HUMAN ENGINEERING FCR APPLIED NATURAL LANGUAGE PROCESSING

Gary G.

Artificial

Intelligence

Herdrix

Carter

SRl INTERNATIONAL

Mmlo Park,

ABSTRACT

Human engineering features for enhancing the
usabil ity of practical natural language systems a're
described. Such features include spelling
correction, processing of incomplete (elliptic-~l)
input?, jntfrrog-tior of thP underlying language
definition through English oueries, and ?r rbil.it y
for casual users to extrnd the language accepted by
the system through the” use of synonyms ana
peraphrases. All of 1 h* features described are
incorporated in LJFER, -"n rpplieations-orjenlfd
system for’ creating natural language | nterfaees
between computer programs and casual USERS
LJFER's methods for r<"w]izir? the mroe complex
human enginering features ? re presented.

1 INTRODUCTION

This pape r depcribes aspect r of an
applieations-oriented system for creating natural
langruage interfaces between computer software and
Casual wusers. Like the underlying researen itself,
the paper is focused on the human engineering
involved in designing practical rnd comfortable
interfaces. This focus has lead to the
investigation of some generally neglected facets of
language processing, including the processing of
Ireomplfte inputs, the ability to resume parsing
after recovering from spelling errors and the
ability for naive users to input English stat.emert s
atrun time that, extend and person-lize the
language accepted by the system. The
implementation of these features in a convenient
package and their integration with other human
engineering features are discussed.

A. HISTORICAL PERSPECTIVE

There has been mounting evidence that the
current state of the art in natural language
processing, although still relatively primitive, is
sufficient for dealing with some very real
problems. For example, Brown and Burton (1975)
have developed a usable system for computer
assisted instruction, and a number of language
systems have been developed for interfacing to data
bases, including the REL system developed by
Thompson and Thompson (1975), the LUNAR system of
Woods et al. (1972), and the PLANES system ol
Walt7 (1975). The SIGART newsletter for February,
1977, contains a collection cf 5? short overviews
of research efforts in the general area of natural
language interfaces.

Natural

Language-10:

California 94025

Tnere has rise been a growing demand for
application systems. At SRi's Artificial
Irtellugene Center alone, many programs are ripe
for the addition of language capabilities,
Including systems for data base accessing,

industrial automation, automatic programming,
deduct ior, and judgmental reasoning. The appeal cf
these systems to builders ana users .-'like is

greatly enhanced when they are able to accept
natural language inputs.

B. The LIFER SYSTEM

To add natural language capabilities to a
variety of existing reftware systems, SRl has
C'velopcd a package of convenient tools,
co.llectively called LIFER, which facilitate the
rapid construction of natural language interfaces,
The Idea behind the LIFER system (Hendrix 19/6,
1977) is to adapt existing computational linguistie
technology tc practical applications while
extend ing the technology to rreet human needs.

These human needs are perhaps not central to the
science of language but they are. certainly central
factors in its application. Subsequent sections of
this paper present some- of the human engineering
features for interface users included in LIFER.*
Several of the nonlinguistic features were inspired
by cr taken directly** from INTERLISP (Teitelmen
1975), an interactive LISP programming system which
is itself an excellent example of thoughtful human
engineering in computer software.

11 HUMAN ENGINEERING FOR INTERFACE USERS

Some of LIFER'S human engineering features ere
exemplified in the interactions shown in Figure 1.
These particular interactions involve a LIFER
interface to a data base of information about
employees of a university. Analogous LIFER
interfaces to other types cf software may also be
const rue ted.

From s language processing view, LIFER's most
interesting features are the elliptical processor,
the spelling corrector, and the paraphraser.

* The LIFER Manual (Hendrix 1977) describes how to
define special-purpose languages for particular
applications. It also includes information about
LIFER's human engineering features for interface
builders and about issues concerning applied
computational linguistics.

*« LIFER makes direct use of the INTERLISP spelling
corrector end the USE and REDO features.

Hendrix

FIGURE 1

1-What is the salary of Eric Johnson?

PARSED!

(ID 327-36-8172 SALARY 19250)

2-Position and date hired?

Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF
ERIC JOHNSON

(ID 327-36-8172 POSITION Aasoc-Prof DATE-HIRED 8/1/70)

3-Of Robert Morgan

Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF
ROBERT MORGAN

(ID 437-26-1190 POSITION Assis-Prof DATE-HIRED 6/1/73)

4-Employee 282-93-5307

Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF
EMPLOYEE 282-93-5 307

(ID 282-93-5307 POSITION Secretary DATE-HIRED 3/13/69)

5-Of professors in the computer science department

Trying Ellipsis: WHAT IS THE POSITION AND DATE HIRED OF
PROFESSORS IN THE COMPUTER SCIENCE DEPT

(ID 131-20-8462 POSITION Prof DATE-HIRED 8/1/55)
(ID 416-16-2749 POSITION Prof DATE-HIRED 8/1/74)
(ID 179-80-1360 POSITION Prof DATE-HIRED 1/1/63)
(ID 257-58-3058 POSITION Prof DATE-HIRED 15/7171)
(ID 207-49-9271 POSITION Prof DATE-HIRED 8/1/69)

6-What is the average salary and age for math department
secretaries
AVERAGE <— spelling
PARSED!

SALARY
5 items accepted
Average is 7631.4999

AGE
4 items accepted
Average is 28.1471

[Note: the birth date of one

secretary was the value N/A for

not available.]

7-Maximum

Trying Ellipsis: WHAT IS THE MAXIMUM SALARY AND AGE FOR
MATH DEPARTMENT SECRETARIES

SALARY 10730
AGE 32

8-What assistant Professors in compsci were hired after
1975

Trying Ellipsis: ELLIPSIS HAS FAILED

THE PARSER DOES NOT EXPECT THE WORD "COMPSCI" TO FOLLOW

"WHAT A8SISTANT PROFESSOR IN".

Options for next- word or meta symbol are:

<DEPARTMENT-NAME> <DEPARTMENT>

9-What is a <DEPARTMENT-NAME>
PARSED!

