EOUL-UP
A program that figures out
meanings of words from context

Jr.
Science

Richard H. Granger,
Department of Computer
Yale University

New Haven, Connecticut 06520

The inferencing task of figuring out words
from context is implemented in the presence of a
large database of world knowledge. The program
does not require interaction with the user, but
rather uses internal parser expectations and
knowledge embodied in scripts to figure out
likely definitions for unknown words, and to
create context-specific definitions for such
words.

INTRODUCTION

"l woke up yesterday, turned off
clock, took a shower, and cooked myself two
grimps for breakfast." What's a grimp? On the
basis of this one story, it can't be determined.
It seems, however, that a grimp must be some sort
of food, in order for it to make sense in the
context of the story. The fact that a grimp is a
physical object, and thus a noun, is such a nat-
ural inference that it is taken for granted. The
process by which these conclusions about "grimps"
are arrived at is commonly called "figuring out a
word from context". This process is modelled by
the FOUL-UP program. FOUL-UP enables the SAM
system (see Schank et al, 1975) to read stories
such as the above, and to make an educated guess
as to what a "grimp" should be. The methods em-
ployed by FOUL-UP are based on intuitions about

my alarm

how the analogous tasks are performed by people.
Thus its abilities and limitations should reflect
those of people. FOUL-UP provides the following
purely practical assets to SAM: (1) it allows
reading of unedited newspaper stories, which
typically assume a large vocabulary, and (2) it

creates dictionary definitions for unknown words,
which would otherwise have to be done by hand for
every word in SAM's dictionary. Other natural
language-based systems have attempted to allow

for the occurance of unknown words during under-
standing, (see Woods & Kaplan, 1971, and
Winograd, 1971), but these usually Involve having
the user aid the system in defining the unknown
word. FOUL-UP acts independently of the user,
taking its information entirely from the internal
representation of knowledge that exists in the
SAM system.

This work was supported in part by the Ad-

vanced Research Projects Agency of the Department
of Defense and monitored under the Office of Na-
val Research under contract N00014-75-C-1111.

Natural

LanjuiaKe-9:

172

BACKGROUND: THE SAM SYSTEM

1. Overview of SAM

FOUL-UP was designed as an integral part of
the SAM system, so any discussion of its per-
formance will involve some knowledge of SAM it-
self. The SAM system exists as three main mod-
ules, ELI (English Language Interpreter), TOK
(Tokenizer) and APPLY (Script Applier). Every
input sentence is first parsed by ELI into a
Conceptual Dependency (CD) representation of the
sentence. Then TOK incorporates specific objects
into memory pointers, for use in disambiguating
later anaphoric references. Finally, APPLY,
which contains the scripts, attempts to match
every CD into the currently active script.

When an undefined word
in a sentence, it is ELI
ter it, and it will "foul up" the normal pro-
cessing protocol, by ~calling FOUL-UP with the
word that caused the trouble. Ideally, at this
point FOUL-UP should attempt to guess the word's
meaning by looking into the context of the sur-
rounding script (e.g. "the Get-Up-In-The-Morning

like "grimp" occurs
that will first encoun-

script"), to see what object was expected in the
position that the unknown word "grimp" occurred
in (see Riesbeck &. Schank, 1976). The "position"
of the unknown word does not refer to the surface
position in the. sentence, but rather the
conceptual slot in the CD, corresponding to the
unknown word's meaning. This process cannot be

immediately invoked at the
for three reasons:

(1) although the script has already been entered,

time of ELI's foul-up,

we have not yet APPLYed the CD conceptualization
for the current sentence into the script, so we
therefore do not yet have the specific local
script information that wc need to find the ex-
pected meaning of the unknown word;

(2) ELI has not yet finished its parse of the
current sentence, so there does not yet exist a

complete CD to match into the script;

(3) since ELI has not finished the parse, we do
not yet know which slot of the CD will be filled
by the unknown word, so we could not find the
corresponding slot in the script, even if we
could match the CD into the script.

