ANNOTATED PRODUCTION SYSTEMS
A MODEL FOR SKILL ACQUISITION

Ira P. Goldstein and Eric Crimson
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
February 1977

Abstract

Annotated Production Systems provide a procedural model for
skill acquisition by augmenting a production model of the skill with
formal commentary describing plans, hugs, and interrelationships
among various productions. This commentary supports efficient
interpretation, self-debugging and self-improvement. The theory of
annotated productions is developed by analyzing the skill of attitude
instrument flying. An annotated production interpreter has been
written that executes skill models which control a flight simulator.
Preliminary evidence indicates that annotated productions effectively
model certain bugs and certain learning behaviors characteristic of
student.

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval
Research contract N00014-75-C-0643, and in part by the Naval
Training Equipment Center under contract N61339-76-C-0046.

1. Introduction

Productions systems have many strengths as a model of human
problem solving — modularity, simple control, generality; but they
are not sufficient. We argue for this position by analyzing the skill
of flying an airplane under instruments. A production model will bo
defined and its limitations considered. These limitations will involve
inefficiencies in dealing with context, a lack of direction for
debugging, and the absence of self-knowledge useful for learning by
generalization and analogy. Our next step is to define an annotation
vocabulary consisting of formal comments regarding the plans, bugs,
and interrelationships of the basic productions. We show how these
annotations support more efficent execution of the skill, debugging
of difficulties and self-improvement.

Annotated production systems represent a marriage of the
comment-based approach to debugging developed by Sussman [73]
and Goldstein [74] with the procedural architecture of production
systems [Newell & Simon 72]. Goldstein and Sussman were not
concerned with the psychological validity of their debugging models.
Production systems have typically not been concerned with modelling
learning. The marriage of productions and annotations holds out the
possibility of an improved modelling capability. Davis [76] develops a
related theory of mcla-knowlcdge for production systems to guide
the knowledge acquisition process for large knowledge-based
programs which we discuss in section 9.

Our work on annotated production systems is based on a series of
experiments with a flight simulator implemented in Lisp by the
authors. The production systems and annotated production systems
discussed here run in conjunction with this simulator. The
debugging and learning modules have been hand-simulated, but not
implemented.

Unlike the traditional Carnegie Mellon experiment in which
particular individuals are modelled, our experiments arc concerned
with generic modelling; that is, they are concerned with modelling
typical skill states of student pilots, as judged by the extensive
literature on flight instruction (Langewiesche [44] remains the classic
text) and the experience of the first author and his spouse in
learning to fly.

In the next section, we characterize instrument flying to indicate
why we have chosen it as our experimental skill. Section 3 describes
the strengths of a production system model for this skill. Section 4
analyze! its weaknesses. Sections 5 and 6 define an annotated
production model and indicate its utility for more efficient skill

execution and for self-debugging. Section 7 describes the design of a
heuristic learning program for Annotated Production Systems.

2. Attitude Instrument Flying

Our experimental focus has been on attitude instrument flying
wherein the goal is to maintain steady climbs, turns, descents or level
flight. It is the basic constituent skill of instrument flying.

Flying, as a whole, is an appealing domain for studying skill
acquisition because: (1) there is extensive literature on flight
instruction; (2) it is an important skill whose improper employment
risks lives; (3) it is an adult (as opposed to infant) learning
experience and hence instrospcclive evidence is available; (4) a useful
application of an improved analysis of the learning process for this
skill is the design of a computer instructor for flight simulators; (5)
it is representative of an important class of real-time control skills
such as sailing, driving.

Instrument flying, in particular, has a constrained set of
perceptual inputs — the instruments -- and a restricted set of
actions — the controls. Attitude instrument flying, while a sub-skill
of instrument flying, is still sufficiently rich to be an interesting
modelling problem.

Let us consider a few of the problems associated with flying a
plane, in order to define the characteristics of a generic model for
flight skill. The first observation is that flying involves responses to
the external forces of the environment — gravity, air movement, and
other factors. This requires instruments to monitor the plane' state
and controls for changing that state. Hence, for each goal, a
mapping from measurement to control is required.

However, such a mapping cannot be from one instrument to one
control, since the higher order effects would be neglected. Thus,
using only the value of the vertical velocity indicator to manipulate
the elevators while trying to achieve level flight will not always
succeed. A better model would take into account vertical
acceleration. Without a sense of the second derivative, the pilot will
over or under control the aircraft.

