
M O D E L L I N G DISTRIBUTED SYSTEMS

Akinori Yonezawa and Carl Hewitt
Art i f icial Intelligence Laboratory, M.I.T.

Cambridge. Mass. 02139 U.S.A.

1 . I n t r o d u c t i o n

Distributed systems are multi-processor information
processing systems which do not rely on the central shared
memory for communication. The importance of distributed
systems has been growing with the advent of "computer
networks" of a wide spectrum: Networks of geographically
distributed computers at one end, and tightly coupled systems
built with a large number of inexpensive physical processors at
the other end. Both kinds of distributed systems are made
available by the rapid progress in the technology of large scale
integrated circuits. Yet little has been done in the research on
semantics and programming methodologies for distributed
information processing systems.

Our main research goal is to understand and describe
the behavior of such distributed systems in seeking the
maximum benefit of employing multi-processor computation
schemata.

The contr ibut ion of such research to A r t i f i c i a l
Intelligence is manifold. We advocate an approach to
model l ing intell igence in terms of cooperation and
communication between knowledge-based problem solving
experts. In this approach, we present a coherent methodology
for the distr ibution of active knowledge as a knowledge
representation theory. Also this methodology provides flexible
control structures which we believe are well suited for
organizing distributed active knowledge. Furthermore we hope
to make technical contributions to the central issues of problem
solving such as parallel versus serial processing, centralization
versus decentralization of control and information storage, and
the "declarative-procedural" controversy.

This paper presents ideas and techniques in modelling
distributed systems and its application to Artificial Intelligence.
In section 2 and 3, we discuss a model of distributed systems
and its specification and verification techniques. We introduce
a simple example of air line reservation systems in Section 4
and illustrate our specification and verification techniques for
this example in the subsequent sections. Then we discuss our
further work.

2 . A M o d e l o f D i s t r i b u t e d Sys tems

The actor model of computation[Greif&Hewitt75,
Greif75, HewittfcBaker77] has been developed as a model of
communicating parallel processes. The fundamental objects in
the model of computation are actors. An actor is a potentially
active piece of knowledge (procedure) which is activated when
it is sent a message which is also an actor. Actors interact by
sending messages to other actors. More than one transmission
of messages may take place concurrently. Each actor decides

how to respond to messages sent to it. An actor is defined by its
two parts, a script and a set of acquaintances. Its script is a
description of how it should behave when it is sent a message.
Its acquaintances are a finite set of actors that it directly knows
about. If an actor A knows about another actor B, A can send
a message to B directly. The concept of an event is
fundamental in the actor model of computation. An event is an
arrival of a message actor M at a target actor T and is denoted
by the expression (T <- M). A computation is expressed as a
partially ordered set of events. We call this partial order
the "precedes" ordering. Events which are unordered in the
computation can be concurrent. Thus the partial order of
events naturally generalizes the notion of serial computation
(which is a sequence of events) to that of parallel computation.

A collection of actors which communicate and cooperate
with each other in a goal oriented fashion can be implemented
as a single actor. In essence actors are procedural objects which
may or may not have local storage. Some may behave like
procedures and some may behave like data structures Modules
in distributed systems are modelled by actors and systems of
actors. In this regard, IC chips can be viewed as actors.

Knowledge and intelligence can be embedded as actors
in a modular and distr ibuted fashion. For example,
/frames[Minsky75, Kuipers75], units[Bobrow&-Winograd76],
beings[Lenat75], stereotypes[Hewitt75] e.t.c. which represent
modular knowledge with procedural attachments are
modelled and implemented as actors. In the context of
electronic mail systems and business information systems, objects
such as forms, documents, customers, mail collecting stations,
and mail distr ibut ing stations are easily modelled and
implemented as actors.

Messages which are sent to target actors usually contain
continuation actors to indicate where the result of the receipt
of the message should be sent. By virtue of continuations in
messages, the message-passing in the actor model of
computation realizes a universal and yet flexible control
structure without using implicit mechanisms such as push down
stacks. Various forms of control structures such as go-to's,
procedure calls, and coroutines can be viewed as particular
patterns of message passing [Hewitt76].

This model of computation has been implemented as a
programming language PLASMA[Hewitt76]. The script of an
actor can be written as a PLASMA program. We believe that
PLASMA will provide a basis for programming languages for
distributed systems. In section 5, an example of PLASMA
programs is given as a script of a flight-data actor in the model
of a simple air line reservation system.

3 , Techn iques f o r
S p e c i f i c a t i o n and V e r i f i c a t i o n

In designing and implementing a d is t r ibu ted
(message-passing) system, it is desirable to have a precise
specification of the intended behavior of the distributed system.
Also we need sound techniques for demonstrating that
implementations of the system meet its specification. Below we
give some of the central ideas of our specification and
verification techniques based on the model introduced in the
previous section. The more detailed work will be found in
[Yonezawa77].

