STRATEGIES FOR
MECHANIZING STRUCTURAL INDUCTION

Raymond Aubin

School of Computer Science
and Artificial Intelligence

University of Edinburgh
Edinburgh, Scotland, U. K./

Abstract

A theorem proving system has been programmed
for automating mildly complex proofs by structur-
al induction. One purpose was to prove proper-
ties of simple functional programs without loops
or assignments. One can see the formal system as
a generalization of number theory: the formal
language is typed and the induction rule is valid
for all types. Proofs are generated by working
backward from the goal. The induction strategy
splits into two parts: (1) the selection of in-
duction variables, which is claimed to be linked
to the useful generalization of terms to var-
iables, and (2) the generation of induction sub-
goals, in particular, the selection and speciali-
zation of hypotheses. Other strategies include
a fast simplification algorithm. The prover can
cope with situations as complex as the definition
and correctness proof of a simple compiling algo-
rithm for expressions.

Descriptive Terms

Program proving, theorem proving, data type,
structural induction, generalization, simplifica-
tion.

Introduction

In general, proving properties of programs re-
quires an inductive argument of one sort or other.
Structural induction is used in this theorem prov-
ing system for automating mildly complex proofs
about programs written in a simple programming
language without loops or assignments.

Theorem provers using such a method were writ-
ten by Brotz (1974) for number theory and Boyer
and Moore (1975) for a theory of lists (see also
Moore (1973) and Moore (1975)). The latter was
applied to proving properties of programs writ-
ten in a LISP-like language. The present system
is an improvement over these previous works by
its typed language and it more sophisticated use
of induction.

Present address: Department of Computer
Science, Concordia University, 1455 ouest, boul.
de Maisonneuve, Montreal, Quebec, H3C 1M8,
Canada.

After an overview of the formal system and the
search strategy, the paper explains how induction
variables are selected, which includes generali-
zation, and how induction subgoals are generated.
Finally, other strategies are presented, includ-
ing simplification. A detailed example and
technical remarks constitute the appendices.
Aubin (1974) describes the whole system in detail.

Formal System

The formal system can be thought of as a gen-
eralization of number theory, but with implicit
outermost universal quantifiers only.

Every term, that is, every variable and func-
tion application, has a type. Types and con-
structor constants are hierarchically introduced.
For example,

[true: | false:] -* bool
[zero: | succ:nat] «* nat
[nil: | cons:nat,list] «+ list
[atom:nat | consx:sexpr,sexpr] -» sexpr
[nulltree: | tip:nat|

node: tree,nat,tree] tree

Variables are simply declared. Finally, de-
fined function constants are introduced by stages
with the help of definitions by cases (Burstall
1969, Hoare 1976). Here are some concrete ex-
amples:

a=>b | bool <=
cases a [true <= b |
false <= true]

a&b | bool <-
(a=>(bU=>false))=>false

men | bool <=
cases m
{zerc <= cases n [zero <= true |
succin} <= falge] |
succ(m) <= cases n [zero <= falge
succ (n <= m=n]

They introduce the function constants of implica-
tion, conjunction, and equality for terms of type
nat. The computer program uses another concrete
representation for type and function definitions
as can be seen in Appendix 1.

The inference rules are those of (1) truth,(2)
specialization,(3) definition by k-recursion,(4)
modus ponens, (5) substitutivity of equality,
and (5) induction.

The domain of interpretation is a many-sorted
word algebra generated by the empty set. A lexi-
cographic ordering is defined over the domain so
that the principle of structural induction holds
in it. An interpretation is given for the lang-
uage which leads to a proof of soundness and weak
completeness. In particular, the meaning of a
function constant defined by cases is a well-de-
fined k-recursive function.

Knowledge Acq.-4: Aubin
363

This primitive system is raised by introducing
more connectives (or, not, cond) and by deriving
some inference rules. Terms are put in normal
form by means of rules inspired from Ketonen's
dialect of Gentzen's sequent calculus (1955). A
thorough description of the formal system can be
found in Aubin (1976).