The mapping must be context sensitive. A control response
appropriate in normal situations may fail in special contexts. For
example, under normal circumstances, the goal of straight and level
flight can be achieved by sequentially attempting these goals, i.e. the
pilot can concentrate on establishing the proper heading, and only
when it is within tolerance, direct his attention at the altitude. The
rationale for this is that in normal circumstances the two processes
are virtually independent. However, if the aircraft is in a stall (i.e.
the wing has lost lift), then the assumption of independence of the
two subgoals is not valid and special measures must be taken in
order to recover from this state. The wings must be leveled before
the pitch of the plane is corrected. A representative set of flight
contexts are:

NORMAL FLIGHT

TAKEOFF
VISUAL FLIGHT TAKEOFF
SHORT FIELD TAKEOFF
SOFT FIELD TAKEOFF
LANDING
VISUAL FLIGHT LANDING
INSTRUMENT LANDING
CRUISE
STRAICHT AND LEVEL
CLIMB
DESCENT
TURN
ABNORMAL FLIGHT RECOVERY
ENCINE FAILURE
INSTRUMENT FAILURE
STRUCTURAL FAILURE
NAVIGATION FAILURE
NON-NORMAL FLICHT CONDITION
COLLISION COURSE
STALL
SPIN
STABLE FLIGHT OUTSIDE TOLERANCES

Knowledge Acq.-I:

Context sensitivity raises the issue of exceptions. A particular
method may apply in all but a few situations. These exceptions
should be explicitly accounted for if the skilled practioncr is to
successfully anticipate them. Note that this is not the case of two
competing heuristics, each equally applicable and each applying to
roughly the same number of situations. Rather, we have the
situation of one heuristic working almost everywhere and only a few
exceptions need to be noted. For example, it is almost always the
case that the ailerons are used to bank the airplane. In rare
circumstances such as a spin, the rudder is used to level the wings.
Such rare circumstances arc explicitly known as exceptions by pilots
— indeed, much of flight training concentrates on the exceptions.

The flight world cannot be decomposed into orthogonal control
dimensions. Instead, actions in one dimension effect other aspects of
the flight of the aircraft. Thus, changing the bank of the aircraft
by manipulating the ailerons will also cause a change in the pitch of
the aircraft. There is no one-to-one mapping of the variables of the
situation onto the set of controls. These interrelationships are in
part the cause of the context sensitivity noted above. Some of the
interrelated control effects are:

Rate of turn it controlled by both ailcront and rudder.

Kate of climb it controlled by both throttle and clovatort.

In landing t, rate of climb it affected by flaps and landing gear.
In tteep turns, rate of climb it affected by ailcront.

Finally, because this is a dynamic situation, time plays an
important role. Hence, not only is the action which is chosen and
applied important, but so is the rate at which that action is applied,
and the timo period over which the corrections are applied. This
introduces problems such as overcontrolling, a direct result of these
dynamics.

3. A Production System Model for Attitude Instrument Flying

PONTIUS-0 is a production system for achieving straight and
level flight that embodies a mapping from goals and measurements to
controls. Below are a few representative productions without their
annotation commentary. The patterns describe the goals of the
productions; the actions observe instruments and manipulate
controls.

(DEFINITION SftLl ;S«stratght. L-l«vtl.
;;To achieve straight and level flight, first achieve
;;level flight, and then straight flight.
(GOAL: (AND (S FLIGHT) (L FLIGHT)))
(ACTION: (DO (ACHIEVE (L FLIGHT))
(ACHIEVE (S FLIGHT)))))

(DEFINITION L-FLIGHT-1
;;To achieve level flight, keep the pitch of the plane at zero,
;;where the pitch 1s the angle of the nose with the horizon.
(GOAL: (L FLIGHT))
(ACTION: (DO (ACHEVE (NOTICE DELTA PITCH))
(ACHEEVE (VAKE PITCH 0)))))

(DEFINITION NOTICE-DELTA-PITCM-VIA-ARTIFICIAL-HORIZON-1
;;1f the nose 1s down according to the artlflical horizon,
;;then assert this fact m memory. This 1s one among 4
;;mtthodi for noticing the pitch of the plane.
(60AL: (NOTICE OELTA PITCH))
;;QUAI-VALUE Returns the sign of Its input. Thus,
;;these productions are sensitive to the qualitative
;;value of the Instruments.
(ACTION: (COND (IF ?(- (QUAL-VALUE ARTIFICIAL-HORIZON-PITCH) ¢)
.(m (QUAL-VALUE (DELTA PITCH)) +))
(IF ?(+ (QUAL-VALUE ARTIFICIAL-HORIZON-PITCH) -)
.(m (QUAL-VALUE (OELTA PITCH)) -)))))

Knowledge

Acq.-I:

(DEFINITION NOTICE-DELTA-PITCH-VIA-VERTICAL-VELOCITY-INDICATOR-1
;;1f the plane 1s descending, the nose 1s down.
(GOAL: (NOTICE DELTA PITCH))
(ACTION: (COND (IF ?(+ (QUAL-VALUE WI) -) "THEN"
.(* (QUAL-VALUE (DELTA PITCH)) -))
(IF ?(m (QUAL-VALUE WI) ¢) "THEN"
.(* (QUAL-VALUE (DELTA PITCH)) +)))))