Auto. P r o r : . - l : Yonezawa
370

In specifying the behavior of a distributed system, it is
not only practically infeasible, but also irrelevant to use global
states of the entire system or the global time axis which governs
the uniform time reference throughout the system. We are
concerned with states of modular components of a distributed
system which interact with each other by sending messages.
Thus we are interested in the states of actors participating in an
event at the instance at which the message is received.

In our spec i f i ca t ion language, conceptual
representations are used to express local states of actors
(modules). Conceptual representations were original ly
developed to specify the behavior of actors which behave like
data structures[Yonezawa&Hewitt76]. We have found them
very useful to express states of modules in distributed systems at
varying levels of abstraction and also from various view points.
The basic motivation of conceptual representations is to aid in
providing a specification language which serves as a good
interface between programmers and the computer and also
between users and implementors. Conceptual representations
are intuitive clear and easy to understand, yet their rigorous
interpretations are provided. Instead of going into details of
syntactic constructs of conceptual representations, we give
examples. Below |<exp> is the unpack operation on <exp> which
means writing out all elements denoted by <exp> individually.

(CELL A) ;a cell containing A at its content*.
[QUEUE A B C) ;a queue with element* A B C .
(NODE (car. A)(c<fr; B)) ;a LISP node containing A and B.
(CUSTOMER (letter*: {lm])(*~of-*tompt-nccdcd: n))

;a cuttomer vi*iting a po*t office
;u>ho carriet letter* !m and want* n *tamps.

(POST-OFFICE (customer: {!c}) (collector: {!cl}))
;a pott office which contain* cuttomer* gc and mail collector* !cl.

It should be noted that a conceptual representation does not
represent the identity of an actor. It only provides a description
of the state of an actor. Thus to state that an actor Q is in the
state expressed by a conceptual representation (QUEUE A B C),
an assertion of the following form:

(Q it-a (QUEUE A B O)

is used. Some examples of specification using conceptual
representation are given in the later sections.

Symbolic evaluation is a process which interprets a
module on abstract data to demonstrate that the module satisfies
its specification. Symbolic evaluation differs from ordinary
evaluation in that 1) the only properties of input that can be
used are the ones specified in the pre-requisites, and 2) if the
symbolic evaluation of a module M encounters an invocation of
some module N, the specification of N is used to continue the
symbolic evaluation. The implementation of N is not used.
The technique of symbolic evaluation has been studied by a
number of reseachers, for example [Boyer&Moore75,
Bursta1l&Darlington75, Hewitt&Smith75, Yonezawa75, King76].

Our method for symbolic evaluation of distributed
systems is an extention of the one developed for symbolic
eva lua t ion o f programs wr i t ten in S I M U L A - l i k e
1anguages[Yonezawa&Hewitt76l One of the main techinques
we employ in symbolic evaluation is the introduction of a

A u t o . P r o g . - l

notion of situations[McCarthy&Haves69]. A situation is the
local state of an actor system at a give moment. The precise
definition of locality in the actor model of computation is
found in [Hewitt&Baker77], By relativiiing states of modules
with situational tags which denote situations, relations and
assertions about states of modules in different situations can be
expressed. Explicit uses of situational tags seem to be very
powerful in symbolic evaluation of distributed systems. A
simple example is given in Section 7.

Another technique we employ in symbolic evaluation is
the use of actor induction to prove properties holding in a
computation. Actor induction is a computational induction
based on the precedes ordering (cf. Section 2) among events.
It can be stated intuitively as follows:

"For each event E in a c o m p u t a t i o n C, if
preconditions for E imply preconditions for each
event E' which is immediately caused by E, then the
computation C is carried out according to the overall
specifications."

The precedes ordering has two kinds of suborderings, 1) the
activation ordering, "activated, which is the causal relation
among events, and 2) the arrival ordering, ''arrive*-heforeM,
which expresses ordering among events which have the same
target actor. Thus there are two kinds of actor induction
according to these suborderings. An example of the induction
based on the arrival ordering is used in Section 7.