Search Strategy

Proving theorems can be seen as a game: the
formal system sets the rules besides which we have
a strategy of play. This strategy must meet three
criteria: (1) it must follow the rules of the same
(a question of soundness), (2) it must be a winn-
ing strategy (a question of completeness), and (3)
it must use a tolerable amount of resources (a
question of efficiency).

The search strategy of the present theorem
prover works backward, reducing the original goal
to subgoals, which are in turn reduced to further
subgoals,etc. A solution is found when there is
no more subgoals to achieve. A procedure to re-
duce a goal to subgoals is called a tactic
(Gordon, Milner, and Wadsworth 1977).

A necessary and sufficient condition of sound-
ness of this strategy is that it never reduces a
nonachievable goal to only achievable subgoals.
This is fulfilled if the tactics are inverses of
valid inference rules, primitive or derived. In
particular, the tactic corresponding to the rule
of truth reduces the goal true() to no further
subgoals. Soundness means that when a solution is
found, a proof is indeed found.

A necessary condition of completeness can be
seen as the converse of the previous condition: an
achievable goal must not be reduced to nonachiev-
able subgoals. This is always fulfilled by tac-
tics corresponding to rules which are actually in-
vertible, either in general or in some context. As
for tactics not bound to invertible rules, the
theorem prover tries to find counter examples to
the subgoals they generate: if it succeeds, the
condition is not met and the subgoals, rejected;
if it fails, we cannot tell for sure that the con-
dition is satisfied, but we have some ground to
believe that it is, and the subgoals are retained.

Finding sufficient conditions for completeness
is the main problem of theorem proving and the re-
maining sections of this paper will describe my
contribution in this direction.

The preceding points lead to considering the
utilization of resources. A source of efficiency
in the present prover is the fact that no back-
tracking takes place, that is, at each stage, only
one way of reducing a goal is irretrievably taken.
So, it is sufficient to keep a simple stack of
goals : the original goal is pushed down onto it,
each tactic reduces the goal on top, pops up the
stack, and pushes down the new subgoals onto it.
But above this structure, the choice and use of
tactics have a greater bearing on efficiency. This

Knowledge

prover uses the following tactics in turn, until
the goal stack is empty:

(1) Simplification (inverse of a derived rule
of substitutivity of equality and rule of
definition by k-recursion)

(2) Splitting (inverse of a derived rule of
conjunction: from t and s, infer t&s)

(3) Replacement (inverse of a derived rule of
substitutivity) and strengthening (in-
verse of a derived rule of weakening:
from t, infer s=t)

(4) Contraction (inverse of a derived rule of
substitutivity)

(5) Truth (inverse of the rule of truth)

(6) Generalization (inverse of the speciali-
zation rule), induction (inverse of the
induction rule), and strengthening.

The search is aborted if the current goal can-

not be reduced by any tactic, e.g., the goal
false().

Induction Variables and Generalization

The induction tactic has been divided into two
distinct parts: (1) the selection of a list of
variables to induce upon and (2) the generation
of the induction subgoals, given these induction
variables. This section treats the first aspect.
Actually, | submit that selection of induction
variables and generalization are intrinsically
linked together; so, both will be studied in this
section.

Boyer and Moore (1975) first put in evidence
the fact that only recursion variables were suit-
able candidates as induction variables. | will
further constrain their fundamental idea by
focusing on certain recursion terms of particular
importance. (A recursion term is a term which
occurs in the argument position of a case var-
iable.) If we allow ourselves to talk of (sym-
bolic) evaluation regarding the application of k-
recursive definitions, we may as well talk of
computation rule. A computation rule tells us
which subterm of a term to apply the k-recursion
definition rule to. Nothing can be gained from
a completeness point of view by introducing this
notion, but it can lead to improved efficiency.

