INDUCTION OF RELATIONAL PRODUCTIONS IN TOE PRESENCE OF BACKGROUND INFORMATION

Steven A. Vere

Department of Information Engineering
University of Illinois at Chicago Circle

Chicago,

ABSTRACT

An operational theory is developed for the gener-
alization of relational productions in the pres-
ence of background information. This provides a
unified theoretical solution for a broad class of
intelligence paradigms, including letter sequence
completion, visual analogies, and the learning of
operators from before-and-after situation pairs
or from situation sequences. Relational produc-
tions are used as a formal model for operators.
The generalization process is given access to a
common body of background information. Background
literals which have association chains to fore-
ground literals may be incorporated into the gen-
eralization. This theory has been computer imple-
mented in SNOBOL4, and examples illustrate its
application in the four paradigms mentioned above.

1. INTRODUCTION

The long-range goal of this work is the develop-
ment of an operational, general purpose mathe-
matical theory of inductive learning whose imple-
mentation would be capable of emulating the
behavior of empirical programs written for spe-
cialized tasks. This paper describes a generali-
zation theory for the induction of relational
productions in the presence of "background infor-
mation”, i.e., a separate body of facts potentially
relevant to the generalization process. With only
minor interface variations, a SNOBOL4 computer
implementation of this theory exhibits behavior in
four distinct intelligence paradigms:

1) Letter sequence completion (e.g., ABMCDM...);

2) Selection of best visual analogies in 1Q test
questions;

3) Learning operators ("rules") from before-and-
after situation pairs and counterexample pairs;

4) Learning operators from observation of situa-
tion sequences.

Problems in the first paradigm have been solved
repeatedly by programs specially written for this
task. For example, Williams (1972) developed a
program with behavior covering this and similar
completion problems, and Waterman (1975) presents
a short program for this task, expressed in condi-
tion/action productions. See also Egan and Greeno
(1974). Evans (1968) developed a very capable
program for visual analogies. Hayes-Roth (1976)
has developed a program for learning "rules" from
before-and-after examples. The empirical program
of Hedrick (1976) solves problems in the letter
sequence and before-and-after pairs paradigms.

Knowledge Acq.-4:

Illinois

60680

Soloway (1976) is developing a program for learn-
ing the rules of baseball from situation sequences.
Nevertheless, it is difficult to find a fundamental
theoretical principal common to all these programs.
However, it will be seen that relational produc-
tion induction does provide a common theoretical
core for all four paradigms.

The relational production is a formal model for
describing change in discrete relational systems
(Vere 1976, 1977a). It is an amalgamation of two
familiar concepts: string productions (Post 1943)
and STRIPS operators (Fikes et al., 1972). Readers
are cautioned not to confuse this model with the
linearly ordered condition/action productions
studied by Waterman and others. A major advantage
of the relational production formulation over
related Al "production" systems is that the appli-
cability and effect of these productions can be
described mathematically using analytic tools from
theorem proving literature. This permits the for-
mal proof of key results.

The relational production model will be informally
reviewed in section 2. Section 3 develops the
theory of relational production generalization,
based on earlier work in concept induction, and
discusses the role of background information. Sec-
tion 4 discusses the application of relational
production induction to each of the four paradigms
together with an example run on the computer
implementation.

2. REVEEW OF RELATIONAL PRODUCTIONS

A relational production is a relation revision
mechanism, analogous to string productions. String
productions specify possible revisions of a string
of symbols; relational productions specify possible
revisions of a conjunction of literals. In this
paper, a literal will be taken to be an ordered
list of terms, and a term will be a constant or a
variable.

For the purposes of this paper, a relational pro-
duction has the form a-*B, where a and B are con-
junctions of literals. The substrate which a set
of productions may revise is called a situation,
which is also a conjunction of literals.

To illustrate the structure and application of
relational productions, consider a "blocksworld"
consisting of a number of cubic blocks of uniform
size. Figure 2.1 shows schematically a blocks-
world situation in which there are three blocks.

