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1 . I n t r o d u c t i o n 

Distributed systems are multi-processor information 
processing systems which do not rely on the central shared 
memory for communication. The importance of distributed 
systems has been growing with the advent of "computer 
networks" of a wide spectrum: Networks of geographically 
distributed computers at one end, and tightly coupled systems 
built with a large number of inexpensive physical processors at 
the other end. Both kinds of distributed systems are made 
available by the rapid progress in the technology of large scale 
integrated circuits. Yet little has been done in the research on 
semantics and programming methodologies for distributed 
information processing systems. 

Our main research goal is to understand and describe 
the behavior of such distributed systems in seeking the 
maximum benefit of employing multi-processor computation 
schemata. 

The contr ibut ion of such research to A r t i f i c i a l 
Intelligence is manifold. We advocate an approach to 
model l ing intell igence in terms of cooperation and 
communication between knowledge-based problem solving 
experts. In this approach, we present a coherent methodology 
for the distr ibution of active knowledge as a knowledge 
representation theory. Also this methodology provides flexible 
control structures which we believe are well suited for 
organizing distributed active knowledge. Furthermore we hope 
to make technical contributions to the central issues of problem 
solving such as parallel versus serial processing, centralization 
versus decentralization of control and information storage, and 
the "declarative-procedural" controversy. 

This paper presents ideas and techniques in modelling 
distributed systems and its application to Artificial Intelligence. 
In section 2 and 3, we discuss a model of distributed systems 
and its specification and verification techniques. We introduce 
a simple example of air line reservation systems in Section 4 
and illustrate our specification and verification techniques for 
this example in the subsequent sections. Then we discuss our 
further work. 

2 . A M o d e l o f D i s t r i b u t e d Sys tems 

The actor model of computation[Greif&Hewitt75, 
Greif75, HewittfcBaker77] has been developed as a model of 
communicating parallel processes. The fundamental objects in 
the model of computation are actors. An actor is a potentially 
active piece of knowledge (procedure) which is activated when 
it is sent a message which is also an actor. Actors interact by 
sending messages to other actors. More than one transmission 
of messages may take place concurrently. Each actor decides 

how to respond to messages sent to it. An actor is defined by its 
two parts, a script and a set of acquaintances. Its script is a 
description of how it should behave when it is sent a message. 
Its acquaintances are a finite set of actors that it directly knows 
about. If an actor A knows about another actor B, A can send 
a message to B directly. The concept of an event is 
fundamental in the actor model of computation. An event is an 
arrival of a message actor M at a target actor T and is denoted 
by the expression (T <- M). A computation is expressed as a 
partially ordered set of events. We call this partial order 
the "precedes" ordering. Events which are unordered in the 
computation can be concurrent. Thus the partial order of 
events naturally generalizes the notion of serial computation 
(which is a sequence of events) to that of parallel computation. 

A collection of actors which communicate and cooperate 
with each other in a goal oriented fashion can be implemented 
as a single actor. In essence actors are procedural objects which 
may or may not have local storage. Some may behave like 
procedures and some may behave like data structures Modules 
in distributed systems are modelled by actors and systems of 
actors. In this regard, IC chips can be viewed as actors. 

Knowledge and intelligence can be embedded as actors 
in a modular and distr ibuted fashion. For example, 
/frames[Minsky75, Kuipers75], units[Bobrow&-Winograd76], 
beings[Lenat75], stereotypes[Hewitt75] e.t.c. which represent 
modular knowledge with procedural attachments are 
modelled and implemented as actors. In the context of 
electronic mail systems and business information systems, objects 
such as forms, documents, customers, mail collecting stations, 
and mail distr ibut ing stations are easily modelled and 
implemented as actors. 

Messages which are sent to target actors usually contain 
continuation actors to indicate where the result of the receipt 
of the message should be sent. By virtue of continuations in 
messages, the message-passing in the actor model of 
computation realizes a universal and yet flexible control 
structure without using implicit mechanisms such as push down 
stacks. Various forms of control structures such as go-to's, 
procedure calls, and coroutines can be viewed as particular 
patterns of message passing [Hewitt76]. 