FOUL-UP could, of course, attempt to com-

plete the CD by Itself, use ELI's expectations to
find the correct slot for the unknown word, match
the CD into the script, and thus guess a possible
meaning for the word. However, with a few modi-

fications, the normal operation of the SAM system
will do all this for us. Thus FOUL-UP makes a
note of the current ELI expectations for future
reference, and then proceeds to pass back a
"place-holder" for ELI to use In constructing the
current CD. This place-holder is so constructed
as to satisfy any current ELI expectation, so
when control returns to ELI, it will automati-
cally put this place-holder into the slot that

the unknown word belongs
that ELI has for such
both syntactic and semantic

in. The expectations
incoming words consist of
rules. Thus ELI ex-

Grander



pects the incoming word to be a noun, and a PP
("picture producer") (see Schank, 1975). All of
ELI's expectations are such that the expected

word will fit appropriately into the sentence in
which it appears. ELlI is not capable of ensuring
that the word will fit appropriately into the
story, or any other context larger than a sen-

tence. It is the script applier (APPLY) that
checks larger contexts, specifically, the script
context of the story. We will call ELI's expec-
tations "intra-sentence" expectations, while AP-
PLY's are called "inter-sentence" expectations.

2. Script Context

Once control has been thus returned to ELI,
and it has incorporated the place-holder into the
CD, then control continues through the rest of
the system as though the foul-up had not occur-
red. Meanwhile, FOUL-UP has notified the system
that a place-holder exists in the current CD, so
that it can be handled by each module <correctly.
Thus TOK is able to tokenize the place-holder
correctly, and then APPLY is called. APPLY now
has a CD containing a place-holder to attempt to
match into the script. It performs a partial
pattern-match, allowing for the existence of the
place-holder, and noting which script-slot cor-
responds to the place-holder slot in the CD.

At this point in the processing, all three
of the above necessary processes have been per-
formed: a slot has been found for the unknown
word, a CD has been created, and that CD has been
matched into the script. Now FOUL-UP is called
back in by APPLY. Since the CD has been matched
Into the script, there is a conceptualization in
the script which corresponds to the CD. This
script conceptualization contains attributes as-
sociated with each slot in the CD, including that
of the place-holder corresponding to the unknown
word. These attributes are ordinarily used to
ensure that the conceptualization appearing in a
given slot is compatible with the larger context

surrounding that slot. Thus, for example, it
expects to see a food as the object of the in-
strumental script "cook" in the optional "Make-

Breakfast" scene of the "Get-Up-In-The-Morning"
script. FOUL-UP looks at the slot in the script
corresponding to the place-holder, and notes the
attributes associated with that slot. Then it
compares these inter-sentence expectations with
the intra-sentence expectations that ELI had for
the slot. It combines the compatible set of at-
tributes into a dictionary entry for the unknown
word, and writes this definition onto a file,
called the Primer, which the parser from then on
uses as part of it's dictionary. Thus if the
word "grimp" appears again in a similar context,

SAM  will "remember" it as being a noun and a PP,
and having appeared before as a food in a
"Breakfast" story, so it will successfully fill
the appropriate slot in a CD, and will correctly

match into the script.

OPERATION OF THE FOUL-UP PROGRAM

1" Annotate® Run-Time Output

The following represents actual annotated
run-time output of the FOUL-UP program running
concurrently with the SAM system. The input to
the system is the simple story:

"Friday, a car swerved off Route 69. The
car struck an elm."

It is given that the system knows all the words
in the story except "elm". The APPLY module has
a script called $Vehaccident, which contains the
necessary real-world knowledge about vehicle ac-
cidents (see Cullingford, 1977). The first sen-
tence in the story goes straight through the
system without incident, since all the words are
defined. The major effect of the first sentence
is to activate the script "$Vehaccident", recog-
nizing that this sentence indicates the beginning
of an accident story. The following output comes
from the processing of the second sentence.

>EL1<
The car struck an elm.

ELI has no definition for the word "elm"
>FOUL-UP<
FOUL-UP notifying TOK & APPLY of unknown word ELM
Obtaining CONINFO and SYNINFO from ELI
Returning to ELI with bogus place-holder:
(/BOGUS LEXVAL (ELM) REF (DEF))

FOUL-UP has now created a place-holder for the

unknown word. It has also stored conceptual &
syntactic expectations associated with the
word. These will be used later, during FOUL-

UP's construction of a definition for "elm".

>EL1<

((ACTOR (/PHYSOBJ TYPE (*CAR*) REF (DEF)) <->
(*PROPEL*) OBJECT (/BOGUS LEXVAL (ELM) REF
(INDEF))) TIME (TIM2))

ELI creates as much of a CD from this sentence
as it can, including the place-holder from
FOUL-UP. All it really knows is: the actor

is a car, and "strike" indicates a "propel".