4 . M o d e l l i n g
a n A i r L i n e R e s e r v a t i o n S y s t e m

- A specification of an Air Line Reservation System -

As an illustrative example of distributed systems, let us
consider a very simple air line reservation system. Suppose we
have Just one flight which has a non-negative number of seats.
A number of travel agencies (parallel processes) independently
try to reserve or cancel seats for this f l i gh t , possibly
concurrently. We model an air line reservation system as a
f l ight actor F which behaves as follows. The fl ight actor F
accepts two kinds of message, (reterve-a-*cat:) and
(cancel-o-teat:). When F receives (reterve-a-*cat:)t if the
number of free seats is zero, a message (no-more-teat*:) is
returned. Otherwise a message (ok-itt-reterved:) is returned and
the number of free seats is decreased by one. When F receives
(cancel-a-*eat:), if the number of free seats is less than the
maximum number of seats of the f l i gh t , a message
(ok-it*-cancelled:) is returned and the number of free seats is
increased by one, otherwise (too-many-cancelt:) is returned.
Furthermore requests by (re*erve-a-*eat.) and (cancel-a-teat:)
are served on a f irst-come-first-served base.

To wri te a formal specif ication of the air l ine
reservation system, we need to describe the states of the flight
actor. For this purpose, we use the following conceptual
representation

(FLIGHT (seals free

which describes the state of a flight actor. The number of free
seau is <m> and <•> is the size of the flight in terms of the total

: Yonezawa

number of seats. T h e fo rma l specif ication of the a i r l ine
reservat ion system using this conceptual representation is
depicted in Figure 1 below.

(event: (create-flight <■ S)
(pre-cond: (S > 0) >
(return: F* >
(post-eond: (F is-a {FLIGHT {teatt-free: S) {tize: S)))»

(event: (F <« {reterve-a-teat:))
{cate-h

(pre-cond: (F is-e (FUCHT {teatt-free: 0) {tize: S)))>
(next-cond: (F it-a 9FLIGHT {teatt-free: 0) (me: $)))>
(return: {no-more-matt:) >)

(caie-2:
(pre-cond:

(F is-a {FLIGHT {teatt-free: N) (size: S)))
(N > 0) >

<next-cond: (F is-a {FLIGHT {teatt-free: N - 1) (size: S)))>
<return; (ok- its- reserved.) >)>

<event: (F <■ (cancel-a-ieat:))
{caae-l:

(pre-cond: (F is-o {FLIGHT {teatt-free: S) (size; S)))>
<next-cond. (F i f -a {FLIGHT {teatt-free: S) (size S)))>
(return: {too-many-cancel*:) >)

(case-2.
<pre-cond;

(F is-a {FLIGHT {teatt-free: N) (size: S)))
(N < $) >

<next-con<f: (F i t -a {FLIGHT {teatt-free: N ♦ 1) (size: S)))>
<relurn: (o*-ili-canc«//ed:) >) >

(for-eventt: E, E*
whsere E = (F < = M), E' - (F = M')

<pre-cond:
(F is-a {FLIGHT {teatt-free: ...) (me:...)))
(E arrivet-before E')>

<caused-evenu: reply-for[E], rep/y-/or[E']>
(post-cond: {reply-for[t] precedet reply-for[V]) »

Figure 1 A Specification of the Air Line Reservation System
(A Specification for the Flight Actor)

The first <event:...>-clause states that a new f l ight actor F
is created by an event where the create-flight actor receives a
positive number S. <actor>* means that <actor> is newly created.
T h e second <event:...>-clause has two cases according to the
number of free seats at the moment when the f l i g h t actor F
receives {reterve-a-teat:). When the number of free seats is zero
(Cate-l), the state of F does not change. When it is positive
(Case-2)t the number of free seats decreases by one as stated by
the assertion in the <next-coiuf:...>~clause. T h e notat ion in
Figure 1:

<event; (T <« M)
(pre-cond: ... >
(next-cond: ... <astertion> ... >
(return: <ector> > >

means t ha t when an event (T <« M) takes p lace, i f t he

p r e c o n d i t i o n s a r e s a t i s f i e d , < a s t e r t i o n > s i n t h e
<next-con\..>-clause hold immediately after the event unt i l the
next message arr ives at T. <actor> in the <resurn.\..>-clause is
returned as the result of the event. <next-cond:...> d i f fers f r om
<pott-cond:...> in that assertions in <poii-conrf;...>-clause hold at
the t i m e <actor> i s r e t u r n e d , w h e r e a s a s s e r t i o n s i n
<next-cond:...>-clause hold at the time the next message arrives
T h e next message may arrive at T before or after a reply for
the previous message is returned. The th i rd <event:...>-clause is
fo r the cancelling event, which is interpreted in a similar way.
T h e (for-eventt: ...>-clause states that requests (messages)
r e c e i v e d b y t h e f l i g h t a c t o r a r e s e r v e d o n t h e
first-come-first-served base. Namely, the replying events for
events E and E' take place in the same order as E and E\

5 . I m p l e m e n t i n g
t h e A i r L i n e R e s e r v a t i o n S y s t e m

Our strategy to implement the air line reservation system
(specif ied in the previous section) is as fol lows First , we
implement a f l ight-data actor which satisfies the specification in
Figure 1 on the condition that it is always activated serially
Then we put some protecting (or scheduling) mechanism on the
f l i gh t -da ta actor so that the protected f l igh t -data actor may
satisfy the specification of the air line reservation system

In F igure 2 below we give an implementat ion of the
f l ight-data actor in PLASMA.