This model of computation has been implemented as a 
programming language PLASMA[Hewitt76]. The script of an 
actor can be written as a PLASMA program. We believe that 
PLASMA will provide a basis for programming languages for 
distributed systems. In section 5, an example of PLASMA 
programs is given as a script of a flight-data actor in the model 
of a simple air line reservation system. 

3 , Techn iques f o r 
S p e c i f i c a t i o n and V e r i f i c a t i o n 

In designing and implementing a d is t r ibu ted 
(message-passing) system, it is desirable to have a precise 
specification of the intended behavior of the distributed system. 
Also we need sound techniques for demonstrating that 
implementations of the system meet its specification. Below we 
give some of the central ideas of our specification and 
verification techniques based on the model introduced in the 
previous section. The more detailed work will be found in 
[Yonezawa77]. 
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In specifying the behavior of a distributed system, it is 
not only practically infeasible, but also irrelevant to use global 
states of the entire system or the global time axis which governs 
the uniform time reference throughout the system. We are 
concerned with states of modular components of a distributed 
system which interact with each other by sending messages. 
Thus we are interested in the states of actors participating in an 
event at the instance at which the message is received. 

In our spec i f i ca t ion language, conceptual 
representations are used to express local states of actors 
(modules). Conceptual representations were original ly 
developed to specify the behavior of actors which behave like 
data structures[Yonezawa&Hewitt76]. We have found them 
very useful to express states of modules in distributed systems at 
varying levels of abstraction and also from various view points. 
The basic motivation of conceptual representations is to aid in 
providing a specification language which serves as a good 
interface between programmers and the computer and also 
between users and implementors. Conceptual representations 
are intuitive clear and easy to understand, yet their rigorous 
interpretations are provided. Instead of going into details of 
syntactic constructs of conceptual representations, we give 
examples. Below |<exp> is the unpack operation on <exp> which 
means writing out all elements denoted by <exp> individually. 

(CELL A) ;a cell containing A at its content*. 
[QUEUE A B C ) ;a queue with element* A B C . 
(NODE (car. A)(c<fr; B)) ;a LISP node containing A and B. 
(CUSTOMER (letter*: {lm])(*~of-*tompt-nccdcd: n)) 

;a cuttomer vi*iting a po*t office 
;u>ho carriet letter* !m and want* n *tamps. 

(POST-OFFICE (customer: {!c}) (collector: {!cl})) 
;a pott office which contain* cuttomer* gc and mail collector* !cl. 

It should be noted that a conceptual representation does not 
represent the identity of an actor. It only provides a description 
of the state of an actor. Thus to state that an actor Q is in the 
state expressed by a conceptual representation (QUEUE A B C), 
an assertion of the following form: 

(Q it-a (QUEUE A B O) 

is used. Some examples of specification using conceptual 
representation are given in the later sections. 

Symbolic evaluation is a process which interprets a 
module on abstract data to demonstrate that the module satisfies 
its specification. Symbolic evaluation differs from ordinary 
evaluation in that 1) the only properties of input that can be 
used are the ones specified in the pre-requisites, and 2) if the 
symbolic evaluation of a module M encounters an invocation of 
some module N, the specification of N is used to continue the 
symbolic evaluation. The implementation of N is not used. 
The technique of symbolic evaluation has been studied by a 
number of reseachers, for example [Boyer&Moore75, 
Bursta1l&Darlington75, Hewitt&Smith75, Yonezawa75, King76]. 

Our method for symbolic evaluation of distributed 
systems is an extention of the one developed for symbolic 
eva lua t ion o f programs wr i t ten in S I M U L A - l i k e 
1anguages[Yonezawa&Hewitt76l One of the main techinques 
we employ in symbolic evaluation is the introduction of a 
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notion of situations[McCarthy&Haves69]. A situation is the 
local state of an actor system at a give moment. The precise 
definition of locality in the actor model of computation is 
found in [Hewitt&Baker77], By relativiiing states of modules 
with situational tags which denote situations, relations and 
assertions about states of modules in different situations can be 
expressed. Explicit uses of situational tags seem to be very 
powerful in symbolic evaluation of distributed systems. A 
simple example is given in Section 7. 