>APPLY<
APPLY locating unknown PPs in top-level TOK atom
Bound script variable: “OBSTRUCTION to BOGO

APPLY does a partial pattern-match, and points
out slot in the match which corresponds to
place-holder in the conceptualization from ELI

>FOUL-UP<

Attempting to partially understand EIM
ELI expectations were:

((AND (OR (POBJ) (HUMAN)) (NP)))

ELI's expectations are looking for either a
physical object or a human, and a noun phrase.
These are simply intra-sentence expectations.

Natural Lan*ua*e-9: Hran*er



APPLY expectations were:
(Scriptrole SUBSTRUCTION in $VEHACCIDENT)

APPLYs inter-sentence expectations expect this
slotfiller to play the role of Substruction in
the script $Vehaccident. Now FOUL-UP will pick
a compatible subset of these expectations, and
construct a definition for the word "elm".

FOUL-UP guesses the following definition for ELM:
(PROG NIL
(DEFPROP ELM T PP) (1)
(DEFPROP ELM *PHYSOBJ* ISA)
(DEFPROP ELM T NOUN)
(DEC ELM (2)
(T (NIL ((SHAPE NP)) NIL
(QUOTE (NOUNGROUP))
(QUOTE (STARTNOUNGR))))))
(DENG ELM (3)
(VAL (/PHYSOBJ FUNCTION
((<-> ($VEHACCIDENT
OBSTRUCTION MODFOCUS)))))
(MARKER NOUN))

This definition is in three parts:

(1) put the properties PP, PHYSOBJ, and

NOUN on the word, to fill ELI expectations;
(2) attach noun-grouper (see Gershman, 1977);
(3) define the conceptual structure that the
word will build in a CD, saying that it is of
the conceptual class //PHYSOBJ & plays the role
of an obstruction in a car accident script.

2. Note: Context-Specificity of Definitions

After the above run of SAM, the resulting
dictionary definition for "elm" would become a

permanent part of SAM's dictionary. Let wus now
take a closer look at exactly what information is
contained in the definition for "elm". At this

point, "elm" has been defined as no more nor less
than a physical object which plays the role of an
obstruction in an accident script. This does not
seem to reflect the true meaning of the word
"elm" at all, but rather seems only to embody the
meaning of the specific use of the word in this
one story. Most words have more than one meaning
or function, depending on the context they appear

in. Since FOUL-UP is given only one context, the
story itself, it can only guess the single mean-
ing apropos of that single story. The reason it

seems like a poor definition to us is because we
in fact have seen the word "elm" many times be-
fore, and already have rather complete defini-
tions for it, in many contexts. Note that if the
sample run had contained the word "bogosity" in
the place of "elm", ("The ~car struck a bo-
gosity"), then FOUL-UP's definition may still
have seemed sketchy, but it would be about as
much as a person could have figured out from just
that one exposure to the word. From the single
use of "elm" (or "bogosity") in the story, it
could be defined as a tree, or a telephone pole,
or one of those large orange barrels often seen
by the side of the road, or any number of other
things. (It might seem at first that a "bogos-
ity" could be another car, or a person, instead

of an inanimate object. It is the first sen-
tence, "A  car swerved off Route 69" that causes
APPLY (perhaps prematurely) to prefer the one-car
accident track, in which bystanders and other
cars play no part. This track is assumed in the
absence of further information.) The only con-
crete thing we can say about a "bogosity" is the
way It functions in the context of the script and
story it appears in. That is precisely the in-
formation that a scriptrole conveys in the SAM
system, and that is why FOUL-UP defined "bogos-
ity" in terms of a scriptrole. In fact, without
the inter-sentence expectations provided by the
script, the definition would have been even
weaker. Only ELI's intra-sentence expectations
could have been used, and the definition would
have simply said that an "elm" (or "bogosity")
was a noun and a physical object.

CATEGORIES OF FOUL-UPS
1. Nouns

The FOUL-UP program works solely on the
basis of intra- and inter- sentence expectations,
built into the parser and the script applier,
respectively. Thus any conceptualization which
can be "expected" in this sense by SAM should be
able to be figured out from context by the
FOUL-UP program, and FOUL-UP should be able to
use the available expectations to construct a
context-specific definition for the word, re-
gardless of its syntactic or semantic class.
However, the examples so far given have dealt
only with nouns. In this section, Foul-Ups of
other parts of speech will be demonstrated, and
it will be shown why each different syntactic
class presents its own unique difficulties to the
FOUL-UP program.