The call-by-need computation rule is known to be
optimal for recursion equations (Vuillemin 1973)
and can usefully be applied to our problem. The
starting point is quite simple. What do we need
to know about a function application in order to
be able to apply the k-recursive definition rule
to it? We need to know the values of its recur-
sion terms, if it has any. The interesting point
is that if we apply the call-by-need line of
reasoning to an induction goal which has already
been simplified, the process will be stopped by
one or more variables marking argument positions

Acn.-4 Aubin

which the call-by-need evaluator must have more
information about: | submit that these variable
occurrences constitute excellent candidates for
doing induction upon. | call them primary var-
iable occurrences.

A simple example can helpfully illustrate this.
Take the goal:

(J<>k) <>1=j<> (k<>1).

The infix function constant <> denotes the funct-
ion which appends two lists and is defined thus:

k<>l | list <=
cases k [nil <= 1 |
conain,k) <= cons{n,k<>1)].

We start the chain of reasoning with the func-
tion constant -; both of its arguments are recur-
sion arguments. So, we need to evaluate both of
them before trying to apply the definition of =.
We iterate the process: to know about {j«>ki<>1,
we must know about j<>k, and to know about j<>k,
we must know about 3. But we know nothing about
j; so, this primary occurrence of j makes a good
induction candidate. On the right of the equal-
ity, to evaluate j<>(k<>l), we must know about j
again. So, this variable is undoubtedly the in-
duction variable to choose according to this
technique. Note its directedness: k and 1 are
never considered. And indeed, this theorem is
proved automatically in one induction on (j).

The efficiency of this approach is put in evi-
dence if we replace j by cons(n,j) as would be
done in the generation of an induction conclusion.
Primary variable occurrences are the only ones
which, once replaced by structures, allow evalua-
tion to be eventually applicable to the whole goal
(try with k and 1).

The interesting fact about this approach to in-
duction variable selection is that generalization
can be integrated to it in a natural way. Which
term occurrences in the goal can we consider as
better candidates for induction than the primary
variables? The answer is simple: the term occurr-
ences leading to them by the call-by-need evalua-
tion, or in other words, the term occurrences in
which the primary variable occurrences appear. |
call these primary term occurrences, including the
primary variable occurrences.

The strong relation between selection of in-
duction variables and generalization is theoreti-
cally supported by Prawitz's results (1971).

Here is an example with the same flavour as the
previous one (the function constant rev denotes
the reverse function on lists):

(xev(3)<>k)<>l=rev(j)<>{k<>1l).

We do as before except that for each term occurr-
ence considered by the call-by-need evaluator, we
ask the question: can this occurrence (may be to-
gether with others) be generalized? This is

answered negatively or positively according to
whether the prover can or cannot find a counter-
example to the generalized subgoal. In this ex-
ample, the answers are negative until we get to
rev(j): if we replace both occurrences of it by
a variable, the new subgoal is still achievable
(it is actually the same as in the previous ex-
ample) . The new variable is chosen to be the in-
duction variable.

The advantage of this purposeful generaliza-
tion is that we can meaningfully generalize only
certain occurrences of a term and in particular
of a variable. For example, with:

(3e>3)e>3=3<>(3<>),

we find that the first and the fourth occurr-
ences of j are primary occurrences. We try to
generalize them to a new variable which success-
fully vyields:

{k<>4) <> y=k<> {§<>9)

This subgoal can be proved in one induction on

(k).

Note two points: (1) a search mechanism for
counter-examples is essential to such a generali-
zation method and (2) the approach of Brotz
(1974), and Boyer and Moore (1975) to generali-
zation as separated from induction variable
selection leads in this example to the nonachiev-
able subgoal k<»j=j<>k.

Some pragmatic aspects must be taken into
account in the implementation of this method. In
particular, since searching for counter-examples
is time-consuming, we limit generalization to
the cases which have a better chance of success,
i.e., when the term occurrences to generalize
appear on both sides of an equality or implica-
tion (Boyer and Moore 1975, Brotz 1974). In
addition, the above method may propose several
candidates and the system uses some tie-breaking
rules to elect a unique one.

Here is an additional example of generaliza-
tion. The original goal is:.

subset (k, k).