Vere

We will use three types of literals to describe
this world:

1. {en .X .Y) means block X rests directly on top
of hlock Y;

2. [ontable .X) means block X rests directly on
the table;

3. (clear .X)} means the top of block X is clear,
i.e., no block rests on X.

The convention is that variables are identified
by a period prefix. Otherwise, strings of letters
and digits are constants.

C

Al IB
SPT777777

A Simple Blocksworld Situation

Figure 2.1

Using these literal types, a description of the
situation of Figure 2.1 is: (clear a)

(ontable a)

(on c b)

(ontable b)

(clear c)
The following relational production specifies the

unstacking of a block: (clear .X) (clear .X)
(on .X .Y)-— (ontable .X)
(clear .Y)

In words, this specifies that if a block X is
clear and rests on block Y, then the situation
may change into one in which X rests on the tabic
and Y is clear. We emphasize that a production
is not the same as a predicate calculus implica-
tion, since the literals on the left of the pro-
duction are deleted from the situation. This
will be described precisely below.

Of course, a production may not be applicable in
a given situation. For example, an unstacking
operation cannot occur if no block rests on
another. Let o represent a situation and # a con-
ventional substitution of the kind used in deduc-
tive theorem proving, and having the form
{t1/v), .+ tg/vr}, where each t* is a term and
each v is a variable. Then production a+# is
applicable to situation a iff a®# Ca. In this
relation, the conjunctions a and o are regarded
as sets of literals. Thus the unstacking produc-
tion above is applicable to the situation of
Figure 2.1 since

clear a)
[feny B eerx v« [(oreem e foreabis @

{ontable b)

(clear c)

To specify the new situation after a production
has revised a situation, we will use additional
set operators:

o' = oMol URs

Here \J and M denote set union and intersection,

respectively, and the overbar denotes set comple-
ment, 8 is any substitution which satisfies the
applicability relation. In the absence of paren-
theses, intersection takes precedence over union
in expressions.

Continuing the example above, if the unstacking
production is applied to the situation of Figure
2.1, the new situation is determined as follows:

[(clear a)
(ontable a)
a' = | (on ¢ b} m[nga; :f,ﬂ{cf.x. b/ .Y}

{ontable b)
| (clear ¢)

[(clear .X)
U | (ontable %) |{c/.X, h/.Y}
| {clear .Y}

C{clear a)
{ontable a)
(ontable b)
(clear ¢)

{ontable ¢)
| (clear B)]

Thus the production serves to unstack a block.
Similar productions can be formulated to transfer
a block from one stack to another and to stack
blocks. By continuing to apply productions, a
situation can be revised repeatedly. The nota-
tion 0£.> g' will denote that production p trans-
forms situation o into situation a'.

Beyond artificial intelligence applications, rela-
tional productions are also capable of modelling
the semantics of computer programs, including list
processing and structured data (Vere 1976).

The Context Form for Relational Productions

The antecedent a and consequent B of a production
may contain common literals. Let y=a . This
set of common literals y will be called the context
of the production. Consideration of ttie applica-
bility relation a6Ca and next situation relation
ot =aNabUpd shows that adding or deleting Iit-
erals in the context affects applicability of a
production, but not the transformation caused by
that production. The context form of a production

[xRlanB +&nNR

For example, the context form of the blocksworld

unstacking production (clear .X) {clear .X)
{on .X .Y)— (ontable .X)
{clear .Y)
ig [(clear .X}1 (on .X .¥}—+ (ontable .X)
(clear .Y)

3. GENERALIZATION OF RELATIONAL PRODUCTIONS

This section develops an analytic, operational
theory for the generalization of relational pro-
ductions. First, "generalization" is defined for
productions; second, properties of generalizations
are reviewed; third, a method for generalizing

Knowledge Acq.-4: Vere
350

preductions is developed based on an earlier
method for generalizing simple conjunctions of
literals; fourth, a method is presented for aug-
menting the context of productions with relevant
background infermation using the concept of associ-
ation chains; fifth, the concept of deterministic
preductions is introduced and defined in terms of
association chains.