2% Anaphoric References

Consider the simple story:

"A car swerved off Route 69. The
struck a tree."

flivver

Again, we assume all the words are defined but
"flivver", and we assume a run of the SAM system
with this story as input. Once again, the first
sentence presents no difficulty, and serves to
invoke the script context which is necessary for
setting up the inter-sentence expectations that
FOUL-UP uses to figure out the meaning of the
word. The flow of control of the SAM run of this
sentence would be practically identical to that
of the previous example. ELI's expectations are
also similar. However, the inter-sentence ex-
pectations from APPLY are of a different form
than those in the previous examples. APPLY still
matches the CD for the second sentence into the
$Vehaccident script, and still notes the attrib-
utes of the slot in the script conceptualization
corresponding to the place-holder slot in the CD.
Those attributes, however, are no longer in the
form of a scriptrole specification. Instead,
associated with that slot is a pointer, saying
that the object in this slot is the same object

Natural Larm,aRe-9: Grander



in the ACTOR slot of the
is obvious when we note
that (1) the script must know that the object
that "swerves off the road" in an accident is the
same as the object that later is said to "strike"
something, and (2) SAM as a whole has the capa-
bility to resolve general anaphoric references.
Thus the second sentence in the story might have
read simply "It struck a tree", and the anaphoric
reference to "it" would be resolved as "the «car"
that appeared earlier.

as that which appeared
previous sentence. This

When such a situation occurs, FOUL-UP takes
advantage of the pointer to the referent, and
constructs a definition based on this pointer.
Such a definition will simply duplicate the def-
inition of the word that filled the pointed-to
slot, since the unknown word is presumably just
another reference to the same object. Thus, the
definition for an unknown word in this circum-
stance will be better than the "FUNCTION" defi-
nition of "elm" in the previous example. The
definition will not simply give the function of

the word in this script context, but rather will
give as complete a definition as exists for the
already defined word "car" which the unknown word
is an anaphoric reference to. Thus in this ex-
ample, the definition created for "flivver" will
be identical to that for "car":
(PROG NIL
(DEFPROP FLIVVER T PP)
(DEFPROP FLIVVER *PHYSOBJ* ISA)
(DEFPROP FLIVVER T NOUN)
(DEC FLIVVER (T (NIL ((SHAPE NP)) NIL
(QUOTE (NOUNGROUP))
(QUOTE (STARTNOUNGR)))))
(DENG FLIVVER (VAL (//PHYSOBJ TYPE (*CAR*)))

(MARKER NOUN)))

The "TYPE" specification in this definition is a
reference to the entry "*CAR*" in a general dic-
tionary which defines attributes of generic ob-
jects such as cars, and their uses in certain
contexts. Thus anything that SAM knows about
cars it now also knows about flivvers. Further-
more, it is likely that the term "flivver" refers
to a specific subset of all cars, (e.g. "sedan",
"jeep"). Therefore, the term is saved, and
FOUL-UP gives the term to SAM's generator program
(see Goldman, 1975) to use when referring to the
car in this story.
3. Verbs
a. Structure-builders vs. Slot-fillers

Consider the story

"A car swerved off Route 69. The car hied
into a tree."
The unknown word In the sentence, ("hied"), is
recognized as being a verb by ELI expectations
and by the fact that it ends in a regular verb
ending. A simple place-holder cannot be
straightforwardly constructed for the word, as
was the case for nouns. This is because the verb

Natural

Languafce-9:
175

in a sentence determines most of the structure of
the Conceptual Dependency representation for that
sentence. (see Schank, 1975, and Riesbeck &
Schank, 1976) Essentially, the verb builds the

framework outline for the CD,
the expectations as to what will

the nouns build structures which
that verb-frame. This can be
looking at a parse of a sample

went to New York". Partially
representations for sentences will be used for
convenience, to facilitate references to specific
pieces of the conceptualization. The internal

and sets up most of
come next. Then
fill slots in

Illustrated by
sentence, "John
"kernelized" CD

representations of CDs in ELI are entirely "ker-
nelized" In this fashion. A partially kernelized
CD for the above sentence follows:

Kl: ((ACTOR (K2) <-> (PTRANS)

OBJECT (K2) TO (K3)))