<DEPARTMENT-NAME> may be any member of the set
{ANTHRO ANTHROPOLOGY ART BS BUSINESS ... CS ... ZOO
ZOOLOGY}

<DEPARTMENT-NAME> may be any sequence of words following
one of the patterns:
<DEPARTMENT-NAME> -> BUSINESS ADMINISTRATION

COMPUTER SCIENCE

HOME ECONOMICS

Natural

Language-10:
184

EXAMPLE INTERACTIONS WITH LIFER

10-Use CS for Compsci in 8

PARSED!

(ID 263-42-6062 POSITION Aesist-Prof DATE-HIRED 8/1/76)
(ID 501-13-1171 POSITION Assist-Prof DATE-HIRED 6/15/76)

11-What are their names and ages
PARSED!

(ID 263-41-6062
(ID 501-13-1171

NAME (John W. Francis) AGE 36)
NAME (Martha K. Scott) AGE 28)

12-How many associate professors are there in the
compsci department

Trying Ellipsis: ELLIPSIS HAS FAILED

THE PARSER DOES NOT EXPECT THE WORD "COMPSCI" TO FOLLOW

"HOW MANY ASSOCIATE PROFESSORS ARE THERE IN THE".

Options for next word or meta symbol are:

<DEPARTMENT-NAME>

13-Define compsci like CS
PARSED!
COMPSCI

14-Redo -2
PARSED!
5

15-List the compsci secretaries
PARSED!

(ID 490-81-2131)

(ID 512-37-3594)

(ID 572-15-4276)

16-Print salary Martin Devine

Trying Ellipsis: ELLIPSIS HAS FAILED

THE PARSER DOES NOT EXPECT THE WORD "SALARY" TO FOLLOW
"PRINT".

Options for next word or meta symbol are:

THE

17-Let "print salary Martin Devine" be a
"print the salary of Martin Devine"

PARSED!

LIFER.TOP.GRAMMAR -> <PRESENT>

finished

paraphrase of

<ATTRIBUTES> <EMPLOYEE>

18-Print salary Martin Devine
PARSED!

(ID 131-20-8462 SALARY 31500)

19-Age and position

Trying Ellipsis: PRINT AGE AND POSITION MARTIN DEVINE
(ID 131-20-8462 AGE 57 POSITION Prof)

20-Show date hired compsci professors making over 30000
PARSED!

(ID 131-20-8462
(ID 207-49-9271

POSITION Prof
POSITION Prof

DATE-HIRED
DATE-HIRED

8/1/55)
8/1/69)

21-Let "DUMPALL Martin Devine" be a paraphrase of
"What is the ID, position, department and
salary of Martin Devine"

PARSED!

LIFER.TOP.GRAMMAR -> DUMPALL <EMPLOYEE>

finished

22-Dumpall employees earning over 35000

PARSED!

(ID 122-22-8769 POSITION Prof DEPT Math SALARY 35500)

(ID 178-31-1942 POSITION Prof DEPT Physics SALARY 36000)
(ID 206-56-1620 POSITION President DEPT N/A SALARY 37500)

23-! (CONS 'THIS '(INTERACTION USES INTERLISP DIRECTLY))
(THIS INTERACTION USES INTERLISP DIRECTLY)

Hendrix

However, the wusability of LIFER is influfnced net
so much by the poner of individual features -s by
the aggregate effect of having a number of festunes
working together to support the user, it if the
mix of features at various levels of complexity
that should be looked for in studying the
interactions of the example.

A. ENTERING AN INPUT

After 1NTERLISP (the language in which LIFER
is currently implemented) outputs its. prompt
characters, the user may type in queries, commands,
or assertions to the system ir ordinary English.*
There is noneeddto call the parser explicitly.
Both upper and lower ease are allowed, and
punctuation is optional. For example, in the first
line of Figure 1, the user asks the question "what
is the salary of Eric Johnson?" a.fter INTERLISP
types the prompt "1 - " .

h. FEEDBACK

LIFER pnrses typical inputs, such ?s
interaction 1, in well under a second of CPU time
on the DEC PDP KL-10.** However, when the CPU is
heavily loaded, users may become concerned about
their inputs after even a brief d*iry. LIFER seeks
to relieve this anxiety by providing a constant
stream of feedback. For example, the CRT cursor cr
teletype print head follows the parsing operation
as it works through an input from left to right.
This feedback is rn important humanizing feature,
analogous to eye contact, he?d nodding, and beard

stroking. Another feedback is that the system
types the message

PARSED!
when LIFER has finished analyzing an input and is
ready to call application software (i.e., the

system to which LIFER is providing an interface) to
answer the question, carry out the command, or
assimilate the assertion communicated by the input.

C. INCOMPLETE INPUTS

If the user has just asked
WHAT IS THE SALARY OF ERIC JOHNSON
and now wishes to know Johnson's position and date
hired, it is far more convenient and natural to
simply ask
POSITION AND DATE HIRED
than to laboriously type out
WHAT is THE POSITION AND DATE HIRED OF ERIC JOHNSON
Accommodating the human tendency to abbreviate
inputs is an important consideration for
applications systems. Although some other systems
make it possible to define grammars that accept
incomplete sentences as "complete" inputs,*** LIFER

* Of course, only ? subset of English is actually
accepted by any particular interface, but
experience has shown that this subset can be
designed to have wide coverage in v particular
application area.

*« Timings arc based on a vocabulary of 1000 words
and a grammar containing over 600 production rules.

Natural

makes this unnecessary by autcmnticaiiy deducing
possible elliptical (i.e., incomplete) structures
from the grammars suppliedfer complete

constructions. (See interaction ? of Figure 1.)

LIFER first attempts to parse an input as a
complete sentence.**** only when this fails is
elliptical analysis attempteo. To giv the user
feedback concerning thjs shift in operations, LIFER
types the message

TRYING ELLIPSIS:
when the elliptic-el analysis routine is invoked,
if elliptical analysis is successful, then, as an
additional feedback to the user, the system's
exprnsion of tne elliptical input is printed after
the "TRYING ELLIPSIS:" message, replacing the
"PARSED!" message printed for complete inputs.