3.1 Definition and Theorem for (eneralization
of Relational Productions

Production p; is a generalization of production ps,
denBtcd Pl <pp, iff fﬁr all situations ¢ and o',
(o P2 o) implies (0 Il o'}, 1n other words, if
py is u generaljzation of py, the py can cause any
transformation caused by p;, and possibly others
as well.

Relational Production Generalization Theorem (Vere
1977h). If py = ([vy]o; > By) and pa= ([valuy » Ra)
are two relatiomnal productions, andV0 a;0NpRo =4
and a8 NE58 =@, then py<py iff there exists a
substitution 8; such that y;83Cv2. @103 = a2, and
and R18a = B2,

7

-

3. Properties of Cenerulizations

In this section we briefly review some of the
properties of generalizations.

Strict Generalizations. If production pp is an
alphabetic variunt of production p,, then it fol-
lows immediately from the generalizationdefinition
for productions that pyp sps. If pyspy and p) is
not an alphabetic variant of p», then p; isastrict

goneralization of py, demeted py<py.

Common Generalizations. If p; <pp and pyspg it
is natural to say that p, is a common genmeraliza-
tion of pp and py. It is also uscful to talk of
the common generalization of mere than two
productions.

Maximal Common Generalizations., Loosely speaking,
a maximal common generalization is one which con-
tains all the common features of the productiocns
of which it is a generalization, More precisely,
a praduction p; is a maximal common peneralization
of productions p; and py iff:

1. ppspy and py spg (i.e., it is a common
generalizatien.)

no p;' exists such that p; <p;', py' pjy, and
p)' £py (l.e., it is maximal.)

il

As an example, consider the four productions

py = {[(window open)] ({at mky al)-—= (at mky a2)}

pz = {[(window open}] (at mky a7)—+ (at mky af)!
[{at box a3)

pz = {[(window open)]

pa={l 1 (at mky .u)

Py £Pp and py £ py. However, py is not a maximal
common generalization of p; and p; because p3 is
also a common gencralization and pg <p3. In fact,
pP5 is a maximal common generalization (mcg).

(at mky .X\)—— (at mky .Y)!
+ {at mky .V)}

Knowledege Acq,-i

351

3.3 Computing Maximal Common Generalizations
of Productions

In previous work on the generalization of simple
conjunctions (Vere 1975), A<B iff ABCB, and a
procedure is presented for computing the mcg of
two conjunctions. As shown below, in relational
production generalization a production may

be regarded as an ordered list of three conjunctions:
the context vy, the antecedent o, and the conse-
quent 8. Oiven two productions pp and pp, their
mcg's are obtained by computing the mcg's of each
of their three components. However, generaliza-
tion of the antecedent and consequent are special
cuses. To see why, consider three productions

py = {IviJap =81}, p2={lyz]az~ B2}, and p3=
{{vzlaz+B3}. It follows immediately from the
theorem and definitions of sections 3.1 and 3.2
that if pz is an mcg of p; and pjy, then ¥zl C vy,
Y39, Yo, @z8g =0q, azfy=op, 838, =By, and
fzfp = B2 for some substitutions 6, and 8. Thus
the contexts v; and ¥2 need not have the same num-
ber of literals, but oy and a3, and B and £y
respectively must have the sume number, Conse-
fuentiy oz must not only be an meg of oy and aj,
but it must also have exactly the same number of

literals. The same is true for Bs.
For example, consider the two productions
pp={[1 (at mky al)—— {(at mky a2)} and
pa=1{7 1 ({at mky hl) {at mky b2)
(ut box bl) {at box b2)}
The meg of the antecedents is (at mky .X), and the
mcg of the consequents is {at mky .Y). However,

for both antecedent and ¢onscquent these generali-
cutions have fewer literals than the antecedent
und consequent of ps. Hence no mcg of pp and pp
exists,

In summury, to find the mep of two productions py
and p>, compute the mcg's of their respective com-
ponents. However, if a; or Bjhas fewer literals
than the corresponding components of p; or pz, no
meg exists,

The methed for two productions is the basis for
gencralizing n productions, where n> 2. In Vere
(1977h) an iterative, bottom-up approach is dis-
cussed, If a conjunctive generalization can be
assumed, a "linear" method is faster: given pro-
ducticns p1, Pz, ..., pp compute

meg (pp,meg{pp-1, (... megipa,m) ...).

