
McSkimin and Minker [1977]). Terminology from
the predicate calculus will be used throughout
the paper.

Three ways will be discussed in which seman-
tic information may be applied to help restrict
deductive searches. These are:

(1) To apply semantic information during the
pattern-matching process (unification al-
gorithin). Most current pat tern-matching sys-
tems are based solely on syntactic tests.
Using the semantic network, semantic con-
straints may be applied during the pattern-
matching process to inhibit data base asser-
tions and general axioms that are semantical!}'
irrelevant to the search from entering into
the deductive search space.

To apply semantic well-formedness tests to
query and data base assertions input to the
system so as to reject queries that have no
answer because they violate semantic restric-

2J

Matural

Lanrnjage-3

50

Jack Minker
Department of Computer Science
University of Maryland
College Park, Maryland 20742

tions. Thus, it should be possible to deter-
mine that a query such as "Who is the person
who is both father and the mother of a given
individual?" is not answerable.

To identify those queries which have a known
maximum number of solutions so as to termi-
nate searches for additional answers once the
known fixed number is found.

3)

The semantic network discussed in this paper
is described briefly in Section 2. In Section 3,
we describe how the semantic network may be used
to solve some of the problems associated with the
above items. An example which illustrates the
use of the semantic network is presented in
Section 4. A summary of the work and future
directions is given in Section 5.

2.__Seniantjc__Network

Although the term 'semantic network' has been
used extensively in the literature, there is no
universal agreement as to what constitutes such a
network. Hence, we shall define the term in the
context of this paper.

The semantic network to be described arose
out of the need to provide meaning to objects in
a domain and to statements made about these ob-
jects so as to make deductive searches more ef-
ficient. Although the semantic network developed
is used in deductive searches, it nevertheless
bears considerable relationship to those
developed through the need to understand natural
language by computers. The semantic network
developed by Schubert [1976], for example, bears
many similarities to the one used here.

The semantic network described here is an
adaptation of the predicate calculus and is able
to express quantification, functions, terms and
logical connectives. The adaptation is based
upon the notation of Fisimian and Minker (Fishman
[1973], Fishman and Minker [1975]), who modified
predicate calculus clause notation to handle sets
of objects that have the same template structure.

Thje article by Schubert [1976] discusses
many semantic network representations used for
natural language processing, and surveys the
literature so that we neither refer to nor com-
pare our work on semantic networks with that
achieved by others.

In order to implement the techniques des-
cribed in the introduction, domain-dependent
information must be stored in the computer in a
form convenient for use. Coasequently, a major

McSk iMin

part of this research has concerned the identifi-
cation of the types of semantic information to be
stored, and the development of structures in which
to store the information. To this end, a collec-
tion of structures termed the "semantic network"”

has been developed which contains all information
available to the question-answering system.

The semantic, network consists of four com-
ponents: (1) the semantic graph which specifies
the set-theoretic relation between named subsets
of the domain; (2) the data base of assertions
and inference rules; (37 the semantic form space
which defines the semantic constraints placed on
arguments of relational n-tuples; and (4) the
dictionary which defines the set membership for
each element of the domain. All four components
of the semantic network are used by the techniques
described above for making the QA process more
efficient. lllustrations of how this information
is used will be given in the next section.

(a}_The Semantic Graph

The major emphasis of this effort is the
investigation of techniques by which user-supplied
semantic information may be stored in a computer
and used to make the deductive inference process
more efficient. The approach taken is to define
explicitly the' contents of the domain of discourse
D as well as the relationships in which various
subsets of the domain may occur.

To this end, much of the work has involved
the investigation of how one might subdivide
the domain D into a finite number of named subsets
Sj such that all elements of each S* have some set
of properties in common. These sets are expressed
as Boolean Category Expressions (BCE). Examples
are: senatord male -liberal, state, judge f]
lawyer. The names "senator", "state" and "judge'
are examples of what are defined to be the sim-
plest type of BCE possible and are called semantic
categories. A BCE is any arbitrary combination
of categories using the set operations of union

necessary to subdivide the domain D into subsets
since certain relational statements may only be
made about specified subsets of D, and one would
like to make these subsets explicit rather than
implicit. This subdivision is specified by a
semantic graph Gs which defines how each category
C is subdivided into subsets C;,C2,...,C, and how

each of the Cj is similarly defined. Figure 1
shows an example of such a graph. Note that both
animate and living are the superset of animal;

however animate is the superset of robot which is
disjoint from Living, and living is the superset
of plant which is disjoint from animate. Thus,
animate and living overlap.

Subdividing D in this manner and defining
where in the hierarchy each domain element lives
(the function of the dictionary), has several ad-
vantages over expressing set memberships by unary
relations. In particular, it should be computa-
tionally more efficient to perform trivial set
membership inference using such a structure rather
than by using unary relations. Thus, Sirica £
judge might be stored in the dictionary rather
than storing the unit clause JUDGE(Sirica)
in the data base. The rationale for this choice
is given in McSkimin [1976].