Inputs 2 through 5 of Figure 1 are different
elliptical variations on the same besic sentence
pattern, the pattern of input 1. input 2 causes a
substitution for the attributes sought. Inputs '*
through 5 substitute for the individuals whose
attributes are sought. Note that input 5 seeks the
position and date hired for a whole class of
individuals.

A significant consideration when dealing with
humen-gencrated inputs is that they often contain
spelling errors. Whether the wuser actually
misspells h word or' simply mistypes it, the effect
is the same: garbled input. In constructing a.
language system for the sake ol studying language
understanding, there is no real need for a spelling
correction capability, but users of application
systems are justly irritated when spelling errors
cause abortion of processing ard result in delays
and tedious retyping.

LIFER'S spelling correction ability, which
maikes use cf IN'IERLISP's spelling corrector, is
illustrated by interaction 6. A message is printed
indicating that a spelling correction has been
made, and the respelling is printed directly below
the originally misspelled word.

E.ERRORMESSAGESaction8illustrateshowLIFERresponds
when it cannot successfully interpret an input.
Having failed to parse at both the sentence level
and the ellipsis level, and being unable® tO proceed
through spelling correction, LIFER gives up and
prints an error message. This error message is not
such cryptic nonsense as

ERROR TRAP AT LOC 13730,
but is a piece of useful information that caN help
a naive user understand the problem plaguing his
input and aid in a reformulation. (Interface
builders may call special diagnostic routines for
sophisticated error information, but that is

*** This was done, for example, in the SRl Speech
Understanding System. See Walker (1976).

***» Eut this operation may be skipped by typing a
comma as the first character in an input that is
only to be processed elliptic-ally.

Language-10: Hendrix

another story.) The currert error message (ore of
several) indicates that LIFER understood
whatl ASSOCIATE PROFESSOR IN

but then had trouble with ¢ the word compsct It was

Ir. interaction 17, interneticn 12 is reirvokeo
through INIERLiSP's RtDO feature. Tnis time,
CO:PsSt| is understood. ir interaction 1*, COtPSCI
is usee in ? new input.

expecting'DEPARTMENTNAMEAtthispoint,theusermAyrealizethat

COKPSCI might net be included in the system's
lexicon. Another way of expressing the dcpartmentl
name --such is COMPUTER SCIENCE— could be tried.
On the other hand, the user may be stumped, having
re ides what <DE PARTMFMT-NAr-* is. This brirgs up
the next topic, and interaction 9.

E. inspecion OF THE LANGUAGE DEFINATION

LIFER provides easy a'ccess to information
about the underlying language definition through
natural language. Sophisticated users ? nd

irterface builders rrry usr this mechanism to
refresh their memerle* on the uncerlying structures
and . naive users . -1 i1ivztr '"ten jr
the last intera rtion, may peed acess tc the
language definition to 'id ir the undr ct

error messages

interactior (j shows ore type of question that
provioes reeses to the underlying structures. The
response to this input inaiertes both vords nro
phrrsrs thrt rrr-y be substituted lor <DEPARTMENT-
NAKE>.

G. EXFLICIT SUBSTITIONS

When r user wishes to ASk some simple variant
of An errlior ouestior but is rot in the correct
context for using ellipsis (*.g., there rre
intervening sentences), direct reference may be
made tc the- crrlier input, as is jllustre ted by
interaction 10. Such references ;<nd substitutions
may save typing and. so redues both the wuser's work
work the likelihood of typing errors, This isa
strnderd fepturc of INTERLISP rnd is not unique to
LIFER.

H. PPONCKWL REFERENCE

The resolution of ANAPHOIC reference,
especially pronouns, presents complex problems for
LANGUAGE processing systems.* LIFER has no megic
answers to these problems, but does provide
frailities for handling seme of the simpler casts.
One such case is illustrated by irteruction 11.

1. DEFINING SYNONYMS

In interaction 12, the user agAin attempts to
use COMPSC1 nnd again receives an error messege.
It may very well be that he is accustomed to using
this abbreviation for computer science rnd does not
want tc adept to any of the synonyms currently
eccepted by the system. Rather, he wants the

system to adapt, to HIs preferences. In interaction
13, the wuser tells the system tc define COMPSC1
like CS.** Henceforth, these vords will be
synonyms.

* See Grosz (1977) for rn interesting discussion of
discourse problems end sophisticpted mechanisms for
deling with them.

Natural

Language-10:
186

j. DEFINING PARAPHRASES

The synonym feature prc.se ntec above allcws
LiFFR to -drpt to individual users by Jeanning new

words. Tne para phrase feature allows LIFER to
acapt to new grrmmatical constructions. For
example , a user may grow tired of typing

syntactically "correct" English gieroes and wish to
use ;,r -bbreviPteci format. in interacttor 16, the
user attempts to use r ocndirsed format and is
confronted vithan error massage |In interaction
17, an ordinary English construction is employed to
tell the system that the rbbreviated form is

ne neeforth tc be accepted as legi timate . LIFER
analyzes the specifie parrphr-sc it has been given
asanexrmple,seekingtoa

prr:-phr'ms in.g to other ases (Recre Will be said
rbcut this later-.) Prooucticn rules shewing the
results of this generalization are printed for the
bere f of the more sopnisticrted user

In interaction al the new abbreviated forra?t
Is tested. interactior. 19 illustr'tes an
elliptional epasyi rsion based on the user-aef i nee
formrt. Interaction 20 illustrates the foot that
LJFER has genenalzed the. or-igirrl paraphrase
cxample tc cover' other abbrevirted constructions
that are similar.

Interoctions 21 are 22 provice further
illustrations of LiFER'sprrpphr-r.seability.
Through internetion 21,

DUMPALL x
come s tc have t r. e meaning
1ND1CATE THE ID, POSITION,
DEPARTMENT, AND SALARY CF x

K. ACCESSING THE HOST LANGUAGE

the user who knows INTERLISP may wish to mix
interactions with the LIFER parser and interactions
with INTERLIiSP. As iilustreted in interaction 2'-,
this is ersily done by preceding inputs for
INTERLISP with the symbol "!".

** 8Synonyms m:y rlso be defined through the more
general concept cf paraphrse A paraphrase
irteracticn equivelent to the use of synonyms in
interaction 1; is the following:

1?-Let "How msny associate professors are there in
the COMPSC1 department" bc a paraphrase cf
"How many associate professors are there in
the CS department"

PARSED!