3.4 Background Information

In the concept learning paradigm of earlier work,
instances of a concept are each described by a con-
junction of literals and these conjunctions are
gencralized to form an abstraction of the concept.
in many cuses, both in concept induction and pro-
duction induction, there is a body of information
potentially pertinent to the generalization and

yet not specifically associated with any particular
instance. For simplicity, the following discussion
treats only concept induction examples,

Vere

Consider the problem of learning poker hands from
examples. The two "full house" hands 4 S5, 2 H,
4D,4C, 2Cand I0H, 10D, J S, JC, JH could
be described by the following conjunctions of
literals: (card 4 S)(card 2 H)(card 4 D){card4)
{(card 2 C) and {card 10 H){card 10 D} (card J S}
(card J C)(card J H). From these we could obtain
the generalization: {card .X1 .¥1)(card .X1 .Y2)
{card .X2 .Y3}(card .X2 .Y4)({card .X2 .¥Y5). No
information is required beyond that present in the
descriptions of the instances. However, to learn
the concept of “straight" from the following two
hands: 3 H, 4D, 5H, 6D, 7C and 10 H, J S,

Q D, KD, AC requires additional background infor-
mation on the relative ranking of the cards, e.g.,
that Queen is just higher than Jack and 50 on. We
use the term background information to refer to a
body of facts potentially relevant to a class of
gemeralization problems, but not actually part of
the description of any particular instance. It
then seems natural to refer to the descriptions of
the instances as the foreground information. Here
background information might take the form:

(next 2 3){next 3 4)...(next K A). The problem is
te mechanically augment the literals of cach
instance in the foreground with "relevant” back-
ground literals before generalizing. TFor example,
we would want to add the background litecrals

{next 3 4} (next 4 S)(next 5 6)(next 6 7) to the
description of the first "straight” hand shown
above. Tor the second "straight" hand, a differ-
ent subsct of background literals arc relevant if
we are to obtain the generalization: (card .XA.YA)
(card .XB .YB){card .XC .YC}(card .XD .¥D)}

{card .XE .YE)(next .XA .XB}(next .XB .X()

(next .XC .XD) {(next .XD .XE). To descrihe how
relevant background literals are seiected requires
the concepts of associations and association chains.

Two literals Ly and L have an association
(Ll Lp) iff the ith term of L] is identical to

the jth term of L2 An association chain is a
sequence of ahaomamona
Aig,ig(L1,L2) Aig,ig(L2,L3) -.. Ajp g, (Lp-1,Ln)
where for even r: ir # ir+¢l. For example, if

L] = (next 2 3), Lz = (next 3 4), Lz = (next 4 5),
and Ly = (odd 3) then A3z »(11,L;) A3 2(ly,L3) sat-
isfies the definition of an association chain, but
A3, 2(L1,L2) Az, 2{L2,L4} does not. These two cases
are illustrated in Figure 3.1, which shows that an
association chain can be viewed as a threading
together of literals such that the thread enters
through one term and leaves through another.

{(next 2 A){next Hnaxi 4 5)

asapciation chain sxample

{next 2 3)(next ﬂ 4){odd 3)

asacclation chain countersxample

Figure 3.1 Example and Counterexample

of Association Chains

We are interested in forming association chains in
which the first and last literals in the chain are
foreground literals and the rest are backbround
literals. Background literals in such chains will
be deemed relevant to the foreground instance to
which they are linked. For production induction,
these background literals will be added to the cen-
text of the production, and genmeralization will
proceed as described earlier in this section.