(DEFINITION CONTROL-PITCH-VIA-ELEVATORS-1

;;1f the nose 1s down, pull up on the elevators.
;;contro1 for pitch manipulates the throttle.
(GOAL: (MAKE PITCH 0))

Another

;DELTA-ELEVATORS 1s a primitive control actions.
(ACTION: (DELTA-ELEVATORS (MINUS ?(DELTA PITCH)))))

The "?" preceding a form indicates that the form is a
predicate whose truth value of T or NIL is computed by
pattern-matching against the database. The "." indicates that
the following form is to be asserted in the database, rather
than being executed.

PONTIUS-0 has approximately SO rules for attitude instrument
flying. A representative list for straight and level flight arc is given
below where each title refers to one production by its goal.

PRODUCTIONS FOR ACHIEVING STRAIGHT AND LEVEL FLIGHT:
SEQUENTIAL PLAN FOR STRAIGHT-FLIGHT AND LEVEL-FLIGHT
COROUTINE PLAN FOR STRAIGHT-FLIGHT AND LEVEL-FLIGHT

PRODUCTIONS FOR ACHIEVING LEVEL-FLIGHT:
ACHIEVE L-FLIGHT

NOTICE DELTA PITCH VIA ARTIFICIAL HORIZON
NOTICE DELTA PITCH VIA WI

NOTICE DELTA PITCH VIA ALTIMETER

NOTICE DELTA PITCH VIA AIRSPEEO
ELIMINATE DELTA PITCH WITH ELEVATORS
ELIMINATE DELTA PITCH WITH THROTTLE

PRODUCTIONS FOR ACHIEVING STRAIGHT-FLIGHT
ACHIEVE S-FLIGHT
NOTICE DELTA BANK VIA ARTIFICIAL HORIZON
NOTICE DELTA BANK VIA TURN COORDINATOR
NOTICE DELTA BANK VIA DIRECTIONAL GYRO
NOTICE OELTA BANK VIA MAGNETIC COMPASSS
ELIMINATE DELTA BANK WITH AILERONS
ELIMINATE DELTA BANK WITH RUDDER

These rules have a standard pattern/action form. The rules arc
invoked in a depth-first method. That is, given a goal to achieve,
the actions corresponding to that goal arc achieved in a depth-first
manner by matching ACHIEVE patterns against COAL descriptions.
If more than one production matches in a situation then the default
order of calling is used. For example, there are several methods of
noticing a change in pitch.

Production systems arc an appealing representation for the flight
world for several reasons. First, the knowledge of how to fly an
aircraft can be represented to a first approximation as a sequence of
independent "recognize-act" pairs. That is, it can be represented as a
sequence of rules of the form: given some goal and some context, do
this action to bring the state of the aircraft "closer" to the desired
state. Production systems offer a convenient formalism for
structuring and expressing that knowledge. Fig. 1 shows the
performance of PONTIUS-0 in maintaining a shallow bank.

Second, it is important in a dynamic system to detect and deal
with a large number of independent states. One must be able to
react quickly to small changes. Production systems faciliate such a
detection and reaction process. This is since any rule could possibly
be the next to be selected, depending only on the state of the data
base at the end of the current cycle. Thus, each rule can be viewed
*a a demon awaiting the occurrence of a specific state.

Goldstein

312.

4. Limitations of Production Systems

The assumption that all rules are independent carries with it the
additional assumption that all rules arc equally likely to bo used at
any stage of operation. In this case, since the rules are sensitive to
context, such an assumption is not valid. Specifically, some contexts
are much more common and likely than others. Titus the rules are
weighted in a certain sense and a formalism which accounts for this
weighting would improve the performance of the model. Similarly,
the fact that exceptions to situations exist should also be accounted
for. Once again, a weighting factor is involved as the exceptions arc
much rarer than the normal situations. Since we arc dealing with a
dynamic real time system, performance is crucially linked to reaction
time. As a result, it is important for all possible efficiency
considerations to be used. This is why the weighting factors must be
taken into account.

There are interactions in the flight world. Thus, there should be
some capability for communication between rules. In production
systems, there i6 only a limited communication between actions since
such communication must take place via the short term memory data
base. In a flight situation, this is inappropriate. For example,
changing the bank via the ailerons can cause a change in the pitch.
One way to communicate this fact is to actually manipulate the
ailerons and let the system notice the change in pitch. But there
should be an easier and more certain method of communication, for
example, to alert the system that the manipulation of the ailerons
may have effects on the state of the pitch.