(b) Data Base

Assertions are facts, whereas general axioms
are used to infer assertions about domain elements
that are otherwise stored implicitly in the data
base. Both types are stored in a "parallel clause'
notation, termed n-o notation, an extension of the
n-representation of Fishman and Minker. An exam-
ple of an assertion in n-o notation is: ((a,x,y),
{{ [PARENTY]/a,[Ruth,Herb]/x, IAnne,Carol,Jim]/y}}).
The assertion states that Ruth and Herb are the
parents of Anne, Carol and Jim. An example of a
general axiom is: ("ax,y.) v (3,x,Y), {{ RES IDE)/a,
congressperson/x,state/y,[REPRESENT]/B)3). The
axiom states that for all «, 3, x, and y, if the
object x is in the set congressperson, and the ob-

(1), intersection (n) and complement (-). It is ject a is the predicate” RESIDE, and x fesides in
- - o— - e NIV =]
UNIV/ 2 UNIV/2
e L
it 2 .8 2 "
& " T - -
inanimate — - animate w ronfliving - & . . Ilving
= ——
- f T — e e
geog/\area.":‘:.,_’..._. "3 robot Snina] Slant
e B R
o o S ¢
state — country — city human L non/ human
~ T RN = =
\e cat LE dog
B judge & congress
LEGEND
- =1
UNIV = universal categor
A :uperSet caregory senator—%.. representative
$ = disjoint
8 = gverlap
S Figure 1. Semantic Graph

Matural

51

Laneuare=-3: McSkimin

the sect given by the state y, then the object x
represents the state y. first form represents
b clauses in irst-order predicate calculus. The
second clause restricts the variable x to the set
congressperson, while y is restricted to the set
state,

A -0 ¢lause, in more specific terms, is an
order L‘[]—_qu—T = (T,*) where T is a template
which is like a fl'l’"«t order predicate calculus
clause, where T contains terms which are free of
constants and predicates, Literals of the tem-
Plate T are {n+l1) ary tuples where the first
tuple entry denctes the predicate name. ¢ is a
finite set of extended N-substitution sets, ¢ =
{9y .00, %nt, where ¢ ¢ ¢ is the form ¢ = {5)/vy,

«+»Sp/vyl, and where a M-substitution component
H/v is an_expression of the form S/v = ([DE,DX],
Blfvy, DE s a possibly t.,m'pty fmlte set ol con-
stants cxplicitly included in S; DX is a possibly
enipty finite sel of constants expl icitly excluded
from $; DI is a possibly empty set of constants
repr esented as g BCL and im Implicitly included in 5;
v is termed a placelwider for a v, I‘ld}ﬂ(l). The
iol]owmg conditions hold: (i} D* nil = 4y (2)

c nl,

A Tl-substitut ion component indicates thut v
is umversally quantified over the set ok y
il n-pX). A n-o literal is an ordered pair,
(L, ¢_}, where L 1s a 1literai template (i.e.. froe
nf constants and predicates), andt Is represented
as an (n+l}) ary tuple,

L) Dictionary

tor each predicate, constant and function name
in the system, the dictionary lists the semantic
category, of which it is a wember. In addition,
it defines the set of categories that are subsets
of cach catepory in the semantic graph Gy

{d} Semuntic T'orm Space

The semantic form space delines semantic con-
straints that are to be imposed on cach argument
of a predicate. Each semantic form Jefines what
predicates, constants, or functions are legal to
substitute into arguments of some suhset 51 of the
possible set of n-tuples in the system. Not only
are pussible argument types stored, but so are
possibic combinations of types. An example of a
somantic form is: {{n,x,¥}, ({[BEPRESENT]/a,
senator/x, state/yr, {[REPRESENT]/u, representa -
tve/x,state/yTh), That is, semators and repre-
sentatives can represent 4 state - no other BCEH
combinations are permitted. Additional informa-
tion is retained with a semantic form to count
solutions possihle for a given predicate. This is
desceribed in Section 3.3.1, The above constitutes
the semantic network.

3. lse of the Semantic Network in Deductive

Ihv development of the semantic network is in-
temded to restrict the search for soiutions to
questions when a deductive search is required,
There are three ways in which the search can be
restricted, These are: (a) to semantically unify
clauses; (b) to perform semantic well-formedness
tests; amd (c) to detect fully solved problems

(i.e., problems which, because of the knowledge of
the domain of application, have a known maximum
mumber of solutions). bach of these threc topics
is discussed below,

3.1 Semantic Unification

Insisting that variables be restricted to
specific domains, limits the domain of a variable
mre than is normally possible in the predicate
calculus, In the first-order predicate calculus,
all variables are universally quantified; hecause
no restriction on the variables is possible, in
order to unify two clauses, one must therefore
assume that when one variahle is to be substituted
for another, that they belong to consistent do-
mains. However, if variables could be restricted
‘Ellc.']ll to disjoint domains, then no possible
substitution of one variable for the other can he
mide, and wnification must therefore fail becausc
of scmantic considerations.