KAY LIFER ASSUME THAT "COhPSCi" MAY ALWAYS BE USED
FOR "CS"

(TYPE YES OR NO)

YES

<DEPARTMENT-NAME> => CS

finished

m_

Hendrlx

L. PROVJDING COMFORTABLE LINGUSTIC COVERAGE

In the fin?] ana-lysis, the most important
piece of human engineering for users is thAt of
supplying an interface language covering the range
of linguistic structures nceded to communicate
comfortably vith the application software, such
features as spelling correction and elliptical
procrssinc, although important, can never make up
for deficiencies in basic linguistic capabilities.

Given the current state of the art in language
processing, it would br futile to attempt to
provide a definitive specification of English

havingsufficientgeneralitytr,overailpotenttialapplications.LIFER ||§|?BRFB§EI§R?

cover age is not to pursue ?- definitive
specification, but rather tc supply the framework,
guidance, and mechanisms that allow an interface
builder, in a reasonable amount of time, to create
a solid, practicable, special purpose language
definition, covering the spectrum of linguistic
structures most relevant to ?. particular

appl ieation .*

No attempt can be made here to de-tail the
particular set of interactive functions that LIFER
provides for specifying ?n application language,**
but a few key points may be me-rticned:

(1) Interface builders work within the
framework of INTERLISP, a- powerful and
flexible host language vith advanced debugging
facilities. Lower level languages may have
faster execution, but. flexibility and
progrpmming case. are what count in building
workable systems with reasonable amounts of
effort.

(?) Extensions and modificptions to the
language specification may be freely mixed
with cfclis to the parser. There is no grammar
compiltion phase. This allows interface
builders to operate in a rapid, extend-and-
test mode, pnd supports features thpt modify
the language at. parse time, such as the
parpphrpser.

(3) The interface builder is isolated
from the internal structures that LIFER builds
for purposes of increasing parsing efficiency.
In particular, the user communicates with
LIFER in terms of simple production rules
maintained internally as transition networks
(Woods 1970).

(4) LUIFER has a powerful grammar-editing
facility (which uses the 1INTERLISP editor).

(5) LIFER has a package of functions for
grammar interrogation and debugging.

(6) Elliptical constructions pre handled
automatically and so need never be considered
by the interface builder.

* Special purpose languages are perhaps most easily
created with LIFER by adopting the notion of a
"semantic grammar," as advocated by Brown and
Burton (1975).

** A thorough discussion of this topic is contained
in The LIFER Manual (Hendrix, 1977).

(7) There is a reasonable manual
describing how tc user the system.

all IMPLEMENTATION OF SPECIAL FEATURED

This section presents An overview of LJFER's
i mp |l tion of the spelling correction,
elliptic] processor, and pata phraser.

A. On OF SPELLING CORRECTION

o rightparserfoOWING.iriga
simp! ificrtior of the ATN system of woods 1970.
Each time t he pa.rser discovers that it can re
longer follow transitions along the current path,
it records the failure on a faiipoint list. Each,
entry on this list indicrtes the state of the
system when the failure occurre-c (i.e., the
position in the" transiticr. net and the values of
various stacks and registers) and the curren.t
position ir the input string. Local ambiguities
and false paths make- it quite norm* 1 for fail points
tc be noted ever when a perfectly acceptable irput
is processed.

If a complete parse is found for an input, the-
failpoints are ignored. Put if an input carrot be
parsed, the list, of faiipoints is used by thf
spelling corrector, which selects these faiipoir.tr.
associated with the rightmost position in the input
at which failpoints were recorded. It is assumed
that failpoints occurring to the left were not
caused by spelling errors, since some transitions
using tht words at those positions must have beer
successful for- there to be faiipoints to their-
right .

The spelling corrector further restricts the
rightmost faiipoints by locking for cases in which
a rightmost faiipoint G is dominated by another
rightmost failpoirt F. C is dominated by F if G is
a faiipoint in a subgrammar that was PUSHed tc in a
futile attempt to follow a PUSH bro from F. Since
G and F pre both rightmost faiipoints, G represents
a stall pt the start node of the PUSHe.d-to
subgrammar. (Had any transition been made, G would
be to the right of F.) Hence, if F is restarted, G
is reattempted as one means of transferring from F.
G, therefore, does not need tc be. considered
independently. All dominated rightmost faiipoints
are dropped from consideration.

Working with the rightmost, dominating
faiipoints, the spelling corrector examines the
associated arcs to find all categories of words
that would allow a transition. (For PUSH arcs,
this requires an exploration of subgrammars.)
Using the INTERLISP spelling corrector, the word of
the input string associated with the rightmost
faiipoints is compared with the lexical items of
thf categories Just found. If the "misspelled”
word is sufficiently similar to any of these
lexical items, the closest match is substituted.
Faiipoints associated with lexical categories that
include the new word are then sequentially
restarted until one leads to a successful parse.
(This may produce more spelling correction further

NaturaILanguage1g9'1 0: Hendrix

to the right.) If all restarts fail, other close
lexical items are substituted for the "misspelled"
word. If these also fail, LIFER prints ar error

mrssage.

LIFER encourages the use of semanticaily
oriented syrtactic categories, such as <EMPLCYEE>
nnd <DEPAR?MENT-NAME>, rather than such standard
categories as <NOUN>. The use of these more
specialized categories greatly facilitates spelling
correction by severely restricting the number of
possibly valid vords at any point in the parse.*

LIFER'S mechanism for treating elliptical
inputs takes advantage of the assumption that
specifications for application languages tend to
encode a corside-rpble amount of semantic
irformatior in the syntactic categories. Thus,
similar syntactic constructions tend to be similar
semanticnlly. LIFER'S treatment of ellipsis is
based on this notion of similarity. During
elliptical processing, LIFER is prepared to accept
any string of vords that is syntactically analogous
to any contiguous substring of words in the last
input. (If the last input was elliptical, its
expansion into a complete sentence is used.)