Another technique we employ in symbolic evaluation is 
the use of actor induction to prove properties holding in a 
computation. Actor induction is a computational induction 
based on the precedes ordering (cf. Section 2) among events. 
It can be stated intuitively as follows: 

"For each event E in a c o m p u t a t i o n C, if 
preconditions for E imply preconditions for each 
event E' which is immediately caused by E, then the 
computation C is carried out according to the overall 
specifications." 

The precedes ordering has two kinds of suborderings, 1) the 
activation ordering, "activated, which is the causal relation 
among events, and 2) the arrival ordering, ''arrive*-heforeM, 
which expresses ordering among events which have the same 
target actor. Thus there are two kinds of actor induction 
according to these suborderings. An example of the induction 
based on the arrival ordering is used in Section 7. 

4 . M o d e l l i n g 
a n A i r L i n e R e s e r v a t i o n S y s t e m 

- A specification of an Air Line Reservation System -

As an illustrative example of distributed systems, let us 
consider a very simple air line reservation system. Suppose we 
have Just one flight which has a non-negative number of seats. 
A number of travel agencies (parallel processes) independently 
try to reserve or cancel seats for this f l i gh t , possibly 
concurrently. We model an air line reservation system as a 
f l ight actor F which behaves as follows. The fl ight actor F 
accepts two kinds of message, (reterve-a-*cat:) and 
(cancel-o-teat:). When F receives (reterve-a-*cat:)t if the 
number of free seats is zero, a message (no-more-teat*:) is 
returned. Otherwise a message (ok-itt-reterved:) is returned and 
the number of free seats is decreased by one. When F receives 
(cancel-a-*eat:), if the number of free seats is less than the 
maximum number of seats of the f l i gh t , a message 
(ok-it*-cancelled:) is returned and the number of free seats is 
increased by one, otherwise (too-many-cancelt:) is returned. 
Furthermore requests by (re*erve-a-*eat.) and (cancel-a-teat:) 
are served on a f irst-come-first-served base. 

To wri te a formal specif ication of the air l ine 
reservation system, we need to describe the states of the flight 
actor. For this purpose, we use the following conceptual 
representation 

(FLIGHT (seals free 

which describes the state of a flight actor. The number of free 
seau is <m> and <•> is the size of the flight in terms of the total 
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number of seats. T h e fo rma l specif ication of the a i r l ine 
reservat ion system using this conceptual representation is 
depicted in Figure 1 below. 

(event: (create-flight <■ S) 
(pre-cond: (S > 0) > 
(return: F* > 
(post-eond: (F is-a {FLIGHT {teatt-free: S) {tize: S)))» 

(event: (F <« {reterve-a-teat:)) 
{cate-h 

(pre-cond: (F is-e (FUCHT {teatt-free: 0) {tize: S)))> 
(next-cond: (F it-a 9FLIGHT {teatt-free: 0) (me: $)))> 
(return: {no-more-matt:) >) 

(caie-2: 
(pre-cond: 

(F is-a {FLIGHT {teatt-free: N) (size: S))) 
( N > 0 ) > 

<next-cond: (F is-a {FLIGHT {teatt-free: N - 1) (size: S)))> 
<return; (ok- its- reserved.) >)> 

<event: (F <■ (cancel-a-ieat:)) 
{caae-l: 

(pre-cond: (F is-o {FLIGHT {teatt-free: S) (size; S)))> 
<next-cond. (F i f -a {FLIGHT {teatt-free: S) (size S)))> 
(return: {too-many-cancel*:) >) 

(case-2. 
<pre-cond; 

(F is-a {FLIGHT {teatt-free: N) (size: S))) 
( N < $ ) > 

<next-con<f: (F i t -a {FLIGHT {teatt-free: N ♦ 1) (size: S)))> 
<relurn: (o*-ili-canc«//ed:) > ) > 

(for-eventt: E, E* 
whsere E = ( F < = M), E' - (F = M') 

<pre-cond: 
(F is-a {FLIGHT {teatt-free: ...) (me:...))) 
(E arrivet-before E')> 

<caused-evenu: reply-for[E], rep/y-/or[E']> 
(post-cond: {reply-for[t] precedet reply-for[V]) » 