The details of a Ji-o semantic unification are
tov cumbersome to describe in this paper; they
are described by Mcskimin., We shall provide a
brief sumary of the tests needed to effect l-o
semantic wnifjcation, Two T-o literals wust wnifly
syntactically to be considercd [or semantic unifi-
cation. When two variables are to be suhstituted
for ene another, an algorithm, called the CONFLICT
algorithm, determines if the BUls of the two
variables overlap., If they do, a new variable
whose BCL is the intersection of the two Blks re-
plices each variable. If the two BCEs are dis-
joint then the two variables are semantically in-
vonsistent since there cxists no domain element
that can be substituted for hoth, Il a constant
is to replace a vartible with BCE By, the constant
must helong to some semant ic category B such that
BzeBy. If a function is to he substituted for a
variable, the BCE of the range of the function
mist be a subset of the BCE of the variable. In
all of these areas the semantic graph s used to
Jetermine the relation between the two BCls,

For example, consider the following -
¢lauses:
(1) (wlla, %,), {{[Jack])/ =, [P{/a,human/y | })
(2] [m{ﬁlvulvvl.] ¥ f_n‘.],Ul,‘v’]},[{TM]E/U],!IWTIBH/V],
[F176y, [PT/ay 1)
(3) (v{#a,uy, v v {os,u,, v), T femle/us human/va,
TMI762, (P17ue D)
where mule, fenale, and human are semantic cate-
gories, Jack € male, and pele (femalc = ¢. In
a first-order predicate calculus system, there is
only onc universal semantic category. Thus,
female, and male do not appear amnl thc
varlables are universally quantified over the en-
tire domain. In this case, two resclvents would
result when resolving clause (1), with clause {2)
and clause (3). However, with II-0 semantic wnifi-
cation, there is only one resolvent that is ob-
tained from clause (1) ard clause (2). The II-o
literal, in clause (3}, ((ag,us,vy},{t[P]/ s,
female/up, human/v; 1) cannot unify with ({a,x,y],
(TP} 7a, [ack]/x,hunan/yi}). This is so since a
conflict exists as Jack £ female. The CONULICT
routine would find that Jack € male by accessing
the dictionary entry for Jack. ~ The semantic
graph would denote that male n female is empty,

NHatural LanrFuape-3: MeSkimin

and the two ll-a literals would be prevented from
unifying. Thus, clause (3) would never be entered
into the search space, so that it would not lead
to a deductive search path, thereby decreasing the
time and space used over that of a purely syntac-
tic pattern match.

Semantic unification is applied during the
deductive search process. It is also applied when
one is entering new facts or general rules into
the system, and when a query is entered. These
are described in the following sections.

5.2 Semantic Well-Formedness of n-o Clauses

One way in which the n-o unification algorithm
may be used is to perform semantic well-formedness
tests on n-o clauses input to a question-answering
system, n-0 clauses are used in two different
ways: both as assertions and general axioms to be
stored in the data base, and as questions posed to
the system. As noted previously, the data base
comprises one part of the semantic network. The
data base stores facts about members of the do-
main (i.e., assertions) and provides general
axioms that are used to deduce implicit assertions
from those already known. Both of these are
stored as IT-a clauses.

The semantic form space defines how domain
elements may interact; that is, in what combina-
tions they may co-occur in n-o clauses of the sys-
tem. In particular, semantic forms define the
subsets of the domain UNIV from which arguments
of relations must be chosen. It is necessary
that all data base clauses conform to these rules.
If data base clauses were stored that did not con-
form with these rules, incorrect deductions could
be generated.

In addition, when a query is posed to a QA
system, it is useful to know if it is potentially
unanswerable. A query may be unanswerable for
several reasons. If a query makes reference to
domain elements that, are unknown to the system,
then it is very unlikely that the questions about
that object could be answered.

A query could also be unanswerable because it
violates the constraints specified by the semantic
form space. Thus, if one asked whether President
Carter voted for a certain congressional bill, the
system should answer that the question was not-
well -formed since only members of Congress may
vote for bills and Carter is not a member of Con-
gress. Naturally, doing so requires the availa-
bility of a complete semantic network including
dictionary, semantic graph, and semantic form
space. By rejecting such a query, it is possible
to avoid a futile search for an answer which, as-
suming the data base is consistent, will never be
found.

The purpose of the n-o unification algorithm
is to detect such discrepancies in both data base
clauses and queries. This is done by unifying
each ll-a literal L of an input clause against all
semantic forms (which are stored in ll-o clause
representation themselves). If some instance of
the ll-a literal L fails to unify with any n-o
semantic form in the semantic space, then that
instance of the n-o literal L does not conform

Matural Language-3
53

with semantics because at least one of its argu-
ments conflicts with the corresponding argument of
all semantic forms for that n-tuple size.

Although some instances of the n-o literal L
might fail to unify with any semantic form, others
may succeed. What is desirable therefore, is to
transform a ll-o clause input to the system into
one (or perhaps several) clauses that are entirely
well-formed. These clauses may then be entered
into the data base or input to the deductive
mechanism as appropriate. Those instances failing
to unify should be isolated and the user informed
of the error. The semantic well-formedness al-
gorithm which does all of these things is given by
McSkimin.

An important part of the well-formedness al-
gorithm is the unification of input literals
against the semantic form space. Each semantic
form P = (T<P) consists of a template T of the
form: (vo,Vj,...,vy) vS and a n-o set <K The
tuple (vo,...,vn) is called the distinguished lit-
eral of F, and the literals in S are called the
semantic literals of P.

Unifying substitutions are also applied to
the semantic literals which are carried along dur-
ing the process, "appended to the query, during the
deductive search to perform further semantic
checks on a literal by retrieving or inferring in-
formation from the data base (rather than the
semantic space).