Let yg demote the original production context, and
Yp denote the relevant background literals. Then

the complete context is Y=y, UYyg. The examplesof
sectiond will iliustrate this context augmentation,

In practice, a limit must be placed on the length
of the association chains which are considered,
lest v, become too large. This prevents the com-
putation times from becoming excessive, at the
cost of ignoring information potentially relevant
to the generalization process. None of the
examples of this paper require association chains
of more than four literals.

3.5 Deterministic Productions

A relational production whose context has been

augmented with background information, [Yb,Yf]u-*B.

is defined to be deterministic iff all variables in

g are either: -

1} also present imn o or yg, OF

2) are linked by association chains through v,
hack into a or yg.

For examplc, the production

['] (at robot .X}-—+ {[at robot .Y)

is nondeterministic, since the variahle .Y of the
consequent does not appear in the antecedent or
context. Given a particular present situation ta
which this production is applicable, .Y is a free
variable, and so the new situation ohtained by
applying the production is not uniquely deter-
mined. ilowever, the following production is
deterministic:

[{next .N9 .Ni0}, null]{string .Ni3 .N11 .N12 .N9)—
{string .N11 .N12 .N9 ,N10)

Here vy, = (next .N% .N10) and ¥r=null. The vari-
ables .N11, .N12, and .N9 all appear in the ante-
cedent. The variable .N10 participates in an
association chain through the background context
into the antecedent via .N9,

In summary, this definition approximately captures
the intuitive idea that if a "“deterministic" pro-

duction is applied to 2 situation, the new sjitua-

tion should be uniguely determined.

4. APPLICATION OF PRODUCTION INDUCTION
WITH BACXGROUND INFORMATION TO FOUR
INTELLIGENCE PARADIGMS

This section illustrates the application of pro-
duction induction with background information to
four intelligence paradigms: letter sequence com-
pletion, visual analogies, operator induction from
before-and-after pairs, and operator inductiom
from a situation sequence. In each paradigm an

Knowledge Acq.-4: Vere
352

example is presented which was run on the computer
implementation of the theory previously described.
This program is designated Thoth-pb, one of a
series of induction programs which have been
developed. (In Egyptian mythology, Thoth is the god
of knowledge and learning.) Thoth-pb consists of
about 1,600 executable SNOBOL4 statements.

4.1 Application to the Letter Sequences Paradigm

In the letter sequences paradigm, a sequence of
letters is presented, such as ABMCDMEFMG, and the
problem is to predict the next letter in the
sequence. For this paradigm, the background
information is the ordering of the letters of the
alphabet: (next A B)(next B C) (next Y Z).
In common with Waterman (1975), we assume the
sequence has a fixed "period" i, i.e., any letter
in the sequence is a function of the previous i
symbols. This assumption is not valid for
sequences such as ABBCCCDDDD.... Suppose we
assume the period is 2 (actually it is 3). Wc
could then construct the following set of
productions:

[]
{1
[}

Augmenting the context with background literals
using a maximum chain length of four gives:

(next A B)
{ncxt B C)*

(next D E)
{next E F)*

G H}, null] (string M G)—

(string A B)— (string M)
(string M C)—— ([string D M)
(string D M)—— (string E)

nullJ [string A R) » [string M C)

null] {string D M)~ (string E F}

[(next {string H M)

Generalizing these productions gives:
[(next .NI .N2),null](string .N5 .N6)+(string .N3 .N4)

which is nondeterministic, as previously defined.
Thus the period cannot be 2. Thoth-pb initially
assumes the period is 1, constructing the productions:

[]
[]

{string A)-- =+ (string B)
{string M)-— (string ()
etc.