LIFER'S concept of analogy appeals to the
syntax tree of the LAST input that was successfully
analyzed by the system. For any contiguous
substring of words in the LAST input, an "analogy
pattern” may be defined by an abstraction process
that works backwards through the old syntax tree
from the words of the substring toward the root.
Whenever the syntax tree shows a portion of the
substring to be a complete expansion of a syntactic
category, the category name is substituted for that
portion. The analogy pattern is the final result
after all such substitutions.

WEMT IS THE SALARY OF MARITIN DEVINE?

Y / ! ! i AU 4
<PRESENT> | <ATTRIBUTE> | CNAME>
\ H \ i !
5\ \ \ | <EMPLOYEE>
A\ Nemmmeh Y v
\ NN S
5\ C1TEM>
b} /

<L1FER.TOP. GRAMMARD

FIGURE 2: A Syntax Tree

For example, consider how an analogy pattern
may be found for the substring
OF MARTIN DEV1NE,
using the syntax tree** shown in Figure 2 for a

" An example LIFER system (describees by Sacerdoti,
1977) has a vocabulary of over 1000 words,
excluding numbers and coded symbols. This
vocabulary is divided among 1?1 categories, 113 of
which contein 10 or less words. 15 categories
contain 11 to 50 words, and the largest contains
144.

e« "PRESENT" is used in the sense of "to show for
inspection.”

Natural

Language-10:
188

previous input, WHAT IS THE SALARY OF MARTIN
DEVINE Since the MARTIN DEVINE portion cf the
substring is a. complete expansion of <NAME>, the
substring is rewritten as OF <NAME>. Similarly,
since <EMPLCYEE> expands to <NAME>, the substring
is rewritten as CF <EMPLOYEE>. Since no other
portions of the substring ere complete expansions
of other syntactic categories in the tree, the
process stops and OF <EMPLOYEE> is accepted as the
most general analogy pattern. If the current input
matches this analogy pattern, LIFER will accept it
as a legitimate elliptical input. For example, the
analogy pattern OF <EMPLOYEE>, extracted from the
last input, may be used to match such current
elliptical inputs as

OF ERIC JOHNSON
OF EMPLOYEE 44817207
and OF PROFESSORS IN THE MATH DEPARTMENT

Note that the expansion of <EMPLCYEE> need not
parallel its expansion in the old input that
originated the analogy pattern. For example, OF
EMPLOYEE 494 81727 is not matched by expanding
<EMPLOYEE> to <NAME> but by expanding <EMPLCYEE> to
EMPLOYEE <ID-NUMPER>.

To compute responses for elliptical inputs
matching OF <EMPLCY£E>, LIFER wcrks its way back
through the old syntax tree from the common parent
of OF <EMPLOYEE> toward the root. First, the
routine for computing the value cf an <1TEM> from
constituents of the production

<ITEM> => THE <AT'RIEU'U>
is invoked, using the new value of <EKPLOYE£>
(which appeared in the current elliptical input)
and the old value of <ATTRIBUTE> from the last
sentence. Then, using the newly computed value for
<ITEM> and the old value for <PRESENT> a new value
is similarly computed for <L1FER.TOP.GRAMMAR>, the
root of the syntax tree.

Seme other substrings with their associated
analogy patterns ere shown below, along with
possible new elliptical inputs matching the
pat terns.

substring: THE SALARY

pattern: THE <ATTR1EUTE>

a match: THE AGE AND DATE HIRED
substring: SALARY OF MARTIN DEVINE
pattern: <ATTR1BUTE> OF <EMPLOY£E>
a match: AGE OF CS SECRETARIES

substring: WHAT IS THE SALARY

Pattern: <PRESENT> THE <ATTRIEUTE>

a match: PRINT THE DATE HIRED

substring: WHAT IS THE SALARY OF MARTIN DEVINE
pattern: <L1FER.TCP.GRAMMAR>

a match: [any complete sentence]

For purposes of efficiency, LIFER's elliptical
routines have been coded in such a way that the
actual generation of analogy patterns is avoided.”
Nevertheless, the effect is conceptually equivelent
to attempting parses based on the analogy patterns

* [Footnote is printed on next pege.]

Hendrix

of each of the contiguous substrings of the last
input.

C. IMPLEMENTATION OF PARAPHRASE

LIFER's paraphrase mechanism also takes
advrntage of semantieally oriented syntactic
categories and makes use of syntax trees. In the
typical case, the paraphraser is given a model
sentence, vhich the system can already understand,
and ? paraphrase. The paraphraser's general
strategy is tc analyze the model sentence and then
look for similar structures in the paraphrase
string.

1. The Basic Method

In particular, the paraphraser invokes
the parser to produce a syntax tree cf the model.
Using this tree, the paraphraser determines all

proper subphrases of the model, i.e., P11
substrings that are complete expansions of one of
the syntactic categories listed in the tree. Any

of these model subphrases that also ?ppear in the
paraphrase string are assumed to play the same role
in the paraphrase as in the model itself. Thus,
the semantically oriented syntactic categories that
account for these subphrases in the model are
reused to account for the corresponding subphrases
of the paraphrase. Moreover, the relationship

*# {Footnote from last page.)] Abstractly, the
gctu=l algorithm is 2& fellows., If the lest input
wee persed by the top-level production

<LIFER.TOP.GRAMMAR> => <X1> <X2> ... <XM>
then ellipticrl procrssing begins by attempting to
mateh the new Input to the left portion of the
right =jde of this production. If the new input
matches <X1> ... <Xj>, leaving <XJ+1> ... <Xn>
unused, then <X3+1> ... <Xn> are assumed from the
cld ipput. 1f the new input doers not metch the
left portion of the pattern <X1> ... <Xn*, then
the process reatmprta, veing the left-truncated
pettern 42> ... <Xn>. In general, if the new
input m2tchem subpattern <Xi> ... <XJ>, then the
old <X1> <X1-3> and <Xj+1> .,. <Xn> are used
to expand the elljpticel input into r new top-level
aentence.