Figure 1 A Specification of the Air Line Reservation System 
(A Specification for the Flight Actor) 

The first <event:...>-clause states that a new f l ight actor F 
is created by an event where the create-flight actor receives a 
positive number S. <actor>* means that <actor> is newly created. 
T h e second <event:...>-clause has two cases according to the 
number of free seats at the moment when the f l i g h t actor F 
receives {reterve-a-teat:). When the number of free seats is zero 
(Cate-l), the state of F does not change. When it is positive 
(Case-2)t the number of free seats decreases by one as stated by 
the assertion in the <next-coiuf:...>~clause. T h e notat ion in 
Figure 1: 

<event; (T <« M) 
(pre-cond: ... > 
(next-cond: ... <astertion> ... > 
(return: <ector> > > 

means t ha t when an event (T <« M) takes p lace, i f t he 

p r e c o n d i t i o n s a r e s a t i s f i e d , < a s t e r t i o n > s i n t h e 
<next-con\..>-clause hold immediately after the event unt i l the 
next message arr ives at T. <actor> in the <resurn.\..>-clause is 
returned as the result of the event. <next-cond:...> d i f fers f r om 
<pott-cond:...> in that assertions in <poii-conrf;...>-clause hold at 
the t i m e <actor> i s r e t u r n e d , w h e r e a s a s s e r t i o n s i n 
<next-cond:...>-clause hold at the time the next message arrives 
T h e next message may arrive at T before or after a reply for 
the previous message is returned. The th i rd <event:...>-clause is 
fo r the cancelling event, which is interpreted in a similar way. 
T h e (for-eventt: ...>-clause states that requests (messages) 
r e c e i v e d b y t h e f l i g h t a c t o r a r e s e r v e d o n t h e 
first-come-first-served base. Namely, the replying events for 
events E and E' take place in the same order as E and E\ 

5 . I m p l e m e n t i n g 
t h e A i r L i n e R e s e r v a t i o n S y s t e m 

Our strategy to implement the air line reservation system 
(specif ied in the previous section) is as fol lows First , we 
implement a f l ight-data actor which satisfies the specification in 
Figure 1 on the condition that it is always activated serially 
Then we put some protecting (or scheduling) mechanism on the 
f l i gh t -da ta actor so that the protected f l igh t -data actor may 
satisfy the specification of the air line reservation system 

In F igure 2 below we give an implementat ion of the 
f l ight-data actor in PLASMA. 

(craata-flight-data =s) zreate-flight-data receives a tize s of flight. 
{let (tize initially s) ;a variable size it set to s. 

(teatt-free initially t) ;a variable seats-free it net to s.hen ;the following cases-clause it 

;returned at an actor which behavet at a flight-data. 
(cases 

(=> {reserve-a-teat:) ;when a {reterve-...) message it received, 
(rules teats-free 

(E> 0 ;if seats-free it zero, 
{no-more-seats:)) ;(no-.«) mettage it returned. 

(= else ;otherwite 
(seats-free «- (teats-free - 1)) 

;teats-free it decreated by one. 
{ok-itt-reterved:)))) ;{ok-„) mettage it returned. 

(s> {cancel-a-teat:) ;when a (cancel-...) mettage it received, 
(rules seats-free 

(i> size ;if teatt-free it equal to t ize, 
{too-many-cancel t:)) ;{too-...) it returned, 

(i> elte ;otherwite 
(teats-free «- (teatt-free ♦ 1» 

;seatt-free it increated by one. 
{ok-itt-cancelled:)))) )) ;{ok-...) it returned. 

Figure 2 

It is f a i r l y s t ra ight forward to wri te a specif icat ion f o r th is 
f l ight-data FD by using a conceptual representation: 

{FLICHT-DATA {teatt-free: <m» {tixe: < t») 

which describes the state of a f l ight-data actor. T h e number of 
free seats is <m> and <§> is the size of the f l ight in terms of the 
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number of seats. Note that if FO were sent more than one 
message concurrently, anomalous results would be caused. For 
example, in the implementation in Figure 2, if (retserve-a-seat:) 
and (cancel-a-teat:) messages are sent concurrent ly, 
(no-more-teatt:) message might be returned even if there are 
vacant seats. Therefore in order to model the air line 
reservation system by using the above implementation of a 
flight-data actor, the way it is used must be restricted so that 
interference between different activations does not take place. 
As suggested in the beginning of this section, the restriction we 
impose is that FD must be used serially in the sense that FD is 
not allowed to receive a message until the activation by the 
previous message is completed. Now the flight-data actor can 
be used to implement the air line reservation system under this 
restriction. We give a formal specification for the flight-data 
actor in Figure 3 below. 