The function constant subset is defined by cases
on its first argument. No generalization is
possible, in the goal and induction is done on
(k). We obtain an induction subgoal for which
the induction hypothesis cannot be used:

subset{k[1],k[1])
=>
subset (k[1],cone(n[1],k[11)}.

The first and third occurrences of k[|] are
primary and can now be generalized to yield the
subgoal:

Knowledge Acn.-4: Aubin

Subset (k[2],[x]JL §

>

Subset (k[2], cons¢n[1], k[1]}),

which is easily proved in one induction on (k[2]).

Induction Subgoal Generation

We now want to find the induction subgoals,
given the list of induction variables. In parti-
cular, we need to find heuristically justified
instantiations for the induction hypotheses. We
may also wish to discard some hypotheses judged
useless; it should be clear that this can cut
down the complexity of the subgoals considerably.

In order to generate the induction subgoals,
Boyer and Moore (1975) use a method which maps
the structure of what they call a bomb list into
the required terms. The bomb list of a goal
contains information about how definitions fail
to apply to the goal. In Moore's later version
(1975), the corresponding mechanism is directly
based on function definitions. | would argue
that such techniques whereby induction subgoals
are more or less directly constructed from func-
tion definitions do not constitute a sound
approach. In particular, the soundness of the
Boyer-Moore tactic is not provable, at least for
their system.

In my tactic, the heuristic-part is separated
from the nonheuristic part. On the one hand,
all induction subgoals are generated on the basis
of type definitions. For each of them, the con-
clusion and all the hypotheses are considered.
Since checking the admissibility of type defini-
tions is straightforward, it is easy to convince
oneself of the soundness of this nonheuristic
part.

On the other hand, the role of the definitions
of the function constants appearing in the in-
duction goal does not so beyond giving informa-
tion about the rejection, or the acceptance
and instantiation of tentative induction hypo-
theses, i.e. about the heuristic part. Now,
discarding an induction hypothesis from an in-
duction subgoal is sound (by the weakening
rule) and preserves the achievability of the in-
duction subgoal. Moreover, instantiating an in-
duction hypothesis is justified by the induction
rule.

Induction conclusions and hypotheses are act-
ually represented as substitutions involving the
induction variables. By applying these substi-
tutions to the induction goal and bundling up
the resulting terms with m> and &, we easily ob-
tain the induction subgoals themselves.

The induction tactic first finds the conclus-
ion substitutions. For each variable, the algo-
rithm generates the structures representing all
the values that can be assumed by the variable
(the system can do induction from any number of
bases). Then, the conclusion substitutions are
constructed by successively binding the induc-
tion variables to each of their corresponding

structures.

As an example, take the induction goal ack(n,m)
>zero; the induction variables (n,m) are select-
ed. The function ack is defined thus:

ack{n,m} | nat <=
cases n
[zerc <= pucc(m) |
succ(n) <=
cases m
[zero <= ack(n,succ(zero}) |
ance{m) <= ack{n,ack({succi{n},.mi)]].

We set as possible substitutions for n, the
closed gtrustyre rerc and the open structurse,
say, succ(n[1]}; similarly, zero and succ(m[1])
are agpociated with m. Thie means that there are
four conclupion substitutions: (1) [zero/n]
[zero/m], (2) [zero/n] [succim[ild/m], (3)
[suce(n{1]}/n] [zero/m], and (4)[succ(n[1])/n]
(succim[1]y/m].

Next, for each conclusion substitution, we have
to find zero or more hypothesis substitutions,
according to our lexicographic ordering.

Consider any conclusion substitution. We
simply have to find the immediate predecessors
of the list c*(x*) of structures bound to the
induction variables, that is, for all i(l<i<n),
the list c[11{x[1]*),..., c[i-1]{x[i-2]"%,
x(i,4), s[it1], sln], where x[i,3] in x[1]*
has the same type as c{i](x[1]*) and s[3]
(i+1<{<n) is any term.

In our examples, we get the following results:

(1) No substitutions, since zero has no
proper substructures.