The tuple V = (VQ,VI,...,v,) along with the
substitutions for the placeholder variables v4 oc-
curring in * determine what elements of the domain
may co-occur in arguments of an (n+1) tuple. |If
a portion of an input literal h unifies with some
semantic form F on literal V, then that combina-
tion of predicate and domain elements is consider-
ed well-formed. If a literal L does not unify
with any semantic form, then it is not well-formed
since it conflicts with all possible ways that
domain elements may be combined.

An example of semantic well-formedness, and
how the semantic form S is used will now be given.

Example: Let F - ((u,x,y) v(B,x,y) {{[M]/a,
female/x, animal/y, [EQUAL)/E}}) be a semantic
form that determines the well -formedness of the
"mother" predicate. (a,x,y) is the distinguished
literal in the semantic form. The semantic liter-
al (3,x,y) is used to indicate that if x and y
are equal then a semantic conflict has been de-
tected. For example, the following query, asking
if Mary is her omn mother, when resolved with the
semantic form F, yields the new clause, ((6,x,y),
{{IMj/a, [Mary]/x, [Mary]/y, [EQUALI/p,1}) .

The inferred n-o literal ((B,x,y),{{ [F(JIAL)/3,
[Maryl/x,[Mary]l/y}}), is not unified against the
semantic forms since it descended from a semantic
literal. Thus, all literals that came from the
query have been successfully unified against the
semantic form. The literal that remains is then
appended to the query to form the new query:
%(a,x,y) v (I3,x,y) {{[Ml/cx, [Mary]/x, [Mary]ly,
[EQUALJ/3IK

Before the proof mechanism starts to answer

McSkimln

the query, a test is made to determine if there
are any literals eligible for predicate evaliiation.
If there are, then they are evaluated. Thus, in
this case, the proof mechanism evaluates the liter-
al (3,x,y) to true and the entire clause is there-
fore removed from the search space, which indi-
cates that the question is unanswerable. If the
literals appended to the query are not eligible
for predicate evaluation, they are treated as any
other literal and must be resolved away in order
for the query to be answered.

In this section it lias been shown how seman-
tic constraints may be used to reject semantically
inconsistent queries and data base assertions.
The third use of the semantic network is given in
the following section.

3.3 Semantic Actions in the Search Space

A major problem facing any problem solving
system is the growth of the search space. when
the problem to be solved is complicated, the
search space grows and usually, when a solution is
not found, one runs out of machine work-space
rather than time. One can use knowledge about, the
problem domain to help decrease the workspace
needed.

3.5.1 Representing Counting Restrictions

A natural candidate for decreasing the work-
space is to have knowledge concerning predicates.
In particular, one might refer to counting predi-
cates as ones in which there can be either a fixed
or an upper bound to the number of solutions to
the problem. For example, when referring to the
U.S. Senate, there are two senators who represent
one state. Thus, if one is searching for an an-
swer to a subproblem which concerns senators who
represent Maryland, only a maximum of two may be

found in the system.
To take advantage of counting predicates,
counting information must be represented in the

semantic network, and a bookkeeping mechanism must
exist during the search process to keep track of
when a solution has been found, and when all pos-
sible solutions have been found. We sketch how
this is accomplished below. (See McSkimin for
details.)

To motivate the discussion, consider the
following query, "Who represents the states of New
York or New Jersey?". The query, in n-o notation
may be given in negated form as: fr(a,x,y),
{{I[REPRESENT"*, [NY,NJ]/y}}) . Information
of a general nature concerning the predicate
REPRESENT is contained in the semantic form space.
Thus, it is desired to denote that two senators
represent every state, and that there are 15 re-
presentatives for NJ and 39 from NY, and that each
senator or congressman can represent at most one
state.

The above semantic information can be re-
presented in the semantic form space as,

F: C(a,x,y).{{{[REPRESENT]/qg-senator#l/x,state#2/y}
{[REPRESENTJ/a, rep#l/x, [NJ]#15/y]
{I[REPRESENT]/a,repfa/x,[NY]#39/y}}).

By the notation B #ml/v,

is meant, that each ele-

Natnral

LanruaKe-3:
5k

ment of a Boolean Category Expression (BCE), B,
can occur in at most m distinct n-tuplcs which
unify with that particular substitution set.

The query, when tested against a semantic
form during a well-formedness test is modified to
reflect the above possibilities. Thus, Q becomes

Qq:(H"a>x,>y)>-{([REPRESEm']/a.scnatorfl/x-[NY,NJ]#yy
{[REPRESENT]/a,rep#l7x, [NJI#15/yl
{[REPRESENT]/a,rej)#l/x, [NY|#39/y}}J.

For every substitution set cpi of a predicate
there is associated a semantic set count (SSC),
which represents the number of possible solutions
that can be found relative to the predicate. Let
the substitution set cp be given by, cp = {So//l/vy,
Siftiii/vj,...,Sa#my/v,j. Then it is easy to see
that n

SSC = min

i-1

where (Jard(Sj_) is the cardinality of the set S.,
and mi is the element semantic count. Thus, for
cp = {[REPRRSBNTrr]/cx,senatorftl/x, [NY,NJ]fl2/y), SSO
inin(i00O-1,2-2)=4, where Card (senator)=100. Tliat
is, there are only 4 possible solutions - the two
senators from each state for the particular sub-
stitution set. If one sums the SSC over all sub-
stitution sets relative to the subproblem (liter-
al), one obtains the total possible solutions. If
all solutions are found for all substitution sets,
the literal is said to be fully solved. For the
single subproblem associated with the sample query
there are 4+15+39=58 possible semantic solutions.