The assumption of the independence of actions is not always valid
cither. In normal situations, this is the case. However, there arc
situations where parallel processes, or other complex procedures
should be used. Production systems, however, arc at their best when
actions are independent, and are not well-suited to coordinate

processes. Fig. 2 illustrates an unsuccessful steep turn — the nose
down pitch caused by the steep turn has not been corrected rapidly
enough by PONTIUS, which is executing a sequential plan for

straight and level flight.

The bug of paying undivided attention to the current goal and
ignoring other subgoaU is a standard error of the student pilot.
Much of instrument flying is devoted to establishing the proper
"scanning pattern”". The result of erroneous scan in the case of
the steep turn shown in fig. 2 — entering a dive — is a common
behavior of instrument students. PONTIUS exhibits many
instances of such standard errors, and it is in this sense a generic
model. Fig. 3 will show PONTIUS correcting this underlying bug
by establishing a proper scanning pattern or "coroutine plan".

Production systems have a restricted syntax which means that
the action side of the rules is restricted to a conceptually simple
operation on the data base. This makes it difficult to include
complex actions like coroutines or time sharing processes.

Another common problem associated with production systems is
the "implicit context problem". This is the fact that the rule base
has a total ordering associated with it and the position of the rule in
this ordering becomes an important factor. Thus, since a rule
ordinarily won't be called unless tho rules preceding it in the total
order have failed, there arc in essence extra conditions on the
application of the rule. This may affect the performance of the
system.

These are some of the problems associated with using production
systems as a representation for the performance component of these
models of control skills. As a consequence of these problems,
modifications were made to the production system formalism in order
to improve the performance of the system. This resulted in the
formation of annotated production systems.

S. Annotated Production Systems

Annotated production systems extend ordinary production
systems by adding commentary to the productions. This allows one
to represent second order knowledge explicitly and therefore to use
this knowledge to handle some of the problems mentioned in the
previous section. These annotations include caveats, rationales, plans
and control information.

Knowledge Acqg
31

-1
3

The annotated version of the production for straight and level

flight shown earlier is:

{DEFINITION $aL1

[BOAL: {AND (5 FLIGHT) (L FLIGHT)))
{ACTION: (DO {ACHIEVE (L FLIGHT)) (ACHJEVE (§ FLIGHT)}))}
[PLAN: [SEQUENTLAL-PLAK :ACTION}}

[RATIONALE:{1F ?{= STATE NORMAL) "THEN"
.{ INDEPEKDENT (ACHIEVE {3 FLIGHT))
{ACHIEVE (L FLIGHT}})))
{BUG SUB-GOAL-FIKATION) '
{IF ?(= MABEUVER STALL) "THEN®
.(NO¥ { INDEPENDENT {ACMIEVE (§ FLIGHT})
(ACHIEVE {L FLIGHT})})
{SWITCH-PACKET STALL-RECOVERY})
{5F (= MANEAVER SPIRAL-DIVE} "THER®
.{PRECEOES {ACHIEVE (5 FLIGHT})
{ACHIEVE (L FLIGHT}))
(PUSH-PACKET SPIRAL-DIVE-RECOVERY)))}

[CAVEAT:

We have noted that in the current domain, the rules do not all
have equal weight in terms of range of applicability, or likelihood of
applicability. Thus, rather than creating a rule for each combination
of goal and context, we employ caveats to account for multiple
contexts affecting a goal. Hence, the normal context will have a
production associated with it. These caveats describe the
relationship of the goal of the production to various "non-normal”
contexts. They may simply point out when assumptions implicit in
the form of the production are invalid, as is the case in the second
caveat; or they may provide explicit information about the planning
necessary to achieve the goal in the non-normal context, as is the
case in the third caveat. Many of the interrelationships between
actions can also be represented by the caveats. These can serve as
warnings about possible effects of the action part of the production,
such as the first caveat which warns of subgoal fixation.

The "implicit context problem" is handled by adding second order
knowledge to the system. Thus, the CONTROL comment of a
production contains information regarding the use of a production in
cases where more than one such production matches the current goal.
For example, there are four productions to notice a change in pitch.
These involve using the artificial horizon, the vertical velocity
indicator, the altimeter and the airspeed. Information can be added
to the productions to state that one of these methods is the primary
method, that others should be used to verify the validity of the
primary production, and still others should be used as backup in case
the primary method is known to be inoperative. This is exemplified
by the production for level flight.