(2) [zeros/n] [w[il/m]
(3 [nl2)/n] [sl11/m],

term

t4) [n{1l/m] [s[2)/m], where 8[2] is any
texrm, and [sucei(n[1)/n] m[13/m].

where s[1] is any

Function definitions come into the picture to
serve two purposes: (1) to reject a hypothesis
substitution if no use can be foreseen for it,
and (2) to find relevant instances for the free
variables. Roughly speaking, the strategy
applies hypothesis and conclusion substitutions
to the induction goal, simplifies the resulting
terms (in particular, using function definit-
ions) , and then tries to match parts of these
terms: a failure counts toward rejection of the
hypothesis, while a success both counts toward
its retention and provides instances for the
free variables.

In the Ackermann's example, we have that:
(1) There is already no hypotheses

(2) The tentative hypothesis is discarded

KnowlfcHfcft Acq.-U: Aubin

366

since the definition of ack is not re-
cursive for this case and matching cannot
even be attempted.
(3) By applying the definition of ack to the
conclusion and matching, we find the in-
stance succ(zero) for the free variable

»[i].

There are two recursive calls of ack for
this case; we set two matches and retain
both hypotheses, letting s[2] be
ack(succ(n[l]),m[I]).

So, finally, the four following induction sub-
goals are generated:

M
)
®)

ack(zero,zero) > zero

ack(zero,succ(ml[l])) > zero
ack(n[l],succ(zero)) > zero
=> ack(succ(n[l]),zero) > zero

ack(n[1],ack(succ(n{1]),m[1])) > zere
& ack(suce(n[1]} ,m[1]) > zero
=> ack(succ{n{l]),succ(m(1]}) > zero

4)

This method is not fool proof: it will some-
times retain hypotheses which are in fact useless

(as above), and sometimes discard useful hypothe-
ses. But, in general, it errs on the safe side.
Other Strategies

Other strategies are not so much directly re-
lated to using the induction rule.

Indirect Generalization

In the following definition:

rev2a(l,k) | liet <=
cases 1 [nil <= k |
cons (n,1l) <= rev2all,consin,k})],

the nonrecursion argument k does not stay fixed on
the right, but becomes cons(n,k). The interest of
such definitions lies in the fact that for the
class of problems studied, they are literal trans-
lations of iterative programs. Such nonfixed non-
recursion arguments are called accumulators
(following Moore (1975)), since they can be con-
sidered as holding current values of computations.

Quite often, accumulators have to be general-
ized when they are not variables. For example,
we should generalize nil in the goal rev2a(k,nil)
-rev(k). Since it will not match cons(n[l],nil)
in the simplified conclusion of an induction on
(k). However, we do not have an occurrence on
both sides of «. How can we massage our goal so
as to make nil recur on the right of the equality?
Intuitively, if we know that I<>nil"l, we can re-
write rev(k) as rev(k)<>nil. So, the goal be-
comes rev2a(k,nil)«rev(k)<>nil, and nil occurs on
both sides. What if we replace it by a new var-
iable? We get rev2a(k,l)=rev(k)<>I, which is
Knowledge Acq
367

proved easily by inducing on (k), since 1 can now
be replaced by cons(n[l],l) in the induction hy-
pothesis. Similar generalizations can be found
automatically for natural numbers and lists by a
method using specialization as a means of achiev-
ing generalization.

Replacement and Strengthening

These tactics are responsible for using the
induction hypotheses and is an adaptation of a
method already experimented with by Brotz (1974)
and especially Boyer and Moore (1975). For those
members of the antecedent of a goal which are
equalities, it tries to replace the right by the
left-hand side, or vice-versa, in one or more
members of the consequent. So, grossly speaking,
it reduces s=t=>u[t/z] to s=t=>u[s/z], or vice
versa. A strengthening tactic is used concurr-
ently. In effect, the antecedent members of an
implication which are involved in replacement are
discarded from the antecedent, i.e. s=t«>u[s/z]
is reduced to u[s/z]. This is called strenghen-
ing since it is the inverse of the weakening
rule.