The syntactic count (SC) for a substitution
set is simply the number of possible entries in
the relation, and is given by

SC = ff Card(S1-).

(Card(S.) - ml.)>

This number is always greater than or equal to the
semantic set count, and generally is considerably
larger. In particular SC-200 for the above ex-
ample.

Ciiven an n-o literal in the search space, a
target syntactic count (TSC)is specified for each
substitution set cp/ for each literal, and is de-
fined as TSCj * (§Cj_-SSCj). When a n-o literal is
to be solved, it is removed from the clause and
placed in a special list. The literal on the list
is initially given the count, equal to SC. As
unique solutions are found for the literal, they
are subtracted out of the substitution set, and
the count of the literal initially set to SC is
decremented by the number of unique solutions
found. When the count for the literal on the
list equals TSC, then the literal is fully solved.

To take advantage of counting predicates, it
is necessary to know, when, during the search pro-
cess, a literal has been solved, and if so, wheth-
er the literal has been fully solved. In the en-
vironment of Question-Answering Systems, Fishman
[1973,1974] has experimental evidence which indi-
cates that linear resolution with selection func-
tion (SL resolution), developed by Kowalski and
Kuehner [1971], and independently by Loveland
[1969,1970] (Who termed it model elimination), or
a variant thereof, will be used for the inference

McSkimin

mechanism. SL resolution is very convenient to
use since one knows exactly when a literal has
been solved. This occurs when truncation takes
place. The bookkeeping associated with SL resolu-
tion permits one to backup to the clause where one
first started to search for a solution to the lit-
eral. It is at the clause where one first starts
to search for a solution to the literal that one
wants to initiate semantic actions.

Three types of semantic actions may be taken
when fully solved substitution sets of a search
space literal L =(L,) are found. Starting at the
clause in which the fully solved substitution set
appears, one must remove from the search space
each substitution set that has been fully solved.
This will inhibit any further clauses from being
resolved against, the clause. |If, all resolvents
from the n-a literal have been found, some of the
resolvents may not yet have been entered into the
workspace. In this case, a pointer to the resol-
vent set would exist, and could be deleted. The
reason for inhibiting any additional clauses from
entering the search space is because all solutions
have already been found, and no other solutions
are possible. By bringing in additional clauses,
one is merely trying to find another solution via
a different path. The best that can result is
that a duplicate solution will be found.

if all substitution sets ¢; become fully

solved, then the entire subproblem L=(L/i>) is
fully solved, all further resolvents or potential
resolvents of / should be deleted. Thus all fur-
ther interactions between L and the data base are
avoided. The semantic action of removing fully
*solved sets and subproblems can thus potentially
save a great deal in search effort.

Unfortunately, the interactions (i.e., reso-
lution operations) between literal L and data base
clauses are seldom serial in nature. Rather, it-
is often the case that several interactions may
proceed at the same time as cooperating processes
(or coroutines) controlled by the search strategy.
As a consequence, even though some literal L be-
comes fully solved, there may be deductions in
progress for L that, if continued may duplicate
solutions already found. Therefore, ideally,
these processes should be terminated. Thus, the
second type of semantic action taken is to prune
possible redundant derivation trees from the
search space. A convenient data structure to fa-
cilitate pruning is one in which the immediate
resolvents of a clause are linked together in a
list, where each clause in the list points to its
parent clause, and the parent clause points to
the first and last entries in the list (i.e.,
it is a binary tree). Pruning in such a search
space data structure is straightforward, and is
not discussed further here.

The third type of semantic action concerns
the literals of generated clauses in redundant
derivation trees. As each clause (T is generated
by resolution or factoring, the search strategy
may select a literal from (T to be resolved against
the data base. The literal might be on a list of
literals waiting to be resolved (for example, see
Minker et al.[1973]), or in the process of being

Natural

LanKiia*e-3:

55

resolved. Leaving such a literal there will per-
mit it to interact with the data base, thus pro-
ducing more unnecessary deductions. Therefore, if
such a list exists, the selected literals from all
clauses of a redundant derivation must be removed
from the list and resolvents in process or that
liave been found must be terminated or deleted as
the case may be.

The following section illustrates how the
above techniques may be used together in answering
a query.

4. An Example of the Use of Semantics in a QA
System

The data base used in this example consists
of assertions and general rules that might be use-
ful in a political context. Assume there are many
assertions that state where a member of Congress
1egally resides; i.e.,

A : (cx,x,y),l{ [RHSIDL}/a, tBeall,Mathias,Holt,...,
Hogan,Gude]/x,[MdJ/yj,
A. { [RESIDH/cx, [Buckley,Javits,Chisholm,

...,Abzugj/x,[NY1/y]}

These assertions mav be used to derive the state
a member of Congress represents by the following
general rule:

R, : ('"Ma,x,y) v([i,x,y), {{ [RESTDEjlu, congress/x,
state/y, [REPRESENT/3)}) .