(craata-flight-data =s) zreate-flight-data receives a tize s of flight.
{let (tize initially s) ;a variable size it set to s.

(teatt-free initially t) ;a variable seats-free it net to s.hen ;the following cases-clause it

;returned at an actor which behavet at a flight-data.
(cases

(=> {reserve-a-teat:) ;when a {reterve-...) message it received,
(rules teats-free

(E> 0 ;if seats-free it zero,
{no-more-seats:)) ;(no-.«) mettage it returned.

(= else ;otherwite
(seats-free «- (teats-free - 1))

;teats-free it decreated by one.
{ok-itt-reterved:)))) ;{ok-„) mettage it returned.

(s> {cancel-a-teat:) ;when a (cancel-...) mettage it received,
(rules seats-free

(i> size ;if teatt-free it equal to t ize,
{too-many-cancel t:)) ;{too-...) it returned,

(i> elte ;otherwite
(teats-free «- (teatt-free ♦ 1»

;seatt-free it increated by one.
{ok-itt-cancelled:)))))) ;{ok-...) it returned.

Figure 2

It is f a i r l y s t ra ight forward to wri te a specif icat ion f o r th is
f l ight-data FD by using a conceptual representation:

{FLICHT-DATA {teatt-free: <m» {tixe: < t»)

which describes the state of a f l ight-data actor. T h e number of
free seats is <m> and <§> is the size of the f l ight in terms of the

Auto. P r o r . - l : Yonezawa
372

number of seats. Note that if FO were sent more than one
message concurrently, anomalous results would be caused. For
example, in the implementation in Figure 2, if (retserve-a-seat:)
and (cancel-a-teat:) messages are sent concurrent ly,
(no-more-teatt:) message might be returned even if there are
vacant seats. Therefore in order to model the air line
reservation system by using the above implementation of a
flight-data actor, the way it is used must be restricted so that
interference between different activations does not take place.
As suggested in the beginning of this section, the restriction we
impose is that FD must be used serially in the sense that FD is
not allowed to receive a message until the activation by the
previous message is completed. Now the flight-data actor can
be used to implement the air line reservation system under this
restriction. We give a formal specification for the flight-data
actor in Figure 3 below.

<event: (creste>-flight-data <= S)
<pre-cond: (S > 0)>
<return: FD* >
<post-cond: (FO it-a (FLIGHT-DATA (teatt-free: S) (tixe: $)))»

ievent: (FD <» (reterve-a-teat:))
{cat*-1:

<pre-cond:
(FD it-uted-terially)
(FD it-a {FLIGHT-DATA (sett-free: 0) (tize: S)))>

<returm (no-more-teatt:) >
<post-cond:

(FD i i - a (FLIGHT-DATA {seots-free: 0) (tixe: $))) »
(cate-2:

<pre-cond:
(FD it-uted-terially)
(FD it-a (FLIGHT-DATA (teatt-free: N) (tixe: S»)
(N > 0) >

<returm (ok-itt-reterved:) >
<pott-eond:

(FD it-a (FLIGHT-DATA (teatt-free: N - 1) (tize: S))) »>

<event: (FD <= (cancel-a-teat:))
(cate-1:

<pre-cond:
(FD it-uted-terially)
(FD it-a (FLIGHT-DATA (teatt-free: S) (tixe: S))) >

<return: (too-many-cancelt:) >
<post-cond:

(FD it-a (FLIGHT-DATA (teatt-free: S) {size: S))) »
(cate-2:

<pre-cond:
(FD it-uted-terially)
(FD it-a (FLIGHT-DATA (teatt-free: N) {site: $)))
(N < S) >

return: (ok-itt-cancelled:) >
<pott-eond:

(FD it-a (FLIGHT-DATA (teatt-free: N ♦ 1) (tize: S))) »>

Figure- 3 A Specification for the Flight-data Actor

In this specification, the restriction of the serial use is expressed
in the following notation,

A u t o , P r o t f . - l
573

(FD it-uted-terially)

stated as a precondition for events. In contrast to the
specification above, there are no such preconditions in the
specification of the air line reservation system (the flight actor)
in Figure I. Thus the reservation system is specified to work
properly even if It is accessed concurrently. Also notice that the
specification above has no statements about scheduling such as
the first-come-first-served scheduling which is stated as
<for events:...>-clause in the specification of the air l ine
reservation system.