It then augments these productions with background
literals and generalizes. If the result is not
deterministic, it increases i by one and tries
again, and so on, until either a deterministic
generalization is found, or the period i becomes
so large that two productions cannot be con-
structed. (Thoth-pb requires at least two produc-
tions to generalize.) For this example, for i = 3,
the program computed the following deterministic
generalization:

(next .N1 .N2)
{next .N4 .N1}, null

(next .N3 .N4)

{string .N3 .Nd M)——
(string .N1 .N2 M)

The total execution time was 11 seconds. To pre-
dict the next letter, we can match the left side
of the production to the right end of ABVICOVERMG
using the substitution 8 = {E/.N3,F/.N4,G/.N1 ,H/.N2}

The next letter is thus H, since .N2 follows .NI

in the production. Thoth-pb only computes the

generalization, without actually using it to pre-
Knowledge

Acg.-4:

353

dict the next letter; this
task. Thoth-pb has successfully solved all
problems in Simon and Kotovsky (1963).

is a simple clerical
15

4.2 Application to Visual Analogies

It seems significant that the same production
induction process can be used in a problem class
which, to the present time, has been regarded as
distinct: the familiar visual analogy problems
studied by Evans (1968). One such problem is
shown in Figure 4.1. Using the analytic concepts
of this paper, it is possible to give a formal
representation and solution for such problems.

JE1 2
A 0|
¢ 8 | @
H [] £ AS
© O
4 O B @
A A
Figure 4.1 A Visual Analogy Problem

To begin, each scene must be translated into a
conjunction of literals. This translation is a
significant problem in itself, but not an induc-

tion problem. For example, scene B is translated

into the conjunction: (ISA P3 TRIANGLE)

(ISA P5 DOT)(ISA P4 SQUARE)ABOVE P3 P4)(IN P5 P4).
The end result of this translation, here performed

manually, is a set of eight conjunctions sa, sB,
SC, S], ..., S5. From these Thoth-pb constructs
the following six relational productions: SA *sB

and s¢c + 554 1£i<5. The maximal common general-
izations are computed for each of the following
five pairs of productions:

gj = mcg(sy * sp, SC * sj) 1¢i€5. Scene ip is
the "best" answer iff g7 < gjh for all i # ib,. This
example does not require background information,

although more complex analogies may require back-
ground information for selection of the best answer.

For g1 and g3, Thoth-pb reported that no general-

ization exists; g, g4 and g5 are shown below.
{ISA .N1 DOT)
{ISA .N7 .NO) {18A .N2Z ,N5)

(ISA .N6 .N8) -—— (ISA .N3 .N4)
(ABOVE .N6 .N7) (ABOVE .N3 .N2)
(IN .N1 .N2)
(1SA .N1 DOT)
(ISA .N7 .N4) {1SA .N2 .N5)
(ISA .N6é .N§} — (ISA .N3 .N4)
(ABOVE .N6 .NT) (ABOVE .N3 .N2)
(IN .N1 .N2)

Vere

(ISA .NI DOT)

{ISA .N8 .N5) (1SA .N4 .N6)

(ISA .N7 .N6) ~-—+ (ISA .N3 .N5)

(ABOVE .N7 .N8&) (ABOVE N3 .N4)
(IN .N1 .N2)

Applying the generalization theorem of section 3
the program observes that g2 < g4 and g5 < g4. Con-
sequently scene 4 is chosen as best answer. Total
execution time was 11 seconds.

4.3 Application to the Before-and-After
Pairs Paradigm

In the before-and-after pairs paradigm, pairs of
situations are presented which describe a system
both before and after an action has occurred.
More than one action may be exemplified. Option-
ally, "nonpairs" may also be presented, in which
the transformation between the two situations was
not caused by one of the actions.

Each before-and-after pair (o~b,0")) may be viewed
as a single relational productiony *~ 3. h e
new situation equation from section ?,
o' = onad VRS, shows that this production exactly
accomplishes the transformation from the first
situation to the second. Consequently, a set of
such pairs may be treated as a set of productions,
which may then be augmented with background infor-
mation and generalized as in section 3. General-
ized productions which are "inconsistent" (Vcre
1975) with counterexample productions arc auto-
matically discarded.