In addition, there might be several axioms
that are used to deduce whether a member of Con-
gress supports a special interest group (such as
organized labor) by referencing numerical ratings
established by different lobbying groups (e.g.,
COPE, the Committee on Political Education of the
AFLC10). For instance if a senator or represen-
tative lias a OOFE rating of 67-100 (on a 0-100
scale) then one may conclude that he (she) sup-
ports organized labor. Many of these rules may be
stored as well as other general rules that deduce
whether one supports some state, country, or
interest group. These rules are given below.’

R, K(a,x,y) v (e,x,y), {{ [COPEJ/a, congress/x,
R67100/y; [SUPPORT]/6,

labor/z,}

Py { [NSC]/a,congress/x,
R67100/y, [SUPPORTJ/3,

defense/Z},
Ka,x,y) v (B,x,y),{{ [REPRESENT]/ex,congress/,
state/y, [SUPPORT]3)}).

The last rule states that if a member of Congress
represents a state, then he or she would be ex-
pected to support that state.

R4:

To derive whether one would support a spe-
cial-interest group, the ratings of each senator
and representative could be stored as assertions:

A~:((a,x,y),{{{NSC]/a,[Mathias,Cranston,...,
Mitchell]/x,[111/y},

INote: NSC = Nat. Security Council, a defense
lobby; NFU = Nat. Farm Union; and LCV = League
of Conservation Voters; R67/loo = A category con-
taining all integers from 67 to 100.

McSkimfn

.-\4: { {INSC/a, [Javits,Schweiker, ...,
Podell]/x, [331/¥}}).
Besides the data base, semantic forms are al-
so needed. The following semantic forms might be
used:

Fl'. (a,%,¥) { { [REPRESENT)/a,senator#l/X,statef2/y,
{ [REPRESENT |/, rep# 1/x, [MD}#8/¥},
{ [REPRESENT)/a, reph1/x, [NY]#39/y}1,

Fz:(a,x,y} { [RESIDE}/a, humant# 1/ X, statedv/y)

Fqt {u,X,y) {[SUPPORT |/a,congressfv/x, (state |
country |y interest)¥v/yl.

The element semantic counts that apply to each
form is provided.

It is assumed that dictionary entries for all
predicates, constants, and BCES have been created;
because of their large number, these will not be
shown, nor will the semantic graph be shown,

Suppose that the following query is asked:

o, %, ¥), ({ [SUPPORT 1/ u, {Sirica}/x, Mining-
interest/y}}H), l.e., Does Sirica sup-

port mining interests?" This query fails to unify
against any of the semantic forms; in particular,
it fails to match I'y since Sirica € judge and
judge is disjoint from congress. The query is re-
jected as meaningless.

Now suppose another query is entered:
{vla,x,¥] v (B,X,2), { {[SUPRORT] /e, [REPRESENT /B,
senator/X,defense/y,

Md,NY]/z11)5

i.e., "Are there any senators from New York or
Maryland who support defense interests?' [ach
literal is resolved against the semantic form

to test its well-formedness. The literal (gB,x,Y}
unifies with form ¥y and the literal {a,x,y} uni-
fies with the form F1. These unifications are
successful because senator & congress amd defense
¢ defense, as would he found in the semantic
graph. The query is thus well-formed.

A scemario for the proof, shown in Figure 2,
using Sl resolution as the inference system of
the above query, follows:

1) A heuristic function { is used to sclect which
literal of the query to solve first, As discussed
in McSkimin [1976}, Minker et al. [1973], and Min-
ker |1976], the number cof potential solutions of
literals is a pood indication of the amount of
work required to solve them. In this case, the
element set counts of the semantic form relevant
to each literal are referenced and the semantic
set counts computed. Since at mest two Senators
can represent a state, the literal with the REPRE-
SENT predicate has 4 solutions as shown in Sec-
tion 3.3.1.

No bounds can be placed on the SUPPORT liter-
al sincc it is not a counting predicate as is
REPRESENT. Selving the SUPPORT literal first
could cause numerous inferences to be generated,
ussuming that there are many senators listed who
support some defense interest, Thus, the REPRE-
SENT literal is chosen to be solved first,

2) The tarpget syntactic count for the REPRESENT
literal, which equals the syntactic count minus

the semantic set count is calculated. In this
case, there are SOI00-2=200 syntactic solutions
and SS04 semantic solutions. Thus, the value TSC
=8C-88C=200-4=196, is stored with the REPRESENT
literal L and referenced whenever new solutions
are found. L is then modified to remove those so-
lutions found so far. When the syntactic count of
L equals TSC=196, L will be fully solved. This
process is illustrated by the proof tree of Figure
2 using SL resolution.

3) The general rule R1 is resolved with ~(§,x,z2)
since no direct match is possible. Since senator
¢ congress and [MdNY] g state, resolvent 2 is
formed.

4) The RESIDE literal L is now the right-most

(and only) literal in the SL resolvent, and is
thus solved next. The element set counts from se-
mantic form I'2 are read, and the number of solu-
tions for L is calculated as, SSC=min(100-,2-v) =
100, where "v" means an unknown number of solutions
are possible. The target syntactic count is cal-
culated as TSO(l00-2)-100=100, and stored with the
RESIDE literal. Thus, 100 solutions must be found
before the literal is considered fully solved.
Since it is semantically impossible for 100 sena-
tors to reside in two states, this situation will
never occur. Fortunately, the RESIDE literal will
become indirectly fully solved because its ancestor
the REPRESENT literal ~{g,x,z) will be fully
solved. This process is described below.