K2: (/PERSON FIRSTNAME (JOHN))

K3: (/LOCALE STATE (*NY*))

The word "went" builds the structure KI, with
empty slots in the ACTOR, OBJECT and TO posi-
tions. The word "John" builds the structure K2,
which  simply fills in the ACTOR and OBJECT slots
in KI, and "New York" builds K3, which fills the
TO slot in KI. Although these constructs may

look about the same size and complexity, It is in
fact KI, the verb-frame, which drives the parse
of the rest of the sentence. The verb itself
sets up the expectations that a /PERSON should
lill the ACTOR and OBJECT slots, and that a
/ILOCALE should fill the TO slot. Then when the
words "John" and "New York" build such struc-
tures, those expectations dictate how they are
incorporated into the CD. By <contrast, the CD
representation for the sentence "John hied to New
York", assuming the unknown word "hied" is ig-
nored, would simply be:

Kl: (//PERSON FIRSTNAME (JOHN))

K2: (//LOCALE STATE (*NY*))

This representation is simply an unordered bag of
noun groups, lacking the structure usually im-
posed upon it by the verb. Assuming that this
kind of structure was built in the event of a
verb foul-up, the later stages of processing
would be quite difficult. This unstructured bag
of noun groups cannot be matched into a script,
at least not by the usual methods. The FOUL-UP
program performs a four-step process to enable

undefined terms

of the context

verbs to be correctly defined in
in which they appear.

b. Step 1: A "Catch-All" Verb Frame

that the unknown  word in a
FOUL-UP must create a verb-

In the event
sentence Is a verb,

frame which is capable of expecting all the sub-
sequent noun groups or other slot-fillers that
may occur. Such a "catch-all" verb frame looks

like the following:

nran*er



((ACTOR (NIL) <-> (NIL) OBJECT (NIL) TO (NIL)
FROM (NIL)) TIME (NIL))

Furthermore, each of the slots in this CD-frame
has associated with it a set of expectations that
will accept virtually any conceptual class of
noun that may appear. This ensures that all
words in the sentence will at least be assigned
some position in the CD. Note that the resulting
CD, built by ELI and FOUL-UP, will become input
to APPLY's pattern-mateher, when it attempts to
match the CD into the script. Thus, it is cru-
cial that the noun groups are put into the cor-
rect slots within the conceptualization, if the
CD is to be recognized <correctly by APPLY's
pattern-matcher.

Step 2: Preposition Matching

This step consists of using knowledge of
prepositions to tentatively place nouns Into
their appropriate slots. Thus the prepositions
TO, TOWARDS, INTO, AT expect to fill the TO slot
in the CD, while FROM, OFF, OUT expect to fill
the FROM slot. Finally, if no preposition is
present, the OBJECT slot is assumed. This heur-
istic is dependable up to a point, but difficul-
ties arise when idiomatic uses of prepositions
occur. As an example, assume the second sentence
in the above story had read "The car caromed off
a tree", where "caromed" is unknown to SAM. Then
the conceptualization for "tree" would be put
into the FROM slot in the CD, by the heuristic
just stated for the preposition "off". However,
the script pattern will be looking for the ob-
struction "tree" in the OBJECT slot, correspon-
ding to the normal construction "The car struck a
tree". Thus the position of the nouns in the CD
must be thought of as tentative, and APPLY will
often have to search more than one <conceptual-
ization before it finds the appropriate match.
d. Step 3: ACT Preference

The APPLY search can be Ilimited to those
conceptualizations In the script which contain at

least the same noun groups as the input concep-
tualization, even if they're not in the correct
slots. There are still likely to be two or more

such potential matches in the script, which APPLY
can not dependably decide between. Thus  FOUL-UP
uses an additional heuristic to aid the search,
that of "ACT Preference". Based on the preposi-
tional phrase that appears in the sentence, there
is quite often a unique primitive ACT implied,
along with a set of expectations for the slot-

fillers. Thus if we see a sentence Ilike "John
hied to New York", we easily infer, even in the
absence of a script or other large context, that

the ACT in the CD for this sentence will probably
be a PTRANS, because of the preposition "to"
followed by a location. The prepositional
phrases considered are those which <contain a
preposition followed by a noun group. The SAM
system is able to classify noun groups into
conceptual classes, such as #PHYSOBJ (physical
object), #PERSON (human being), #CONCEPT (sub-
clause), #LOCALE (place), etc. When certain