As an example, consider Figure 4.2 in which the
arrows indicate legal and illegal white pawn moves
in chess. The background information for this
problem consists of the relative positions of the
squares on a chess board, here labelled si through
s64, plus information on the squares which form

.——> legal move

=== llepsl move

LEGEND

Figure 4.2 Examples and Counterexamples of

the White Pawn's Move in Chess

Knowldge

Acq,
354

This
Literals such as
specify the

the bottom row for white and for black.
information totals 128 literals.
(E SI S2), i.e., east of Sl is S2,
horizontal position of the squares. Literals such
as (S Sl S9), i.e., south of S1 is S9, specify the
vertical position of the squares. Literals such
as (WBR S57) and (BBR Sl), i.e., S57 is in the
white bottom row and S1 is in the black bottom
row, specify the bottom rows for white and black.
The position of the pawn before and after a move
is foreground information. For example, the move
from square S49 to S33 is represented by the situ-
ation pair: (WP S49), (WP S33). Here the "WP"
literals indicate the position of a white pawn.
Nonpairs are represented in the same way. This
problem consists of seven pairs and seven

"nonpairs". Thoth-pb computed the following
generalizations in 100 seconds:
[(§ .N5 .N6), null] (WP .N6)-—- (WP .N5}
{(WBR .N3)
E: :ﬁi ::i%, null |(Wp .N2)~--—> (WP .N1}
{8 .N2 .N3)

The first production describes the standard "one
square north" move by a white pawn. The second
production describes a "two squares north" move,
which is possible only when the pawn is in its

initial position, located one square above the

white bottom row.

If Thoth-pb is given only the seven legal move
pairs, without counterexamples, it overgeneralizcs,
obtaining the following conjunctive generalizations:

[(3 .N3 .N2), null](WP .N2) -~ (WP .N1)
[(5 .N& .N&), null](WP .NS)- -+ (WP .N4)

Both productions cover all seven before-and-after
pairs, but they are nondeterministic, as defined
in section 3.5. By requesting Thoth-pb to ignore
nondeterministic generalizations, we can obtain
(in 84 seconds) the two correct, disjunctive
generalizations seen above without providing any
counterexamples.

4.4 Application to the Situation Sequence Paradigm

The situation sequence paradigm is closely related
to the before-and-after pairs paradigm. A sequence
of situations is presented, describing successive
"snapshots" of a discrete system undergoing change.
The problem is to find a minimal set of produc-
tions, one of which is capable of causing the
transformation between any pair of adjacent situa-
tions in the sequence.

Figure 4.3 shows a sequence of six situations in
the familiar Tower of Hanoi puzzle. Each scene
will be represented using "on" and "clear"
literals, as in section 2. The elements involved
are the three discs A, B, C and the three pegs PI,
P2, P3. For example, the second scene is repre-
sented by the following conjunctions: (clear C)
(on C Pl)(clear A)(on A B)(on B P2)(clear P3).
The background information for this problem con-
sists of literals giving the relative sizes of the
elements: (L B A)(L C A){L C B){L P! A){L P1 B)

Vere

(L P1 CY(L P2 A){L P2 B)(L P2 C)(L P3 A)(L P3 B)

(L P3 C). Here (L X Y) may be interpreted as "X

is larger than Y". For example, the literal

(L P2 A) may be interpreted as '"the base of P2 is
larger than A",

[

o ALy

| —

0 Al

s

@

i

E’Jm

_
i
il

F

@

—

I
L
i
-
=
=N

—

Figure 4.3 A Tower of Hanoi Situation Sequence

From the six conjunctions describing the scenes,

Thoth-pb constructs five productions from the
adjacent pairs of descriptions, and then augments
the context of each production with relevant back-

ground information. For example, from the first
two descriptions is constructed the production:

(L B A} {clear C)

(L 3 B) (on C P1) | (clear B) {on A B)

(L P3 A), (clear A} | (on A P3} {clear P3)
{fon B P2)

The following conjunctive generalization of the
five productions was obtained in 36 seconds:

{clear .N2)
(L .N3 .N2) (clear .NB) l{clear .NI)
{L .N1 .N2), fon .N6 .N7} [{on .N2 .NI)
{on .N4 .N5)

This generalization corresponds closely to our
intuitive idea of the Tower of Hanoi operator,
except for the last three literals of the fore-
ground context, which reflect an idiosyncrasy of
this sequence: in every case when a move occurred,
there happened to be an .N8 clear, an .N6 on an
N7 and an .N4 on an .N5. Note that none of these
variables have associations to the production
antecedent or consequent. Such "noise" literals
could be screened out by checking this property.
Alternatively, we could show an additional sequence
involving just one disc to break the idiosyncrasy.

{on .N2 .N1}
{clear .N3}

Knowledge Acq.-4:
355

5. CONCLUSION

Relational production induction has been shown to
be a common process in four distinct, intelligence
paradigms, which suggests that it may be a basic
principal of inductive inference. The examples of
section 4 all require only modest computation
times, and are far from being upper bounds on the
difficulty of problems solvable by these methods.
In induction, as in problem solving and computa-
tion in general, the style of representation of
information influences the form and difficulty of
solutions. This paper has assumed error free data:
"noisy" data presents atopic for future work. The
background information concept could be generalized
by allowing the literals to be dynamically inferred,
instead of requiring them to be stored explicitly.

REFERENCES
Egan, D.E. and Greeno, J.G. 1974 "Theory of Rule
Induction.” in Knowledge and Cognition, L.W. Gregg

(Ed.). Wiley, New York, pp. 43-103.

Evans, T.G. 1968 "A Program for the Solution of
Geometric-Analogy Intelligence Test Questions." in
Semantic Information Processing, M.L. Minsky (Ed.).

MIT Press, Cambridge, pp. 271-353.

Hikes, R.E. et al. 1972 "Learning and Executing
Generalized Robot Plans." Artificial Intelligence,
Vol. 3, pp. 251-28B.

Hayes-Roth, F. and McDermott, J. 1976 "Knowledge
Acquisition from Structural Descriptions." Department
of Computer Science, Carnegie-Mellon University.

Hedrick, C.L. 1976 "Learning Production Systems from
Examples." Artificial Intel ligencc, Vol. 7, pp. 21-49.

Post, E.L. 1943 "Formal Reductions of the General
Combinatorial Decision Problem." American Journal
of Math., Vol. 65, pp. 197-268.

Simon, H.A.
tion of Concepts for Sequential
Psychological Review, Vol. 70, pp.

and Kotovsky, K. 1963 "Human Acquisi-
Patterns."”
534-546.

Soloway, E.M.
the Common-Sense

and Riseman, E.M. 1976 "Mechanizing
Inference of Rules with Direct

Behavior." Proc. AISB Summer Conference, Univer-
sity of Edinburgh, pp. 307-321.
Vere, S.A. 1975 "Induction of Concepts in the Pred-

icate Calculus." Proc. Fourth Intl. Joint Conf. on

Artificial Intelligence, Tbilisi, USSR, pp. 281-287.
Vere, S.A. 1977a "Relational Production Systems."
Artificial Intelligence, Vol. 8, pp. 47-68.

Vere, S.A. 1976 "Composition of Relational Produc-
tions for Plans and Programs." Dept. of Information
Engineering, University of Illinois at Chicago Circle.

Vere, S.A. 1977b "Inductive Learning of Relational
Productions." Proceedings of the Workshop on
Pattern-Directed Inference, Hawaii.

Waterman, D.A. 1975 "Adaptive Production Systems."
Proc. Fourth Intl. Joint Conf. on Artificial
Intelligence, Tbilisi, USSR, pp. 296-303.

Williams, D.S. 1972 "Computer Program Organization
Induced from Problem Examples." Representation and
Meaning, H.A. Simon and L. Siklossy (Eds.),
Prentice-Hall, pp. 143-205.

Vere