5) Many RESIDE assertions are stored in the data
base; only those instances are allowed to enter the
search space that involve senators from Md or NY -
all representatives from Md and NY and any resident
of some other state is excluded. Since {Beall,
Mathias, Buckley, Javits} c senator they are the
only ones that pass through the n-o unification
algorithm.

6) Since the A-literal [+{y,x,2)| appears as the
right-most literal of clause 3, it implies that a
subproblem lias been solved. Up-links are followed
until ~{v,x,z) appears without brackets in clause
2 (denoting the point at which the current deduc-
tive chain began as indicated by the dotted lines
of Figure 5). The solutions found are:

w(y,X,2) {{ [RESIDL]/Yy, [Beall ,Mathias]/x, [Md]/z},
{[RESIDL] /v, [BucKley,Javits]/x, [NY]/z}}.

By the procedure described in McSkimin, these so-
lutions are removed from clause 2 (whose syntactic
count is 200) leaving a new clause whose syntactic
count equals 196. Since this does not equal the

target syntactic count of 100, no semantic actions
can be taken.

7) The A-literal [~(y,x,2)] is thus truncated
from Clause 3, yielding clause 4.

8) Another subproblem has been solved since
[~(g,x,2)} is the right-most literal of clause 4.
Up-links are followed until ~(g,x,z) first appears
without brackets (clause 1). Since four solutions
have been found for the literal, its syntactic
count becomes 196. Since this equals the target
syntactic count, ~{8,x,z} is therefore removed from
the search space to prevent other inference rules
from attempting to deduce the senators from Md or

Natural Langnarf®-3: McSkimin
"6

NY. In addition, the literal HY,X,Z) from clause
2 is removed also since all residents of Md and NY
of interest have been found. Thus, even though
this literal had 96 solutions left to find, it
could be pruned since it was a. descendant of a
literal which was fully solved. These are
examples of semantic actions.

9) The A-literal [M>,x,z)J is next truncated
from clause 4 yielding clause S, which is next
solved in a similar fashion.

This example lias illustrated how user-sup-
plied semantic information may be incorporated
within the framework of predicate calculus so as
to make the deductive inference process more ef-
ficient. Three methods were shown to be effec-
tive in reducing the amount of effort involved in
answering a query: semantic well-formedness
tests, semantic operator selection, and semantic
actions. Naturally, these are not beneficial for
all data bases; conditions under which each is ex-

1

pected to prove most beneficial are given by
McSkimin.

5. Summary

We have described three basic uses of a seman-
tic network: (1) To semantic-ally unify two liter-
als. (2) To perform semantic well-formedness
tests. (3) To perform semantic actions. Semantic
unification serves to decrease the number of de-
ductions that one may have over syntactic methods.
Semantic well-formedness tests serve to delete data
from entering the data base if they are not soman -
tically well-formed relative to the domain of ap-
plication. Semantic well-formedness tests may also
introduce new literals into the search space which
mast be satisfied for a solution to be found. Se-
mantic actions serve to use counting information to
determine when a literal has been fully solved, and
to take actions based upon this information. These
actions serve to delimit the search space.

e, X, ¥) vule,x, 2} { [SUPFORT]/a, [REPRESENT}/R, senator/x, defensesy, [Md,NY]/z} TSC = 198
- __.".'_-v__h
“(y,%2) v (8,%,2) |[RESIDE]/y, (REPRESENT]/S, congress/x, state/z)
7 T
o, x vl v [, y,z)]v'\af\',x,z) { [SUPKORT /o, [REPRESINT]/B, [Rf‘iIDT]/T,
Fenaterfy, defense/y, [Md, NY|/z) TSC = 100

|
1
|
e

e
L -

4
uin, X, ¥ v Im(.».x,z}] {i [SUPPORT] /s,

5
afe, x,¥) {{[SUPPORT]/a, [Reall,Mathias]/x,
exr) { [SUPHORT | fu, [Buckley,Javits]/x,

iR, X, z}v(“

{v,x,2) [{[RESIDE]/Y,
{ [RESIDE] v, [Rucklev..]avits, crrn

v w{a,x,y) v (B, x, Z]]VI"-[!’ x,2)] {U]|SUFFORT}fa, [REPRESENT]/E,
N |Beall ,Mathias}/x, defense/y, [Md]/z},
. {[SUPPORT] /=, [REPRESINT]/®,” [RESIDE /Y

. {huckley,Javits]/x,

{RETRISENT)/,
{|SIPFORT] fa, |REIMRESENT]/E, [Hucklcy Javits]/x,

defensefy]
defensely

[-\.[u.x,y)] vaig,x,z) (] [SIPPORY] fer, [NSC] /R, [Beall Mathias]/x, defaensesy, Fﬁ?lﬂﬂ/z},
F { |SIPPORT |/, [NSC]/ B, [Buckley,Javits)/x, defense/y, RE7100/2})

[Beall Mathias, ..., logan,Gude]/x, [Md]/z},

Chisholm,Abzug]/x, [NY)/zH},
im:sm:]h
by

defensely, {NY|/t

derensefy, [M]/z),
defonsoly, [NY]/z}}

[Beall Mathias}/x,

b

TSC = O

15, ¥} {{[(DPI—.]/R |SUPPORT | /&, congress/x, R62100/Y,labor/z) ,
{[NSC)/8, [SUPPORT | fa, mngrass/x RE7100{ 2, defennely!,