prepositions occur in a prepositional phrase
combined with certain conceptual classes of
nouns, the primitive ACT in the sentence can of-
ten be predicted simply from this information.
The following table is a segment of a table of
such correlations, used in FOUL-UP to help pre-
dict what the ACT in the sentence will be. Given
in the table are common prepositions on one axis,
and common conceptual classes of nouns along the
other axis. For each possible combination of
preposition and noun in a prepositional phrase
(e.g. "to" and "/PERSON" in "He gave the book _to
Mary"), the corresponding preferred ACT is looked
up in the table (e.g. ATRANS), as well as the
predicted slot in the CD for the noun to fill
(the TO slot).

| //PHYSOBJ //PERSON //LOCALE //CONCEPT /BODYPART

OFF PTRANS? PTRANS  MTRANS

FROM FROM MOBJECT

BY | Script? ? PTRANS 2 ?

| INSTR INSTR LOC INSTR INSTR

|
TO | ATRANS  PTRANS

TO TO

INTO| PROPEL PROPEL PTRANS MTRANS INGEST

I TO TO TO MOBJECT TO
For each of these pairs of categories (preposi-

tion / noun class), sample sentences are abun-
dant. For example, the pair (OFF / /ILOCALE)
could arise from the sentence "The man jumped off
the building", and the pair (INTO / //ICONCEPT)
occur in the sentence "He looked into the inci-
dent". The idea of "preferring" a certain set of
attributes when in the presence of partial in-
formation has been used In  other systems (see
Wilks, 1975). Note that the table is incomplete,
and thus can not always provide enough informa-
tion to allow the correct conceptualization to be
chosen from the script. Further work is being
done in this area.

e. Step 4: Matching
Recall the story that began this section.
Based on the above table, the second sentence,

"The car hied into a tree", would be represented
as follows:

Kl: ((ACTOR (K2) <-> (BOGUS-ACT LEXVAL (HIED)
PREFER (PROPEL)) TO (K3))

K2: (/PHYSOBJ TYPE (*CAR*))
K3: @#PHYSOBJ TYPE (*TREE*))

Note that the ACT "PROPEL" is preferred, and the
conceptualization for the noun "tree" is put in
the "TO" slot. When APPLY attempts to match this
conceptualization into the script, it discovers
one tentative match, which has the same noun
conceptualizations, corresponding to "car" and
"tree", but the one for "tree" is in the OBJECT
slot in the script conceptualization, and in the

Natural Language-9: Granger
176



TO slot in the CD, so the match can only be con-
sidered tentative. (This is an example of the
idiomatic usage of verb-preposition pairs men-
tioned earlier.) APPLY now looks at the informa-
tion in the PREFER slot of the "BOGUS-ACT"
place-holder, which says that the ACT should be a
PROPEL. Since this is in fact the ACT in the
script conceptualization, the match is considered
successful, and the word "hied" is defined as
building a PROPEL in this context, The defini-
tion that FOUL-UP creates for "hied" looks Ilike
the following:
(PROG NIL
(DEFPROP HIED T VERB) (1)
(DEFPROP HIED *CONCEPT* ISA)
(DC HIED

(T (NIL (BOGACTFRAME) NIL (2)

ACTORSUGG BYSUGG TOSUGG
(OBJECT CONREQ) TIMESUGG MODESUGG
(FROM CONREQ) (TO CONREQ))
(THREEFRAME (QUOTE HIED)) NIL
SUBJSUGG

(NIL (3)

(OBJ SYNREQ) RECIPSUGG)))

the definition is in three parts: part
the appropriate internal properties
"concept" on the word; part (2) de-
conceptual (semantic) structure-
the expectations for the subsequent

and (3) defines the syntactic ex-
pectations and slot-fillers (see Riesbeck and
Schank, 1976). Note that all the information
provided by the first three steps (verb-frame,
preposition match and ACT preference) was in fact
required by the matching process before the con-
ceptualization could be recognized as a form of
the pattern in the script.