These tactics are well justified and preserve
achievability when they involve induction hypo-
theses, but replacement with equalities not con-
strained by induction requires a new approach.

Splitting

The prover splits conjunctions, that is, it
reduces a goal of the form s&t to the subgoals s

and t. This tactic preserves achievability.
Brotz (1974) used it, but not Boyer and Moore
(1975).

Contraction

This tactic reduces a goal of the form
£¢s{1],...,8[n]) = ex[1],....t[n]) te s[il=t[i],
where s[3] is identlcal to t[3j] (1<j<i-1 ,
i+l<i4n) and sf1] differs from t]+ This is
actually applied to any consequent member of a
term in normal form. The tactle is justified by
the substitutivity of equality; however, it does
not preserve achievability. A similar strategy
can be found in Brotz (1974), but not in Boyer
and Moore (1973).

Simplification

This is the most important tactic besides in-
duction. The simplification problem splits into
three subproblems: (1) one of logical equivalence
between terms before and after simplification,
(2) one of complexity measure for terms, and (3)
one of selection,i.e., what to replace by what
in the terms to be simplified. This last ques-
tion is perhaps the most interesting.

The method used in this prover is inspired
from Vuillemin's call-by-need computation rule

(1973). Applied to simplification, the rule
says: select the leftmost-outermost subterm which
can be simplified (i.e. call-by-name), but take
.-4: Aubln

the maximum advantage of shared subterms. Because
all terms have the same internal representation
(a three-field record), the tactic can deal with
variables and function applications indistinguish-
ably; moreover the program which applies a substi-
tution does not do undue copying. So, once a
term t has been fully simplified, the resulting
term s, whether it is a variable or not, is copi-
ed into the record of term t, whose boolean field
is set to true. Thus any superterm which shared
term t now shares its simplified equivalent s.

The second half of the selection question con-
cerns the order in which the various simplifica-
tion rules are applied on a given term. This
prover tries successively (1) pure simplification
rules, (2) k-recursive definitions, and (3) nor-
malization rules. The rules are further ordered
within each category according to other criteria.

The gain in efficiency due especially to the
sharing of structures is very important.

Conclusion

The strong points of this theorem proving sys-
tem are (1) its typed language, (2) its mechanism
for selecting induction variables and generaliz-
ing, (3) its sound way of generating induc-
tion subgoals, and (4) its fast simplification
algorithm.

However, its formal system is still too weak:
one would like to relax the restrictions on
quantification, and on type and function defini-
tions. It is also clear that the pure backward
search is too limiting and the discovery of use-
ful lemmas on a reasonably large scale will re-
quire more of the user (interactively or not).

Two recent works have proposed solutions to
such problems and others addressed in this paper.
Cartwright's system (1976) includes axiomatically
defined types constrained to denote the same do-
mains as the type constants described in this
paper. Since his language is not typed (despite
his claim), his induction rule is more powerful.
Moreover, his system accepts all computable func-
tions. His search strategy is crucially depend-
ent on interaction with a user.

Boyer and Moore (1977) have a new and even
more powerful system since their types can be de-
fined axiomatically in total freedom. It can
accept any total function (then one can only con-
clude that their language is not enumerable:).
The additional typing freedom increases the com-
plexity of the proofs found by their automatic
search strategy, but they have the facility of
specifying any useful lemmas to the prover prior
to attempting a proof.

Acknowledgements

| am most grateful to my directors of studies,
Robin Milner and Rod Burstall, and also to Bob

Knowledge Acq.-4:

368

Boyer and J Moore. | was supported by the
Commonwealth Scholarship Commission and the Con-
seil national de recherches du Canada.

Appendix 1

Compiling Algorithm for Expressions

In the concrete syntax used by the computer
program, type and function definitions are input
as POP-2 lists. The following simple compiling
algorithm for expressions illustrates the use of
such definitions. Similar algorithms can be
found in Burstall (1969); in Milner and Weyrauch
(1972) and Cartwright (1976), who obtained a
correctness proof interactively by machine; and
in Boyer and Moore (1977) who got an automatic
proof as | did. Note the presence of vacuously
defined type and function constants.