8. One-at-a-tlme

In this section, we consider how the serial use of a
f l igh t -da ta actor is realized in environments where
communicating parallel processes try to use the flight-data actor.
Our approach is to surround a flight-data actor FD with some
mechanism which arbitrates parallel requests to the flight-data
actor FO and passes these requests to FD in the serial fashion.
We call this protection mechanism a one-at-a-time guardian. A
ono-at-a-time- guardian can be easily implemented by a
s e r i a l i zer [A tk inson&Hewi t t77] which is a general
synchronization mechanism in the actor model of computation.

Now we give a specification for one-at-a-time guardians.
A one-at-a-time guardian is created in an event where an actor
one-at-a-tlme receives a resource (a flight-data actor in this
case). The one-at-a-time guardian thereby created will then
contain the received resource. The following <event;...>-clause
expresses this.

<event: (one at time <■ RESOURCE)
(return: G* >
<post-cond: (G it-a (ONE-AT-A-TIME RESOURCE)) »

where (ONE-AT-A-TIME <retource>) is the conceptual
representation for a one-it-a-tima guardian which contains
<resoure. Next, we specify how a one-at-a-time guardian G
behaves. In general a request to the guardian G, which is an
arrival of a message M at G, eventually causes an invocation (or
use) of RESOURCE. The invocation of RESOURCE begins with an
access to RESOURCE which is an arrival of the same message
M at RESOURCE and ends with a reply for the access which is
a return of some result of the invocation. (See the figure 4
below.)

Our aim of using a one-at-a-time guardian G is to
control invocations of RESOURCE by parallel requests so that
only one invocation of RESOURCE takes place at a time. In order
to do so, if we have two concurrent requests, the end of the
invocation by one request should always precede the beginning
of the invocation of the other request. This in tu i t ive

: Yonezawa

description of the desired behavior of a one-at-a-time guardian
can be described in terms of the order of the events request,
access and reply introduced above. Suppose we have two
requests, REQUEST} which is an arr ival of a message M i at G,
and REQUEST, which is an arr ival of a message M1 at G. T h e n
REQUEST^ causes ACCESS^ wh i ch is an a r r i v a l of Mk at
RESOURCE resulting in reply-for[ACCESSK], in this order (where
K stands fo r either i or j). To ensure the one-at-a-time property
of invocations of a resource, the fol lowing ordering relation
must be satisfied:

mif REQUEST1 precedes REQUESTj,
then rep/r/orfACCESSj] must precede ACCESS:".

Since REQUESTR always precedes ACCESSK and ACCESSK always
precedes rep/y-for[ACCESSK], the desired ordering relation can
be expressed by the fol lowing diagram.

Th i s behavior of the one-at-a-tima guardian is formal ly
described as a specif icat ion in Figure 5 below. Note that
RESOURCE must be guaranteed to reply.

<event: (orw-at-a-tima) <■ RESOURCE)
<return: G* >
<po*t-cond: (G i$-a (ONE-AT-A-TIME RESOURCE)) »

<for-event*: REQUEST;, REQUEST,
where REQUEST- « (G <« Mj), REQUESTj ■ (G <* Mj)

<pre-cond:
(G i*-a (ONE-AT-A-TIME RESOURCE))
(RESOURCE i*-g**ranteed-to-reply)
(REQUEST, precede* REQUEST-) >

<cau$ed-*ventt: ACCESS:, ACCESS],

7 . S y m b o l i c E v a l u a t i o n
o f t h e A i r L i n e R e s e r v a t i o n S y s t e m

Our implementation of the air line reservation system is
expressed by the following simple code.

(craata-flijht at) a (ona-at-a-tima (craata-flijht-data «)).

(Equivalent^,
(cr^ata-flight =«) i (on«-at-a-tima <« (craata-flight-data <= s)).)

In this section we demonstrate that the above code meets the
specification of the air line reservation system given in Figure 1.
O u r method for the demonstration is symbolic evaluation.

T h e symbolic evaluation of the code

(ona-at-a-time (craata-flifht-data •))

reveals the fol lowing facts:
1) an actor FD is created by (craata-flight-data <= s),
2) G is created by (one-at-a-time <= FD) and returned, and
3) t h e t w o ac to rs sa t i s f y the f o l l o w i n g a s s e r t i o n s
immediately after the creation of G

(FD i*-e (FLIGHT-DATA (trait-fret: t) (*ite: s)))
(G i*-a (ONE-AT-A-TIME FD)).

T h i s means that the f l ight actor is created as a one-at-a-time
guardian G which contains a fl ight-data actor FD with s free
seats. In what follows, we wil l establish that the ona-at-a-tima
guard ian G satisfies the specif ication fo r the f l i g h t actor in
Figure 1.