Again,
(1) puts

"verb" and
fines the
builders and
slot-fillers;

f. Notes on how hard this all is

The process just described
current state of knowledge of (1) prepositions
and (2) conceptual classes of nouns. The theo-
ries behind each of these are quite primitive (no
pun intended), and the above process for foul-ups
of verbs Is at a correspondingly early stage of
development. The problem of resolving the case
ambiguity of text prepositions has proved in-
tractable in many natural language systems.
General rules for prepositions are riddled with
exceptions and special cases, and every preposi-
tion seems to have a myriad different uses. For
an example of the diversity of uses of a single
preposition ("for"), see (Hemphill, 1973). Sim-
ilarly, the theory behind conceptual classes in
SAM is considerably less developed than that of
primitive ACTs. Other sets of conceptual classes
and object primitives have been proposed in the
past, and perhaps the SAM system (and FOUL-UP)
would benefit from a re-examination of the cur-
rent classification system for nouns. (See
Weber, 1971, and Lehnert, 1977).

depends on the

4. Adjectives

Consider the story:

Natural

177

a car swerved off
struck a tree."

"Friday, Route 69. The

flibby vehicle

the second
all clear, nor can It be
the context. In fact, it
is not clear whether or not the adjective even
changes the meaning of the sentence at all, since
the sentence <can be understood in this case by
ignoring the unknown word. In fact, FOUL-UP at-
tempts to ignore unknown adjectives wherever
possible, and cannot guess meanings for them in
general. The methods wused for nouns and verbs
totally break down when applied to adjectives.
There are three closely related reasons for this:
(1) Adjectives are not expected in a sentence, in
the sense of expectation we have been dealing
with. Rather an adjective appears as a modifier,
affecting the meaning of the noun following it.
(2) There exist no primitives for adjectives
corresponding to the relatively comprehensive
sets of primitives within the realms of nouns and
verbs in CD representation.

(3) The conceptualization built by
usually occupies an "extra" slot
tached to the slot filled by the noun
adjective modifies. Thus there s
"top-down" way to guess a meaning for an

The meaning of the word in
sentence is not at

easily figured out from

"flibby"

an adjective
in a CD, at-
which the
no purely
unknown

adjective, since it is inherently unexpected.
Note that the ideas of expectation,
conceptual classes, and slot-filling are all
closely related. The expectations in both ELI
and APPLY are based on differentiation between
various coneeptual classes of objects, and the
slots are filled on the basis of the expecta-
tions. Thus the lack of conceptual classes of
adjectives causes the other difficulties, and
they should not be viewed as independent prob-

lems.
CONCLUSION: LIMITING CASES

*e Syntactic Class Limitations

It was stated earlier
theoretical limitation on

that there might be no
the classes of words

that FOUL-UP could figure out from context, as
long as there existed ELI and APPLY expectations
for the conceptualizations built by a word. We

have now seen, however, that different syntactic
classes of words present varying degrees of dif-
ficulty to the FOUL-UP program. The difficulties
arise depending on (1) the consistency and com-
pleteness of the existing representational
schemes for a given syntactic class, and (2) the
amount of information contained in the structures
typically built by words in that syntactic class.

Furthermore, we have seen that the issues of ex-
pectation on the one hand, and conceptual class
on the other, cannot be easily separated. Thus
the expectations for the members of certain syn-
tactic classes are stronger than for others, de-
pending on the relative thoroughness of the rep-
resentation schemes for those <classes. Thus
strength of expectation is also a (dependent)

factor contributing to the ease or difficulty of
the FOUL-UP task within a given syntactic class.

Language-9: Granger



Nouns are typically slot-fillers, builders
of small structures containing relatively little
of the overall information present in a given
conceptualization. They also have a reasonably
consistent and complete representation in terms
of conceptual classes. Thus the process for
figuring out unknown nouns from context is rela-
tively straightforward. Verbs are builders of
large structures which contain most of the ex-
pectations for a given sentence, and which supply

most of the structure to conceptualizations.
They also have a consistent and complete repre-
sentation in terms of primitive ACTs. Thus they
are more difficult to figure out from context
than nouns. Adjectives are not well defined or
consistently represented in CD, and they build
structures of varying size and complexity. Fur-
thermore, being conceptual modifiers, they lack
pre-defined slots to fill in a conceptualization.
Thus it is natural that they should be most dif-
ficult, if not impossible, to figure out from
context.
2. Conceptual Class Limitations

Assuming that all words can eventually have
their meanings represented in something akin to
Conceptual Dependency representation, then there
would still be limitations on FOUL-UP's ability
to figure out words from context. To perform the
process, a strong top-down context, like a
script, is needed to provide the expected at-
tributes of unknown words. Other large top-down
frameworks, such as plans (see Schank & Abelson,
1977) or belief systems (see Abelson, 1973),
should theoretically provide enough context to
enable words to be figured out from those con-
texts. For example, consider the following
"planny" story:

"John saw a menacing figure approaching his
store. He reached into the desk drawer and
pulled out a magnum."