The process ir complicated by the fact thet
any of the <¥> m2y ltselfl heve bren cxpended in the
laat input by » production

<X> =» <Y1 Y2 ..., <dm»
1f the new input does not account for <Xi> when
asttempting the mateh <X1> .., <Xn>, then <Y1> ...
<¥n> ir substituted for <Xi>, with the hope thret
the elliptical input may begin somewhere in the
middle of the expanalon of the old <Xi>. Only
rfter the <¥> have been exhausted by left
truncation will <Xi+1> broome the left-moat =ymbol
for s metohing sttempt, SRimilerly, {f <Xi> ...
€Xi+m> ham sccounted for the left portion of an
elliptical !nput, but <Xi+m 1> doea not match the
ieft part of the remsinder of the input, then the
expanaion of <Xi+m+1>, taken from the lsst input,
1& substituted for <X+m+1> ond the match continuea,
As tometimes happenr, the ellipticel input may end
scmewhere 1n the middle of the expension of
CXiemm1>,

between the syntactic categories that is expressed
in the syntax tree of the model forms a basis for
establishing the relationship between the
corresponding syntactic units inferred for the
paraphrase.

a. Defining a Paraphrase production

To find correspondences between the
model and the paraphrase, the subphrases of the
model are first sorted. Longer phrases have
preference over shorter phrese.s, and for two
phrases of the same length, the leftmost is taken
first. For example, the sorted phrases for the
tree of Figure 2 ere

1. <1TEM> THE SALARY CF MARTIN DEVIME
2. <PRESENT> WHAT 1S5

3, <NAME> MART1IN DEVINE --not used
q, <EMPLOYEE> MARTIN DEYIRE

%, <ATIRIBUTE> SALARY

Since the syntax tree indicates <EMPLOYEE> =>
<NAME> => MARTIN DEV1INE, both <NAME> and <EKPLOYEE>
account for the same subphrast. For such cases,
only the most general syntactic category
(<EMPLGYEE>) is considered.

Beginning with the first (longest)
subphrase, the subphrases are matched against
sequences of words in the paraphrase string. (If a
subphrase matches two sequences of words, only the
leftmost match is used.) The longer subphrases are
given preference since matches for them will lead
to generalizations incorporating matches for the
shorter phrases contained within them. Whenever a
mptch is found, the syntactic category associated
with the subphrase is substituted for the matching
word sequence in the paraphrase. This process
continues until matches have been attempted for all
subphrases.

For example, suppose the paraphrase

proposed for the question of Figure 2 is
FOR MARTIN DEVINE GIVE ME THE SALARY

Subphrases 1 and 2, listed above, do not match
substrings in this paraphrase. Subphrase 3 is not
considered, since it is dominated by subphrase 4.
Subphrase 4 does match a sequence of words in the
paraphrase string. Substituting the associated
category name for the word sequence yields a new
paraphrase string:

FOR <EMPLOYEE> GIVE ME THE SALARY
Subphrase 5 matche. s a sequence of words in this
updated paraphrase string. The associated
substitution yields

FOR <EMPLOYEE> GIVE ME THE <ATTR1BUTE>
Since there are no more subphrases to try, the
structure
<LIFER.TOP.GRAMMAR> =>

FOR <EMPLOYEE> GIVE ME THE <ATTR1BUTE>
is created as a new production to account for the
paraphrase.

b. Defining a Response Function for the
Paraphrase Production,

A new semantic function indicating
how to respond to inputs matching this paraphrase

Hendrix

production is programmed automatically from
information in the syntax tree of the model. In
particular, the syntax tree indicates which
productions were used in the model to expand
various syntactic categories. Associated with each
of these productions is a function for computing
the interpretation of associated subphrases from
subphrase constituents. The paraphraser reuses
selected functions of the model to create ? new
function for the paraphrase production. The manner
in which this is done is best illustrated by
example.

Continuing the example of Figure 2,

the syntax tree indicates that the production

<LIFER.TOP.GRAKMAR> => <PRESENT> <ITEM>
was used. Associated with this production is a
function F1 (not shown in the figure, but
referenced in the actual tree) that computes r.
value for <LIFER.TOP.GRAMMAR> from the values of
<PRESENT> and <ITEM>.* Using, the notation "#<X>" to
indicate "the value of <X>," the role of F1 may be
expressed by the equation
#<LIFER.TOP.GRAMMAR> = F1 (0<PRESENT>, <KITEM>)
Another production indicated by the model syntax
tree is

<ITEM> r> THE <ATTRIBUTE> OF <EMPLOYEE>
This production is associated with a function F?,
where

#<ITEM> =

F?(tf<ATTRIBUTE>, /KEMPLOYEE>)

The paraphraser must define a new
function FN for the paraphrase production
<L1FER.TOP.GRAMMAR> =>
FOR <EMPLOYEE> GIVE ME THE <ATTRJBUTE>
Moreover, the value computed by FN must be the same
as the value computed as a response to the model
sentence. Since the categories <EMPLOYE£> and
<ATTRIBUTE> appear on the right side of the
paraphrase production, the paraphraser assumes that
FN is s function of *<EMPLOYEE> and tf<ATTR1BUTE>.
Since FN must produce the same value as produced by
the model call to F1, the paraphraser assumes that
FN(#<EMPLOYEE>, (KATTR1EME>) =

F1(#<PRESENT>, */<ITEM>)

The syntax tree indicates that the
expansion of <PRESENT> is independent of the
expansions of <EMPLOYEE> and <ATTR1BUTE>. Hence,
the paraphraser assumes //<PRESENT> to be a constant
in the computation of FN. That is, the value of
<PRESENT> used in the model will always be used as
the value of <PRESENT> in computing FN in terms of
F1.

In contrast, the syntax tree shows
<1TEM> to incorporate both <EMPLOYEE> and
<ATTRIBUTE>. Hence, both of these parameters to FN
may influence #<TTEM>. Function ¥2 indicates the
nature of this influence. Therefore, in the
equation defining FN, the paraphraser replaces
#<1TEM> by the expression that computes it:

FN(#<EMPLOYEE>, #<ATTRIBUTE>) s
F1(#<PRESENT>, F2(#<ATTRIBUTE>, #<EMPLOYEE>))

* Since <LIFER.TOP.GRAMMAR> is the sentence-level
syntactic category, this value is, in fact, the
response to the total input.