We start by defining the syntax of the source
language of expressions by means of type defini-
tions:

[NAME]
[OPERATOR]
CEXPRESS [SIMPLE NAME]
[COMPOUND OPERATOR EXPRESS EXPRESS]]

Written in the form used in the body of this
paper, this last type definition, for example,
would read; [simple:name | compound:operator,ex-
press, express] -» express.

Type definitions are also used for the semant-
ic domains. States are intended to map names to
numbers. Our first-order logic forces us to give
a function which applies an object of type
FUNCTION to two numbers. We assume that the var-
iables F, and M and N have been declared to be of
type FUNCTION and NAT respectively:

[FUNCTION]

[NAT [ZERO] [SOCC NAT]]
[STATE]

[[[APPLY F M N] NAT] []]

The following semantic functions give the
meaning of the syntactic constructs; MSE can be
said to be an interpreter. NM is a variable of
type NAME; ST, of type STATE; OP, of type OPERA-
TOR; and E, El, and E2, of type EXPRESS:

Ll [Lookur e ET] WAT] [1]
[{(m0 P} yunerion] [11
[{[MsE & BT) HAT)
[CASEE E
[[SIMPLE KM] {LOOKir® NM 5T]]
[[comrotmn GP El E2)
LArPLY (WO oF) [M5E E1 BT} [MSE &2 5T]]11]
Next, vle turn to the taraet lanouaae. Syn-
tactically, it is a set of programs which are
lists of instructions. Postfixed notation is us-
ed. We also give a function to concatenate two
target language programs. PR, PRI, and PR2 are
variables of type PROGRAM; and IN, of type IN-
STRUCT: [INSTRUCT [OPERATE OPERATOK] [FETCH NAME]]
[PROGRAM [NULLPR] [ADD INSTRUCT PROGRAM]|
[[[CONCAT PRI PR2] PROGRAM|

[CASKS PRI
[[NULLPR] PR2]
[[ADD IN" PRI]

[ADD IN [CONCAT PRI PR2]]]]]

Auhin

We define the semantic domains for the target
language (pushdowns and stores), together with
selecting functions for inspecting their constit-
uents. PD is a variable of type PUSHDOWN; and
STR, of type STORE:

[PuSKDOWN [EMPTY] [PUEM NAYT PUSIDOWH]]
[BTORE [MKETORE ETATE FUSIDOWN]]
([[ToP PD] KATI)
[cABES ¥D

[empry] [2ERS]D

[Push B PD2 W]]]

[[LrOr PD) PUSHDOWN]
[cABeSs D
[[EMPTY] [EMPTY]]
[[Puse ¥ P0] oB)]]
[E[smr BETR] STATE)
CASES STR [[MraTORE BT PR) 57111
[{[PDOF &TR] PUSIFDOWN]
[CASES &Th [{MKSTORE ST ¥L) PD]]]

We have two ssmantic functions for the target
lanquage; they can be said to execute programs:
[[[D& IN §TR] ETORE]
CASES IN
[[reTCH HM)
[ux5TORE Esmr STR]
FUSH | LOOKUP WM [STOF STRI]
[PpOF 5TRINIT
{[CPERATE OGP}
[misTONE [STOF 2TR]
[PUsH [APPLY [MO oP]
[Por Feop [oooe sPR1Y]
TTop [Fhov 81R1T)
(por [POr [Fpor sTRII1I11]]
[LIM PR STR] STORE]
(CABES PR
E.IHUL.:.PR] BETR]
[AGD IN PR} (KT P {Do IK BTR]III]]

Finally, the function COMP compiles an express-
ion, that is, it translates it intoc a program:
[[{toMr E] PROGRAM]
[CASES E
E[sum.z wu] [apb {FETCH NMI [RULLPRII]
Ecomounn GP El k2]
CONCAT [COMP K1)

[coNCAT [CoMk F2] _
|ADD [OPERATE OP] {NULLFR]1]II1)

The statement of corraectness of this algorithm

ig: ([EosT [MT [COMP R] STR]
[MEETORE {ETOY STRI
[PUSH [MEE ® [sTOF 57R]] [PDOF BTRI]I]

In other words, we get the same store if we
compile an expression and execute the resulting
program, given a storage, as if we interpret the
expression with the state of the given store and
push the result down onto the stack of the store,
leaving its state unchanged.