{DEFINITION L-FLIGHT-1
{GOAL: {L FLIGHT))
{ACTION: (DD (ACHIEVE {(NOTICE DELTA PITCH})
{ACHIEVE {MAKE PITCH 0})))
{CONTROL: .(« [PRIMARY-METHODS {NOTICE DELTA PITCH})
{FIND M "SUCH-THAT® {a :M :METHOD (VIA AH))}))
.{w {CHECK-METHODS (NOTICE DELTA PITCH}}
{- [METHODS (WOTICE DELYA PITCH))
{PRIMARY-METHOOS [NOTICE DELTA PITCH))})
.(» [BACKUP-METHODS {NOTICE DELTA PITCH)}
{CHECK-METHODS {MOTICE DELTA PITCH)}))

One of the advantages of a production system is that the
structuring of information as a collection of rules allows the system
to generate explanations of its actions fairly easily. By making
explicit more of the knowledge embedded in the system, we can
enhance the explanation facilities. This is exemplified by the
rationale comments, which describe the overall plan justifying the
nature of the action. As well, rationales for the use of particular
productions are attached to the productions themselves, to that
explanations are further aided. For example, if the system was
questioned about why it was attempting to achieve straight flight, it
could respond that it was attempting to achieve the higher level goal
of straight and level flight. If it was further questioned about why
it was doing this in the particular method chosen, in this case a
sequential plan, the system could use the rationale to explain that in

CiOlHstein

a normal situation, the two subgoals are essentially independent.

Such a facility for explanation, and in particular the rationales,
also aids the system in debugging its performance, by pinpointing the
likely source of error. To further this debugging process, models of
plans and general bug types are stored with the system. These
models can then serve to provide a context for debugging and repair.
The plan associated with each production is attached to the
production. The caveats may also contain pointers to new plan types
which may be used in case of failure.

Specifically, we have the following plan
indentation indicating successive specialization.

taxonomy, with

PLANS
CONJUNCTIVE
INDEPENDENT
PARALLEL
SEQUENTIAL
DEPENDENT
ORDERED
COROUTINE
GLOBAL
CAUSAL
CONTROL
OPEN
FEEDBACK
MEASUREMENT
DIRECT
INDIRECT

Associated with this taxonomy of plans is a taxonomy of bugs.
For example, a sequential plan in a real-time situation is susceptible
to the bug that while one goal is being pursued, the other gets out
of hand. We view debugging as a transformation process between
plans. Hence, debugging a sequential plan might mean to employ the
alternative of a coroutine plan in which processing time is shared
between subgoals. To illustrate this, consider the following situation.
We are attempting to turn the aircraft while maintaining level flight.
In the rate of turn desired is small, the two goals can be considered
independent and a sequential plan is appropriate. This was the plan
cmployod in the successful maneuver of fig. 1. However, if the rate
of turn desired is large, then the two goals arc no longer independent
and there is an unexpected dependency. So we have a linear plan
bug. This was illustrated in fig. 2. It is repaired by changing the
plan to a coroutine plan, in which attention is tirncshared between
the subgoals. Fig. 3 illustrates PONTIUS successfully flying a steep
turn when told to employ a coroutine plan. Currently,
transformations between plans can be requested of PONTIUS and the
appropriate modifications made by accessing annotations. Automatic
debugging is not yet implemented.

By attaching these annotations to
performance of the system is greatly enhanced. Among the effects
are: an explanation capability, automation of debugging, efficient
structuring of the procedural knowledge, and the use of complex
processes such as parallel processes or timesharing processes.
Because we are dealing with a real time situation, performance
efficiency becomes an important factor and annotated production
systems show a large improvement in this dimension over ordinary
production systems.

the productions, the

6. Interpretation of Annotated Productions

Using annotations, there are 3 ways in which the productions can
be interpreted.

(1) Standard Interpretation: The simplest possible operation of
the performance component of this system uses only the basic portion
of the production rules in a standard pattern directed mode. In this
mode the annotations are used only during debugging and serve to
help explain the difficulty and possibly correct it.

(2) Directed Interpretation: An improvement over this mode of
operation is to allow a more sophisticated capability for handling
situations in which multiple productions match the current goal.
This mode is governed by the search advice contained in the
CONTROL annotation, as was illustrated by L-FLICHT-1. This
control information specifies whether the search should be depth-

Knowledge

Acq.-1

314

first, breadth-first or some intermediate variety allowing for the
possibility of suspended nodes. Such specification is accomplished, in
part, by stating whether a method is "primary", for "checking" or for
"backup". The selection criteria can cither be explicit predicates or
can be deduced from other commentary.

(3) Careful Interpretation: A further improvement is to access
the commentary in each production, before the production is
executed. The commentary is used to verify the appropriateness of
the production, its success, and the appropriate actions to take upon
failure. Thus, if a annotated production states that it is applicable
in the normal context but not in all contexts, this mode checks the
context as a whole, and not just the state variables being accessed
directly by the production, to check whether the normal state is in
effect. Similarly, if the system notes that several strategics are
available for the same goal, all arc tried and compared. |If
inconsistencies exist, then the rationales and caveats arc checked for
an explanation.