Natural

This new equation completely specifies FN in terms
of constants, formal parameters of FN, and
previously defined functions. That is, FN is
defined in terms of the constant #<PRESENT> (taken
from the original model input), the formal
parameters #<EMPLCYEE> and #<ATTKIEIinE>, and the
previously defined functions F1 and F2.

?. Greater Generalizatiion

The goal of the paraphrase routine is to
account for the prraphrrse in the most general
terms possible, so thrt new constructions created
to account for r particular paraphrase will cover a
maximum number of new input possibilities. For
certain cases, the coverage produced by the basic
method presented above is extended by the
psraphraser as fcllcwr. Suppose some mod”?l
subphrase S that matches a substring of the
paraphrase is associated with th« syntactic unit
<m> in the model syntax tree. Such an <M>, in

turn, will appear in the tree a? a direct component
of a more general unit <G> such that
<G> => x <M> y

where x and y are some (possibly empty) sequences
of linguistic units. Since the subphrase for <G>
itself was not matched in the paraphrase, either
the x or the y or both did not. appear in the
peraphrase (at least not in the necessary
juxtaposition to <M>). Nevertheless, if the
grammar allows the production

<G> => <M>
and if the value assigned to <G> is the same for
both

<G> = <>

and <G> => x <M> y

then <G> is substituted for <M> in the paraphrase
to produce a construction with broader coverage.

For example, suppose that the model input
is
WHAT IS THE SALARY OF EKPLGYEE MARTIN DEVINE
and that the syntax tree is like that of Figure 2
except that <EMPLOYEE> expands as
EMPLOYEE MARTIN DEVINE

<T11LE> <NAME>
\ /
<EMPLOYEE>

Suppose further that the paraphrase is again

FOR MARTIN DEVINE GIVE ME THE SALARY
Unlike the earlier example in which <EMPLCYEE> was
substituted for MARTIN DEVJNE, the substitution
algorithm of the last section now only allows
<NAME> to be substituted. The resultant paraphrase
is

FOR <NAME> GIVE ME THE <ATTR1BUTE>
This structure accounts for the given paraphrase,
but not for

FOR PROFESSOR MARTIN DEVINE GIVE ME THE AGE

However, using the generalization process

Just outlined, if the system allows
<EMPLOYEE> => <NAME>

and if the value of <EMPLOYE£> defined in this
fashion is the same as the value using

<EMPLOYEE> => <TITLE> <NAME>
then <EMPLOYEE> will be substituted for <NAME> in
the paraphrase structure to produce

FOR <EMPLOYEE> GIVE ME THE <ATTR1BUTE>

Language-1O: Hendrix
190

This more general construction recounts for the
i nputs
FOR PROFESSOR MARTIN DEVJNE GIVE ME THE AGE
FOR EMPLOYEE 205-6-1620 GIVE ME THE DATE HIRED
FOR MATH DEPARTMENT SECRETARIES GIVE ME THE SALARY

. Confinement to Subgrammars

Consider paraphrases of the form "x y z",
where the model is of the form "x S y" and S is a,
proper subphrase associeted with a syntactic
category <C>. The paraphraser traps this type of
cordition and asks the user if y is always a
paraphrase of S or is simply a paraphrase in the
context of x and vy. If the user indicates a
context deperdern.cy, then processing proceeds as
usurl. If the user indicates that y is a
paraphrase of S in every context, then LIFER will
mak* y r paraphrase of £ in the subgrammar

accounting for <C>. The influence of this
paraphrase will then be felt everywhere that
category <C> is used. (For example, see footnote

of section 11-1.)

v CONCLUDING REMARKS

During the last year, a number of interfaces
have been constructed using LIFER, and the response

from users has been enthusiastic. It is worth
noting: that interfaces for several of the simpler
applications took less than a week to create. Most

of these simple interfaces were to small,
relational data bases. However, interfaces were
also constructed for a ta.sk scheduling and resource
allocating system, a computer-based expert system,
and a program that answers questions about the
relatjonships between procedures in a large body of
computer code.

LIFER has also been used in creating more
ambitious interfaces. One of these, developed with
several man-months (but not several man-years) of
effort, is the INLAND component of the LADDER
system described by Sacerdoti (1977). This system,
which incorporates a grammar with over 600
"productions"” and a lexicon with over 1000 words
(rot to mention numbers and numerous coded
symbols), provides natural language access to a
relatively large collection of data that is
distributed among multiple remote computers on the
ARPA net.

In summary, the experience with LIFER
indicates that genuinely useful natural language
interfaces can be created and that the creation
process takes considerably less effort than might
be expected. Human engineering has played a key
role in making this possible. The application of
similar engineering to more sophisticated language
processing technology, such as that developed in
the SRI Speech Understanding Project (Walker 1976),
promises to produce practical systems having much
greater fluency in their user's natural language.

Natural

Language-10:

ACKNOWLEDGEMENT

The work reported herein was conducted under
SHJ's Internal Research and Development Program.

REFERENCES

Frown, J. S. and Burton, R. R. Multiple
Representations of Knowledge for Tutorial
Reasoning. In Pobrow, D. G. and Collins, A.
(Eds.) Representation and Understanding,
Academic Press, New York, 1975, 7?11-349.

Grosz, Barbara J. The Representation and Use of
Focus in Dialogue Understanding. Ph.D. Thesis,
University of California, Berkeley, California,
June 1977.

Hendrix, G. G. LIFER: A Natural Language
Interface Facility. Technical Note 1;5,
Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California,

1976.

Hendrix, G. G. The LIFER Manual: A Guide to
Building Practical Natural Language Interfaces.
Technical Note 138, Artificial Intelligence
Center, Stanford Research Institute, Menlo Park,
California, 1977.

Sacerdoti, E. D. Language Access to Distributed
Data with Error Recovery. Adv. Papers of 5th
Intl. Joint Conf. on Artificial Intelligence,
Cambridge, Massachusetts, August 1977.

Teitelman, W. INTERLISP Reference Manual. XEROX
Palo Alto Research Center, Palo Alto,
California, 1975.

Thompson, F. B. and Thompson, P. H. Practical

Natural Language Processing: The REL System

Prototype. In Rubincff, M. and Yovits, M. C.
(Eds.) Advances in Computers, Academic Press,
New York, 1975, 109-168.