T h e <even:..>c1ause in the specification for the f l i gh t
actor in F igure 1 specifies the behavior of G in terms of the
conceptual representation

(G it-a {FLIGHT (seats-free:...)(*ize:...)))

(No t i ce tha t F in the spec i f i ca t ion f o r the f l i g h t actor is
instantiated as G.) On the other hand, G is implemented as a
onav-at-a-tima) guardian which contains the f l ight-data actor FD.
T h i s means that we have two views of G and correspondingly
two di f ferent conceptual representations are used to describe the
state of G. In order to show that the implementation satisfies the
specification, we need to establish some relation between the
state of G expressed by

(FLIGHT (seats- free:„.) (tize:..,))

and the state of FD expresssed by

(FLIGHT-DATA (*eat*-free:...)(*i*e:..)).

Auto . P r o K . - l : Yonezawa
371*

The relation we need is:

"If G satisfies the assertion
(G ii-a {FLIGHT beau-free: n) (tize: s)))

in a situation where G receives a message M, then FD
always satisfies the assertion

(FD it-a (FLIGHT-DATA (teatt-free: n) (size:s)))
in the situation where FD receives the same message M
(through the ore-at-a-time. guardian), and vice versa."

This relation is expressed formally as follows:

S i t [E] expresses the situation where an event E takes place.
The above implementation commentary formally describes
the basic idea of the implementation. It can be viewed as the
counterpart of an "invariant" in parallel process environments,
which was first introduced by [Hoare 1972] to show correctness
of implementation of data structures which are supposed to be
used serially.

It should be noted that the first-come-first-served based
scheduling by the guardian G guarantees the above relation. If
the guardian does more complicated scheduling, the relation
needed for the demonstration may not be so simple. For more
general scheduling cases, see [Yoneiawa77].

I. Establishing the <event: (G <■ (reserve-a-ieat:))...>-c\dLUse

There are two cases to be considered. We only consider
the (Case-.2...)-c1ause.

Case-2: (G is-a [FLIGHT (seats- free: n) (tize: t))), (n > 0)

The guardian G receives a (reterve-a-neat:) message M.
To know the result of this event, the specification for
one-at-a-time in Figure 5 is used. Since the flight-data actor FD
is guaranteed to reply, the specification for one-at-a-time
guarantees that the (reserve-a-seat:) message M is received by
FD. To know the state of the flight-data actor FD at the time of
the arrival of M, the above implementation commentary is used.
Since the state of G at the time of the arrival of M at G is
described as:

(G i$-a (FLIGHT ($eatt-free: n) (siize: s)).

the state of FD at the arrival of M at FD is described as

(FD i$-a {FLIGHT-DATA (eat$-free: n) {size: s))).

T h e n the (Case--2...)-clause in the <event.\..>-clause of the
specification for flight-data actors in Figure 3 is referred to.
Since the precondition that FD must be used serially is satisfied
(because FD is contained inside the one-at-a-time G), the
(Case-2~)-clause of the specification for flight-data actors tells
us that

A u t o . P r o g . - l
375

(1) (ok-iu-reterved:) is returned, and
(2) the state of FD is now expressed as:

(FD it-a (FLIGHT-DATA (seat-free: n - 1) (tize: ■))).

(1) is what the <return:..>-clause in the specification for the
flight in Figure 1 requires. Since the state of FD expressed as

remains unchanged until the next message M' arrives at FD. by
using the implementation commentary in the other direction this
time, we know that the state of G remains unchanged as

until the message M' arrives at G. This is what <next-cond:..»>
clause in the specification for the flight actor in Figure 1
requires. Thus Case-2 is shown. Case-1 may be shown
analogously. It should be noted that induction on the order of
arrival of messages is used.

I I . Establishing the <event: (G <■ (cancel-a-teai:))..>-c*\ise

The argument for this event is analogous to that of I.

III. Establishing the <for-eventt:J><\zuie

The event where the flight actor G receives a message
means that the one-at-a-time guardian receives the same
message. Suppose that M and M' arrive at G in this order.
The specification for the one-at-a-time guardian specifies that
M' is not received by FD until the reply from FD for M is
completed. Therefore the reply to M' always takes place after
the reply to M. This is what the specification requires.

I V . Establishing the Confinement of the flight-data actor FD

The discussion in I, II and I I I above assumes that no
one can access the flight-data actor FD except through the
guardian G. T h i s assumption always holds because the
flight-data actor FD created by (create-flight-data <« t) is never
released outside the one-at-a-time actor.