TSC = 132

' (R,x,2) {{[NSL]/E, [Mathias, ... Mitchell]/x, [11]/2},
! T X)/e, [Javirs, ..., bodell]/x, [221/%),
\ T {N‘i:],/ﬁ, [Beall,Broyhill}/x, [B0)/x),
| T {[NSC]/:;, [Ruckley,...,Sandman)/x, [100]/z},
L v
1 e 1
.7 L~ \
" ['\.(u,x,)f)l\l’['\-(ﬁ,l 23] t4 [SUPTORT])/a, [NSC|/w, [Besll]/x, defensefy, [RD]fz],
' { [SUPPORT]/a, [NSC)/&, [PwcKley)/x, datenss/y, [100)/1))
8 N\
[nln,%,¥]] {{[RIPPORT]/0, [Beall]/x, defense/¥},
{ [SIPPORT] /a, [Buckley]/x, defense/y}}
9

The Mull Clause
Figure 2.

Typical Proof Using Semantics

Matural

Lanryapre-3:

MeSkimin
57

An alternative approach to the one described
here would be to build into the system unary predi-
cates rather than set information as represented in
the semantic graph. We do not believe that such an
approach would be effective since the addition of
axioms to the system to represent transitive super-
set relations and disjoint relations would be too
cumbersome to deal with in practice and would lead
to very long proofs.

Although the approach appears to be viable,
we cannot yet provide experience which would demon-
strate its effectiveness. We expect to determine
its effectiveness. One factor is the data struc-
ture to be used to perform pattern-directed search
for clauses which semantically and syntactically
match literals in the data base. A second factor
will be the amount of time required to perform the
CONFLICT algorithm. This algorithm determines
whetlicr or not two boolean category expressions are
semantically consistent. If the conflict algorithm
is too time consuming, it may defeat the whole
approach and make it comparable to a strictly syn-
tactic approach. Further analysis is needed to
estimate whether the effort expended in executing
the semantic routines will exceed the extra effort
incurred if they are not performed at all.

We believe that an advantage will be shown
for the techniques described here. We are cur-
rently implementing a system, MRPPS 3.0 which in-
corporates the techniques described here. We ex-
pect to experiment with the system to determine
how well it will work on large data bases.

Acknow l1edgements

The authors wish to express their apprecia-
tion to the National Science Foundation for the
supjx)rt that they liave provided for this effort
under NSF CJ-43632. They would also like to ex-
press their appreciation to Mr. Guy Zanon for his
careful reading of the paper and his many sugges-
tions.

References

11] Fis hman, I). H. [1973] Experiments with a Re so -
1 ution-Based Deductive Question-Answering Sys-
tem and "aTProposed Clause Representat lon for
Parallel Search, ph.D. Thesis, Dept. of Compu-
ter Science, Univ. of Maryland, College Park,
Md. Also Tech. Report TR-280, 1973.

[2] Fishman, 1). 11. [1974] "Experiments with a De-
ductive Question-Answering System," Computer
and Inf. Sci. Dept., Univ. of Mass., COINS
Tech. Report F4C-10, 1974.

(3J Fishman, 1). H. and Minker, J. [1975] II-Repre-
sentation: A Clause Representation for ParaJ -
1eJ Search,” Artificial Intelligence 6 (2)
(1975), 103-127.

[4] Kowalski, R. and Kuehner, D. [1971] "Linear
Resolution with Selection Function," Artifi-
cial Intelligence 2 (3/4) (1971), 221-260.

[56] Loveland, D. W. [1969] "A Simplified Format
for the Model-Elimination Theorem Proving Pro-
cedure," JACM 16 (July 1969), 349-363.

Natural

16]

(7]

18]

[0l

[10]

(111

Language-3:
58

Loveland, D. W. [1970] "Some Linear Herbrand
Proof Procedures: An Analysis," Dept. of
Computer Science, Carnegie-Mellon Univ.,
Pittsburgh, Pennsylvania, 1970.

McSkimin, J. R. [1976] The Use of Semantic
Information in Deductive~~Question-Answering
SysTems”™ Ph.D. Thesis, "Dept. of Computer
Science, Univ. of MI., College Park, Md.(1976)
Also Tech. Report TR-465, 1976.

McSkimin, J. R. and Minker, J. [1977] "A Predi-
cate-Calculus Based Semantic Network for Ques-
tion-Answering Systems," Dept. of Computer
Science, Univ. of Maryland, College Park, Md.,
Tech. Report TR-509, 1977.

Minker, J., Fishman, i). H. and McSkimin, J.R.
[1973] 'The Q* Algorithm - A Search Strategy
for a Deductive Question-Answering System,"
Artificial Intelligence 4 (1973.1, 225-243.

Minker, J. [1976] "Search Strategy and Selec-
tion Function for An Inferential Relational
System," Tech. Report TR-497, Univ. of
Maryland, College Park, Md.,1976.

Schubert, L. K. [1976] "Extending the Expres-
sive Power of Semantic Networks," Artificial
Intelligence 7 (1976), 103-198.

McSkimin