7. Learning

Annotations can provide the data for a heuristic compiler capable
of modifying the production system to achieve progressively
improved levels of performance. We have not implemented such a
compiler, but our plans for its design arc based on the following six
techniques: (1) the creation of specialists, (2) the use of caveats, (3)
the use of plans, (4) learning by generalization of the plan, (5)
learning by analogy, and (6) efficiency considerations.

(1) Specialist Creation: the organization of productions with a
common calling pattern into a specialist is one powerful technique.
For example, standard execution consists of simple pattern directed
calls. Alternatively, a specialist may be constructed to dynamically
decide which productions from a set with a common goal should be
applied, the order of application, whether confirmation is necessary,
which should serve as backup upon failure, whether a coroutine
search is required, etc. In directed interpretation, such decisions are
made on the basis of explicit CONTROL advice, e.g. statements that
some methods are primary, while others are intended for backup or
verification. Specialist creation compiles this advice by creating a

separate "specialist" production which then calls-by-name, in the
desired order, the various productions mentioned in the control
annotation. The original set of productions with a common calling

pattern are erased from the global context and asserted only in the
local context of the specialist. Only the specialist is asserted in the
global context. Hence, this aspect of heuristic compilation represents
the understanding of the interrelationships between pieces of
procedural knowledge that have a common goal.

Note that such a choice is strongly motivated by efficiency
considerations, due in part to the real time nature of the domain.
One problem which could arise, however, is if the rule base is
incremented. Then the specialist would not take note of this new
rule and would have to be updated, a possibly costly and difficult
job.

(2) Caveat Checking: another aspect of the heuristic compiler is
deciding where to check for caveats. Careful interpretation checked
at the local level of entry into the productions. An alternative is to
move a caveat from a position inside a production, where it is
accessed only when the system is considering execution of the
production, to an entry check associated with goals higher up in the
hierarchy (thereby triggered preventing its original production from
even being considered).

The heuristic compiler may also notice that all (or many)
productions with a common goal have the same caveat and decide to
introduce a specialist for these productions which checks the caveat
before considering any of them.

The caveat may bo serviced in two ways. It can be examined
upon entry to the method. Alternatively, the caveat can be compiled
into a demon which remains active for as long as the method is on
the goal stack. In this latter case, the caveat is constantly monitored
during the period during which the action of the method is being
executed.

The system can be informed specifically of the kind of servicing
desired for the caveat: for example, entry caveat, exit caveat,
continuous caveat; or this can be deduced from the nature of the
caveat's test.

Golden

(3) Plans: heuristic compilation can also involve a consideration of
the consequences of different planning approaches — control plans,
linear plans, ordered plans, coroutine plans, iterative plans. This is
used to provide more determinism and direction in the organization
of the system. For example, the use of plan characteristics to debug
errors was illustrated in moving PONTIUS from a sequential to a

parallel plan for a steep level turn. However, this was done
manually. PONTIUS docs not yet diagnose these difficulties by
itself.

(4) Generalization: another function of the heuristic compiler is
generalization. An example of this is where a student has learned a
packet of productions for level flight and is then told that to achieve
climbing flight, it is only necessary to generalize these productions in
such a way that the desired pitch is transformed from a constant
(zero) to a variable. For example, L-FLICHT-1 can be transformed
to CLIMB-FUCHT-1:

(DEFINITION L-FLI6HT-1

(GOAL:(L FLIGHT))

(ACTION: (DO (ACHIEVE (NOTICE DELTA PITCH))
(ACHIEVE (MAKE PITCH 0)))))

(DEFINITION CLIMB-FLIGHT-1

(GOAL:(CLIMBING FLIGHT TO 7ALTITUDE))

(ACTION: (DO (ACHIEVE (NOTICE DELTA PITCH))
(ACHIEVE (MAKE PITCH 7VARIABLE)))))

Alternatively, one could teach the system climbing flight as a
separate primitive packet and let the heuristic compiler notice that
the two packets have a common generalization. Then the two packets
could be replaced with the common generalized version.

(5) Analogy: another process used to create new methods from
old ones is "analogous reasoning". For example, the entire packet for
straight flight might be constructed from the previously learned
packet for level flight using the analogy:

PITCH --> BANK;
ALTITUDE --> DIRECTION;
ELEVATORS --> AILERONS;
FEET --> DEGREES;

VERTICAL VELOCITY INDICATOR --> TURN COORDINATOR;
ALTIMETER --> DIRECTIONAL 6YRO;
ALTIMETER --> COMPASS.

This would have to be debugged, but it provides strong guidance in
the initial program construction process. Using this mapping, S-
FLICHT-1 can be created from L-FLICHT-1.