8 . F u r t h e r W o r k

We are currently working to establish a coherent
methodology for demonstrating that a distributed
message-passing system will meet its specifications. By using
the technique of symbolic evaluation, we would like to analyze
the relationships and dependencies between modules in a
distributed system. This approach will be instrumental in
assisting us with the evolutionary development of distributed
systems.

We are also working on the application of procedural
objects (such as actors) to the area of business automation. In
order to replace paper forms and paper documents, we use
"active" forms and "active" documents which are displayed as
images on the TV terminal accompanied by procedures. Active
forms and documents are sent from one site to another whereby

: Yonezawa

clerks are requested to provide necessary information with the
guidance of the accompanying procedures. Such procedures
may also check the consistency of filled items and point out
errors and inconsistencies to persons who are processing forms.
Thus active forms and documents accompanied by procedures
enormously increase the flexibility and security of message and
document systems. Furthermore we propose to use the
"language" of forms and documents as the basis for the user to
communicate with the information processing system. One of
the ultimate objectives in our research is to develop a
methodology for the construction of real-time distributed
systems which can be efficiently and effectively used by
non-programmers.

9 . A c k n o w l e d g e m e n t s

Conversations with Jeff Rulifson have been helpful in
further developing the notion of an "active" document. This
research was conducted at the Artificial Intelligence Laboratory
and Laboratory for Computer Science (formerly Project MAC),
Massachusetts Institute of Technology under the sponsorship of
the Office of Naval Research, contract number N00014-75C0522.

10. B ib l iography

Atkinson, R. and Hewitt, C. E. "Synchronization in Actor
Systems" 4-th S IGPLAN-S IGACT Symposium on
Principles of Programming Languages, Los Angles,
January. 1977.

Birtwistle, C, Dahl, O.-J., Myhrhang, B, and Nygaard, K.
SIMULA Begin Auerbach, Phil. Pa., 1973.

Bobrow, R. S. and Winograd, T. "An Overview of KRL, a
Knowledge Representation Language" CSL-76-4. Xerox
Palo Alto Research Center, July, 1976.

Boyer, R.S. and Moore, J.S. "Proving Theorems about LISP
Functions" JACM. Vol.22. No.l. January, 1975.

Burstall, R.M and Darlington, J "Some Transformations for
Developing Recursive Functions" Proc. of International
Conference on Reliable Software. Los Angles, 1975.

Greif, I. "Semantics of Communicating Parallel Processes" PhD
Thesis MIT, also Technical Report TR-154. Laboratory for
Computer Science (formerly Project MAC), September,
1975.

Greif, I. and Hewitt, C. "Actor Semantics of PLANNER-73"
Proc. of ACM SIGPLAN-SIGACT Conference. Palo
Alto, California. January, 1975.

Hewitt, C. E. "How to Use What You Know" IJCAI-75, USSR,
September 1977.

Artificial Intelligence.

Hewitt, C.E and Baker, H. "Laws for Communicating Parallel
Processes" Proceeding of IFIP-77, Toronto, August. 1977,
also Working Paper 134. Artificial Intelligence Laboratory
MIT. December 1976.

Hewitt, C.E. and Smith, B.C. "Towards a Programming
Apprentice" IEEE Transaction on Software Engineering,
Vol. SE-lNo. 1. March, 1975.

Hoare, C.A.R. "Proof of Correctness of Data Representation"
Acta Informatica Vol. 1. pp271-281.1972

King, J. "Symbolic Execution and Program Testing" CACM
Vol.19 No. 7 July 1976.

Ku lpers , B. J. "A Frame for Frames: Representating
Knowledge for Recognition" in D. G. Bobrow & A. M.
Collins (Ed.) Representation and Understanding, New
york , Academic Press, 1975.

Learning Research Group "Personal Dynamic Media" SSL-76-1.
Xerox Palo Alto Research Center, April 1976

Lenat, D. B. "Beings: Knowledge as Interacting Experts"
IJCAI-75. USSR, September, 1975.

McCarthy, J. and Hayes, P. "Some Philosophical Problems from
the Standpoint of Art i f ic ia l Intelligence" Machine
Intelligence Vol.4. American Elsevier New York 1969.

Minsky, M. "A Framework for Representing Knowledge" in P.
H. Winston (Ed.) The Psychology of Computer Vision,
New york, McGraw-Hill, 1975.

Rich, C. and Shrobe, H.E. "Understanding Lisp Programs:
Towards a Programmer's Apprentice" Masters' Thesis,
Electrical Engineering and Computer Science, MIT August,
1975., also AI-TR No.354, Artificial Intelligence Laboratory,
MIT.

Steiger, R. "Actor Machine Architecture" Master's Thesis
Department of Electrical Engineering and Computer
Science, MIT, June 1974.

Yonezawa, A. "Meta-evaluation of Actors with Side-effects"
Working paper 101. Artificial Intelligence Laboratory MIT.
June, 1975.