This statement can be proved automatically by
the theorem prover with the help of the lemma:
[BOET [MT [COECAT iRl PR2] STH]
[MT PH2 |nT PRL &TRII]

which can be proved automatically on its own.

Appendix 2
Note on Implementation and Results

The prover is implemented in POP-2. The time
taken for finding a proof varies from a few sec-
onds to a few hundred seconds. This is essent-
ially dependent on the extent in which counter-ex-
amples have to be searched for. The proof of the
compiling algorithm, which does not involve any
generalizations, takes only 25 seconds. This
prover could prove most theorems in Brotz (1974)
and Boyer and Moore (1975), plus many new ones.

Knowledge Acq.-4:
36

These theorems were proved using only a core of
basic lemmas in the subtheory of booleans. How-
ever, the proofs of some of the hardest theorems,
(e.g., the compiler correctness) required that
equalities of other subtheories be added to the
set of simplification rules before they were
attempted.

Bibliography

Aubin, Raymond. "Mechanizing structural induc-
tion." Ph.D. thesis, University of Edinburgh,
Edinburgh, 1976.

Boyer, Robert S., and Moore, J. "A lemma driven
automatic theorem prover for recursive func-
tion theory." Computer Science Lab. SRI, 1977.

Boyer, Robert S., and Moore,J. "Proving theorems
about LISP functions." J. ACM 22, 1 (1975):
129-144.

Brotz, Douglas K. "Embedding heuristic problem
solving methods in a mechanical theorem prov-
er." STAN-CS-74-443, Computer Science Dept.,
Stanford Univ. 1974.

Burstall, RM. "Proving properties of programs
by structural induction." Comp.J. 12, 1
(1969): 41-48.

Cartwright, Robert. "User-defined data types as
an aid to verifying LISP programs." In Proc.
Coll. Aut. Lang, and Prog., pp.228-256. Ed.
S. Michaelson and R. Milner. Edinburgh:
Edinburgh University Press, 1976.

Gentzen, Gerhard. Recherche sur la deduction
logique. Trad, et coram. R. Feys et
J. Ladriere. Paris: PUF, 1955.

Gordon, M.; Milner, R.; and Wadsworth, C. "Edin-

burgh LCF." Dept. of Computer Science, Univ.
of Edinburgh, 1977.
Hoare, C.A.R. "Recursive data structures."

Int. J. Comp. and Inf. Sc. 4,2 (1975): 105-
132.

Milner, R., and Weyrauch, R. "Proving compiler
correctness in a mechanized logic." In Mach-
ine Intelligence 7, pp. 51-70. Ed. B.Meltzer
and D. Michie. Edinburgh: Edinburgh Univer-
sity Press, 1972.

Moore, J Strother. "Computational logic: struc-
ture sharing and proof of program properties.
Ph.D. thesis, Univ. of Edinburgh, Edinburgh,
1973.

Moore, J Strother. "Introducing iteration into
the pure LISP theorem-prover." |IEEE Trans.
Soft. Eng. 1, 3 (1975): 328-338.

Prawitz, Dag. "ldeas and results of proof
theory." In Proc. 2nd Scand. Log. Symp.,
pp. 235-307. Ed. J. Fenstad. Amsterdam:
North-Holland, 1971.

Vuillemin, Jean E. "Proof techniques for recur-
sive programs.”" Memo AIM-218/STAN-CS-73-393,
Computer Science Dept., Standord Univ. 1973.

Aubin