(DEFINITION S-FLIGHT-1
(60AL: (S FLIGHT))
(ACTION: (DO (ACHIEVE (NOTICE DELTA BANK))
(ACHIEVE (MAKE BANK 0))))
(CONTROL:
.(m (PRIMARY-METHODS (NOTICE DELTA BANK))
(FIND M -SUCH-THAT" (+ :M METHOD (VIA AH))))
.(m (CHECKMETHODS (NOTICE DELTA BANK))
(- (METHODS (NOTICE DELTA BANK))
(PRIMARY-METHODS (NOTICE DELTA BANK))))
.(m (BACKUP-METHODS (NOTICE OELTA BANK))
(CHECK-METHODS (NOTICE DELTA BANK))))
(CAVEAT:
(BUG METHOD-FIXATION
(GOAL: (NOTICE DELTA BANK))
(METHOD: PRIMARY))))
(6) Efficiency: heuristic compilation techniques related to
efficiency include finding tubgoals which can be accomplished by a
*ingle action. For example, different goals may require the same
information. The naive approach would be for each of these subgoals
to notice the required state variable independently. The heuristic
compiler would instead use memory to record the result. Then the
second goal could aave time by accessing memory.

KnnwlIfHtf*

Acq
3

-1

5

8. Research Plans

(1) Our current goal is to continue the experimental investigation
of annotated productions as a model of generic flight skill. We plan
to implement a heuristic learning program that can successively
modify an inital APS model in response to flight experience obtained
from the behavior of the model in controlling the simulator and
coaching based on the standard instructional sequence found in flight
textbooks. Success will be judged by the extent to which the APS
evolves into a competent pilot, exhibiting and correcting typical
piloting bugs.

(2) The next goal will be to model individual pilots. We plan
several experiments along this line directed towards protocol analysis
of student pilots flying our Lisp simulator and the Orly simulator
developed by Feurzcig and Lukas [1975]. Our hypotheses is that it
will be possible to evolve an APS model for individual students that
predicts common errors.

(3) The third step will be to automate this protocol analysis, using
the techniques of overlay modelling developed in [Carr and Goldstein
77]. These techniques constitute a general methodology for
generating information processing models, if a modular and
comprehensible expert program for the domain is provided.
PONTIUS will provide this required expertise.

(4) Our ultimate goal is the design of a Computer Coach for
flight simulators that analyzes a student's flying and coaches him on
the underlying control skills. The theory of computer coaches is
developed in [Goldstein 77]. If APS provide the necessary model of
expertise, then we believe that the rule-based tutoring theory
developed in [Goldstein 77] will lead to computer coaches that can
significantly improve the effectiveness of flight simulator training
for students and professional pilots.

9. Meta-Knowlcdge for Large Knowledge-Based Systems

Annotations are a kind of mota-knowlcdgc. Davis [76] develops
mcta-rulcs and other types of mcta-lcvcl knowledge for use in
association with the MYCIN system [Shortliffc 74]. In particular,
this meta-knowlcdgc is used to aid the explanation by the program
of its actions, to automate the addition of new knowledge, and to
direct the use of the object level knowledge. The rneta-rulcs which
accomplish the latter arc similar to our specialists.

However, we believe that further aspects of the annotated
production system would be appropriate for the medical domain of
MY CIN which are not included in Davis* TEIRKSIAS program. For
example, the use of rationales could improve the explanation
facilities. Currently, MYCIN/TEIRESIAS uses the action of each
rule as a basic unit of explanation. While this does explain the
actions of the program, it docs not consider the underlying
justification for those actions. Rationale slots could be used to carry
such justifications, for example, the reason that medical researchers
believe the rule to be valid. This would be critical if MYCIN is ever
to be part of a computer coach for medical students.

A second possibility is in the use of plans. Doctors, in
approaching some problems, create and use plans. For example, drug
therapy, the domain of MYCIN, is usually only a step in the overall
treatment of the patient. MYCIN currently does not have a
representation for explicit plans: annotations provide a natural
extension to production systems to make explicit planning knowledge.

A third possibility is to group less frequently used productions
for a given goal into caveats associated with their more frequently
employed brethren. The caveat would be triggered by some warning
in the global database. For example, it might be appropriate to
separate diagnostic rules appropriate for an emergency from standard
diagnostic procedures by means of caveats. Greater efficiency and
modularity is obtained by thereby reducing the size of the currently
applicable knowledge base.