The word "magnum" in this story is highly ex-
pected to be some kind of weapon or other pro-
tective device. That expectation could be set up
by a plan-applier mechanism (PAM) (see Wilensky,
1976), and a version of FOUL-UP could theoreti-
cally use such expectations to guess the meaning
of the unknown word. However, scripts are very
explicitly defined sequences of actions, while
plans are much less explicitly sequenced, and
belief systems still less so. It is to be ex-
pected that the ability to figure out words from
context will diminish as the strictly episodic
nature (and thus the strength of the expecta-
tions) of the knowledge database diminishes.
Thus scripty stories are ideally constructed for
figuring out words from context, plans are less
so, and belief systems still less. It is worth-
while to reiterate that the representations being
discussed are intended as models of the human
understanding process, and thus that the abili-
ties and limitations of the programs are modelled
after analogous processes in people. The FOUL-UP
program was designed to simulate a known human
ability, and to add this ability to the already

Natural

Lanfuap:e-9:

178

existing SAM system. Since SAM is intended to
model the human understanding process within the
realm of script-based stories, it is encouraging
to note that the limitations of the FOUL-UP seem
to closely parallel the limitations of people's
ability to perform the same task. Certainly a
program intended to model humans will not be able
to out-perform them, but rather should show the
same sorts of abilities and shortcomings that
people show. In that sense, the FOUL-UP program
has demonstrated some psychological validity for
the SAM system, and for Conceptual Dependency
representation Itself.

REFERENCES

1) Abelson, R. P. (1973). The Structure of
Belief Systems. In R. C. Schank and K. M.
Colby (Eds.) Computer Models of Thought and Lan-
guage. W. H. Freeman, San Francisco, Calif.

2) Cullingford, R.E. (1977). Organizing
World Knowledge for Story Understanding by Com-
puter. Ph.D. Thesis, Yale A.Il. Project, New
Haven, Conn.

3) Gershman, A. (1977). Conceptual Analysis
of Noun Groups in English. Paper submitted to
the 5th International Joint Conference on Arti-
ficial Intelligence. Cambridge, Mass.

4) Hemphill, L. (1975). A Conceptual Ap-
proach to Automated Language Understanding and

Belief Structures: With a Complete Disambigu-
ation of the Word "For". Ph.D. Thesis, Stanford
University, Stanford, Calif.

5) Lehnert, W. (1977). The Process of
Question Answering. Ph.D. Thesis, Yale A.l.
Project, New Haven, Conn.

6) Riesbeck, C.K. and Schank, R.C. (1976).
Comprehension by Computer: Expectation-based
Analysis of Sentences in Context. Yale Dept. of
Corap. Sci. Research Report //78, New Haven,
Conn.

7) Schank, R.C. (1975). Conceptual Infor-
mation Processing. North Holland, Amsterdam.

8) Schank, R.C. et al. (1975). SAM — A
Story Understander. Yale Dept. of Comp. Sci.
Research Report //43, New Haven, Conn.

9) Schank, R.C. and Abelson, R.P. (1977).
Scripts, Plans, and Understanding. Lawrence
Erlbaum Associates, Hillsdale, N.J.

10) Weber, S. (1972). Semantic Categories of
Nominals for Conceptual Dependency Analysis of
Natural Language. Stanford A.l. Memo AIM-172,
Stanford, Calif.

11) Wilensky, R. (1976). Machine Under-
standing of Human Intentionality. Proceedings of
the ACM Annual Conference. Houston, Texas.

12) Wilks, Y. (1975). Preference Semantics.
In E. Keenan (Ed.), Formal Semantics of Natural
Language, Cambridge U. P., Cambridge, England.

13) Winograd, T. (1971). Procedures as a
Representation for Data in a Computer Program for
Understanding Natural Language. TR-84, M.I.T.,
Cambridge, Mass.

14) Woods, W.A. and Kaplan, R.M. (1971).
The Lunar Sciences Natural Language Information
System. BBN Report No. 2265. Bolt Beranek and
Newman Inc. Cambridge, Mass.

Grander