Yonezawa, A. Forthcoming Ph.D. Thesis., Department of
Electrical Engineering and Computer Science. MIT. 1977.

Yonezawa, A., and Hewitt, C. "Symbolic Evaluation using
Conceptual Representations for Programs w i th
Side-effects." AI-Memo. No.399, Artificial Intelligence
Laboratory, MIT. December 1976.

Hewitt, C.E. "Viewing Control Structures as Patterns of Passing
Messages" AI-MEMO No.410, Artificial Intelligence Lab.
M I T , December. 1976., also to appear in the Journal of

Auto. P r o g . - l : Yonezawa
376

UNDERSTANDING AND IMPROVING
LISP PROGRAMS

Harald WERTZ
Universite Paris 8
Departement d'lnformatique
75012 PARIS

We are currently investigating the creation of an
didactic environment for the teaching of a programming
language to approximately 1500 students each year. At
this effect we are constructing a robust and perspicious
system : VISION & CAN & PHENARETE (GREUSSAY
1977, GOOSSENS 1977, WERTZ 1976), a system designed
to help the individual apprentice in the process of deve­
loping, writing and debugging programs.

In this note we will describe some aspects of
PHENARETE, the convivial part of the system : PHENA­
RETE receives as input a student proposition of a program
- which may contain as well syntactic as semantic errors -
and will deliver as output her improved propositions of
this program : a finite sequence of approximations.

With the help of our system, the learning of a
programming language is done in a cycle :

improvement —- propositions
user and

^proposition ~~*" approximation ~"o t

■_system \ -PHENARETE

PHENARETE

Before constructing PHENARETE we observed for
one year our students beginning to learn LISP, to see
which kinds of errors are statiscally the most current.
There we found principally five sorts of errors :

— absence of variables
— inversion of variables
— grouping errors
— absence of the conditionnal instruction
— non-representation of the termination of a

computation.
Our system is particularly efficient in the detection of
these kinds of errors. It doesn't try to verify the program
with respect to the intentions of the programmer, but it
tries to understand the programming language constructs
used in the program, to see the interaction of the d i f ­
ferent parts of the program and to detect inconsistencies,
with a particular emphasis on the verification of the
termination of the program. In some way PHENARETE
may be considered as an intelligent interpreter : she does
not execute but she injerpiejjLthe program, and the result
of an interpretation are some propositions (propositional
interpreter). PHENARETE incorporates the programming
knowledge of a programming apprentice.

Let me illustrate the reasoning involved in an inter­
pretation of a simple LISP program (main steps only) :
suppose a student has submlted the following program
(the numbers are for references in the tetf).

First, (line 2 and 3) the grouping of the body
of the function suggests that the user has omitted the
COND-function call, so PHENARETE introduces (line
2-b) «COND». Then (line 2) we find as the first clause
of the COND immediately a recursive call of the function
REV, and following (line 3) another clause. Knowing that
line 3 can never be attained during an execution of the
program we can invert the two clauses. This gives :

So far the surface improvements. Now a closer
look at line 4' tells us that X and Y will be lists, when
the function is invoked, and that the first argument (X)
is inchanged and the second argument (Y) will grow
longer. In line 3' the case second argument — NIL is
solved, but this is the only case where the computation
of REV will terminate. If Y is different of NIL, the
only constructive computation done in the program is
the creation of the new list argument 2. So, when hypo­
thesising that the result of REV will be this list just
created, we have to force a recursion stop. Let us try to
call REV with the CDR of argument 1 :

but the recursion will not stop either. So let's try to
introduce a supplementary test ((NULL X)). And, always
under the hypothesis that Y will be the result of the
computation, this gives us :

This will be the first proposition of PHENARETE ;

Proposition 1

But this new line is just the line 3' with X and
Y inversed, so let's try without line 3'. Ok, that is also a
recursive procedure which stops with the correct algorithm,
so another proposition :

Finding no more possible interpretation, PHENARETE will
stop, after these two propositions. During the interpreta­
tion-phase she justifies all the modifications she proposes
in a way similar we did.

The system is implemented in VLISP-10 and is
currently used by about 1500 students.

REFERENCES :
CHAILLOUX J., VLISP-10, Manuel de references, Dpt. Informatique.
Universite Paris 8, RT-17-76, 1976
GOOSSENS D., CAN, RT-03-77, 1977
GREUSSAY P., Difference et repetition dans les systemes VISION,,
RT-06-77, 1977
W E R T Z H . P H E N A R E T E S p r i n g e r VERLAG' G l 6 Jahrestagung,Stuttgart,

. - 1 : Wer t7 A u t o . Pror:.
377