10. Conclusions

In the seminal work on production systems by Nowcll and Simon,
the task if explicitly limited to modelling an individual engaged in a
non-learning situation. Hence, meta-knowlcdgc in the form of
commentary was not a part of the production model. However, as we
have demonstrated for the flight domain, meta-knowlcdgc is critical

ftoHsteln

when the problem of an individual improving his skill is addressed.
This paper has introduced a formal vocabulary for some of this
knowledge. We believe these annotations constitute a small stop
towards a theory of self-knowledge which may well be the essential
ingredient to the design of large knowledge-based systems capable of
self-improvement, explanation, and sufficient efficiency for real-time
processing.

11. References

Carr, B. and I. P. Coldstcin. 1977. Qverlays; A Theory of Modelling
for Computor Aided Instruction. M1T-Al Memo 406.

Davis, R. 1976. Applications of Mcta Level Knowledge to the
Construction, Maintenance and Use of Large Knowledge Bases.
SAIL Memo 283.

Feurxeig, W. and C. Lukas. 1975. Higher Order Adaptive Training
Systems, Bolt, Bcranck and Newman Proposal P76-1SD-14.

Coldstein, I. P. 1974. Understanding Simple Picture Programs. MIT-
Al TR-294.

Coldstein, I. P. 1977. The Computer as Coach. MIT-Al Memo 389.

Langiewisch, W. 1944. Stick and Rudder. McCraw Hill, New York,
republished 1972.

Newell, A. and H. Simon. 1972. Human Problem Solving. Prentice
Hall, Englewood Cliffs, N. J.

Shortliffc, T. 1974. MYCIN — A Rule-based computer program for
advising physicians regarding anitmicrobial therapy selection.
SAIL Memo 251.

Sussman, C.J. 1973. A Computational Model of Skill Acquisition.
MIT-AI TR 297.

Knowledge Acq.-I:

316

Goldstein

TRE TR T

FRALALA S B A ST

Ratw gt Turn
A sti:ﬁ“ﬁﬁs;ui [(((r"
Rall Angl TS
a gle
2 g
HTIMETER HE IR T AR
Rudder ruaiuxL. LR L] EYELEA
Epred ! LG .4,# Tk o
= = N = ana2
- - G
UiNp
Ficeh Angle ¥ v ?
s e | 3 B @ ¥
W ,! £
Varcical Yelociry \¥
T e | VERZ @ DIFELT Loy RIFSPEEL TiEN
on R e
oo A S
H] ot I v m
* et L'I.' Al
) <
ALritudn " /
e e - —
f
He¥ ot F [iL]
..... —RLE T £ e
3 cars a8 o Et e T N ———— .o
L. 1ok fowloid] h i
-, THvick fowioion
— Bte of Turn !
‘--..._ |
c)/ .
\ L RedL Apgle R EILS STIFL DL CFETLOA
| Ruddit Toudt Lo [SEL T
| o Lk LEAF P,
‘|--‘ '/1 Sy r Wihe
I
HinD -
> ¥ @ T
'] [[
| e b / \
! PEccl Angle
i B .
= vy g TIET: T]dnm,, RIEFEED A\
y \\I 1] . by
l Vertical Velocity [py . . .-.-I......]
o oHn I .
! <
moor eoe [,:}
VELL g Ty ‘(("'I""ﬁ,x
/ {‘;
AlE)ade .
ey .-u.l ¥ EULI

317

FIGURE 1

SUCCESSFUL SEQUENTIAL SHALLOW
BANK

The instruments are being sampled
every 5 seconds. First the pro-
ductions for level flight are ex-
ecuted until the altitude is within
the desired tolerance and then the
productions for turning, again un-
til the rate of turn is within tol-
erance.

FIGURE 2
UNSUCCESSFUL SEQUENTIAL STEEP BANK

The instruments are being sampled
every 5 seconds. First the pro-
ductions for level flight are ex-
ecuted until the altitude is within
the desired tolerance and then the
productions for turning, again un-
til the rate of turn is within tol-
erance. Unfortunately, the plane
crashes before PONTIUS has estab-
lished the desired rate of turn.

FroETTE T T R TR TR T T YETITIEN
SN i
\‘._.--.__i.:::‘_.:n::“_._ Stirck !‘mnittav1 (*K-\ QF‘\ |
e |
@ |
N et dmte o v e FIGURE 3
Rudder I’l\ﬁiIIl'F MIE [VEL T
Spead e i ST LERE o SUCCESSFUL PARALLEL STEEP BANK
et e ———— ‘ LN . .
The instruments are being sampled
Pitch angle every 5 seconds. Attention is di-
[e e N\ vided between the productions for
level flight and productions for
Vartical Veloelty K2 = tu rning_
._\/"\.._,,4—--_--‘-...—-—-..—- a nlﬁtzugdﬂ RIFSPELT . TN
- v el]
W 806 emE[INTED
voxz o Y iy o
: £ T
-t 9aa F M0 T
BLE. A
Knowledge Acq.-l: HolHsteln