Walker, D. E. (Ed.) Speech Understanding
Research. Annual Report, Project 3804,
Artificial Intelligence Center, Stanford

Research Institute, Menlo Perk, California, 1976

Waltz, D. L. Natural Language Access to a Large
Data Pase: An Engineering Approach. Adv.
Papers 4th Intl. Joint Conf. on Artificial
Intelligence, Thbilisi, U.S.S.R., September 1975,
868-872.

Woods, W. A. Transition Network Grammars for
Natural Language Analysis. CACM 17, 10, October
1970, 591-606.

Woods, W. A., Kaplan, R. M., and Nash-Webber, B.
The Lunar Sciences Natural Language System:
Final Report. Report No. 2378, Bolt Beranek
and Newman Inc., Cambridge, Massachusetts, 1972.

Hendrix

Advantages of a Transformational Grammar
for Question Answering

Fred J. Damerau
IBM Corporation
Thomas J. Watson Research Center
Yorktown Heights, New York

A number of researchers in artificial intelligence, for
example, Woods(1975, p.88 ff.), have asserted that trans-
formational grammars are not a satisfactory basis on which to
construct natural language understanding systems, primarily
because of efficiency considerations. The evidence for such
a claim is by no means strong, Petrick(1976), and it can be
argued that transfer of new theoretical insights into a lan-
guage understanding system based on transformational gram-
mar is facilitated, Plath(1973). This note shows that a trans-
formational parser can also simplify problems of relating
canonical representations of queries to data base representa-
tions.

Consider a data base consisting of a set of company
names each with an associated list of employees. A natural
question for such a data base is M How many people does
company Y employ?" Our grammar produces an underlying
tree structure whose bracketted terminal string is something
like (1), from which a Knuth-style semantic interpreter prod-
uces a LISP form like (2).

(1) (EMPLOY (company Y) ((how many) person XlI)).
(2) (SIZEOF(SETX 'XI 'Y(TESTFCT XI (EMPLOY Y
1977))))

TESTFCT would trigger extraction of names from the data
base, SETX would create a set of these names, and SIZEOF
would determine the cardinality of that set. So far, this is
simple enough and no difficulty arises. The first query sys-
tem we constructed had a small data base of business statis-
tics of large corporations, Plath(1973), Petrick(1973). Con-
sider in this context a question like "What were GE's 1970

earnings?". The underlying structure was something like (3),
where the semantic interpreter produced a LISP form of
roughly (4).

(3) (EQUAL (the X5 (GROSS GE X5 1970)) (some
amount X1)).

(4) (SETX 'XI '(FORATLEAST 1 'X7 (SETX X5
(TESTFCT X5 (GROSS GE 1970)) (EQUAL X7 Xl))))
FORATLEAST implements the default quantifier, and
TESTFCT finds GE's gross income. This data base also

contained the total, number of employees for each company.
If we were to ask

(5) How many employees does GE have?

the system would produce an underlying structure related to
(1), leading to a retrieval program like (2). Unfortunately,
we need a retrieval program like (4), with "EMPLOYEE"
substituted for "GROSS". We could of course modify the
SIZEOF function to be sensitive to the data field it dominates
and return the set rather than the cardinality of the set in
appropriate cases, but this is aesthetically unattractive
(although this is in fact what we did in our very first system).
We could also modify our translation equations and semantic
interpreter so as to be sensitive to this situation. While this
might be satisfactory in one or two cases, the number of
special cases can become very large.

In our present application, which is an English query
system for the planning files of a small city near our labora-

Natural

Language-10:
192.

tory, there are many more situations of this kind. One can

ask

(6) In what zone/planning area/ census tract/ etc., is parcel
5 located?

For each of these questions, the underlying structure has a
top level verb of "LOCATED", where the translator would
prefer "ZONE" or "PLANNING AREA" etc. Again, one
could make the LOCATED function sensitive to its argu-
ments, or insert the appropriate equations into the translator,
but the complexity of either solution is much greater than
before.

Transformational grammars customarily have two sets of
rules, cyclic rules, which apply successively to each level of
embedding, and postcyclic rules, which apply globally to the
entire sentence. Our grammar has an additional set of rules,
called string transformations, Plath (1974), which apply to
strings of lexical trees. The transformational parsing pro-
gram calls each of these sets of rules separately. Since the
parser is basically a tree processor, it can be applied, via an
additional set of rules, to underlying structures like those for
(5) and (6), and modify the structures in such a way that the
semantic interpreter can produce correct code without data
base specific modifications. In the case of (5), the output of
the new processing phase, called the precycle, is a structure
like (3) instead of a structure like (1), with a data identifica-
tion of "EMPLOYEE" rather than "GROSS". At the cost of
an additional call to the transformational parser, we have
insulated both the semantic interpreter and the data base
functions from the organization of the data base, confining
the necessary modifications to a single table of rules. We
have not yet found a class of structural changes we wished to
make because of the data base which required more than one
rule. Therefore, the cost of writing new rules has been much
less than the cost of generating new programs for these spe-
cial cases would have been.

While | am sure other system developers are able to
solve this general problem, as they must in order to proceed
in their work, we have nonetheless been pleased to note that
our decision to use a transformational approach on linguistic
grounds has had additional benefits on practical grounds.

References:
Petrick, Stanley R. 1973. Semantic Interpretation in the
REQUEST System. IBM Research Report RC 4457, IBM

Corp., Yorktown His., NY.

Petrick, Stanley R. 1976. On Natural Language Based Com-
puter Systems. |IBM Journal of Research and Development,

vol. 20, No. 4, pp. 314-325. July, 1976.
Plath, Warren J. 1973. Transformational Grammar and
Transformational Parsing in the REQUEST System. IBM

Research Report RC 4396, IBM Corp., Yorktown Hts., NY.

Plath, Warren J. 1974. String Transformations in the RE-
QUEST System. American Journal of Computational Lin-
guistics, Microfiche 8, 1974.

Woods, William A. 1975. Comment on a paper by Petrick, in
Directions in Artificial Intelligence, R. Grishman, ed., New
York University, New York, 1975.

Damerau