<event: (creste>-flight-data <= S) 
<pre-cond: (S > 0)> 
<return: FD* > 
<post-cond: (FO it-a (FLIGHT-DATA (teatt-free: S) (tixe: $ ) ) )» 

ievent: (FD <» (reterve-a-teat:)) 
{cat*-1: 

<pre-cond: 
(FD it-uted-terially) 
(FD it-a {FLIGHT-DATA (sett-free: 0) (tize: S)))> 

<returm (no-more-teatt:) > 
<post-cond: 

(FD i i - a (FLIGHT-DATA {seots-free: 0) (tixe: $))) » 
(cate-2: 

<pre-cond: 
(FD it-uted-terially) 
(FD it-a (FLIGHT-DATA (teatt-free: N) (tixe: S») 
( N > 0 ) > 

<returm (ok-itt-reterved:) > 
<pott-eond: 

(FD it-a (FLIGHT-DATA (teatt-free: N - 1) (tize: S))) »> 

<event: (FD <= (cancel-a-teat:)) 
(cate-1: 

<pre-cond: 
(FD it-uted-terially) 
(FD it-a (FLIGHT-DATA (teatt-free: S) (tixe: S))) > 

<return: (too-many-cancelt:) > 
<post-cond: 

(FD it-a (FLIGHT-DATA (teatt-free: S) {size: S))) » 
(cate-2: 

<pre-cond: 
(FD it-uted-terially) 
(FD it-a (FLIGHT-DATA (teatt-free: N) {site: $))) 
(N < S) > 

return: (ok-itt-cancelled:) > 
<pott-eond: 

(FD it-a (FLIGHT-DATA (teatt-free: N ♦ 1) (tize: S))) »> 

Figure- 3 A Specification for the Flight-data Actor 

In this specification, the restriction of the serial use is expressed 
in the following notation, 
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(FD it-uted-terially) 

stated as a precondition for events. In contrast to the 
specification above, there are no such preconditions in the 
specification of the air line reservation system (the flight actor) 
in Figure I. Thus the reservation system is specified to work 
properly even if It is accessed concurrently. Also notice that the 
specification above has no statements about scheduling such as 
the first-come-first-served scheduling which is stated as 
<for events:...>-clause in the specification of the air l ine 
reservation system. 

8. One-at-a-tlme 

In this section, we consider how the serial use of a 
f l igh t -da ta actor is realized in environments where 
communicating parallel processes try to use the flight-data actor. 
Our approach is to surround a flight-data actor FD with some 
mechanism which arbitrates parallel requests to the flight-data 
actor FO and passes these requests to FD in the serial fashion. 
We call this protection mechanism a one-at-a-time guardian. A 
ono-at-a-time- guardian can be easily implemented by a 
s e r i a l i zer [A tk inson&Hewi t t77 ] which is a general 
synchronization mechanism in the actor model of computation. 

Now we give a specification for one-at-a-time guardians. 
A one-at-a-time guardian is created in an event where an actor 
one-at-a-tlme receives a resource (a flight-data actor in this 
case). The one-at-a-time guardian thereby created will then 
contain the received resource. The following <event;...>-clause 
expresses this. 

<event: (one at time <■ RESOURCE) 
(return: G* > 
<post-cond: (G it-a (ONE-AT-A-TIME RESOURCE)) » 

where (ONE-AT-A-TIME <retource>) is the conceptual 
representation for a one-it-a-tima guardian which contains 
<resoure. Next, we specify how a one-at-a-time guardian G 
behaves. In general a request to the guardian G, which is an 
arrival of a message M at G, eventually causes an invocation (or 
use) of RESOURCE. The invocation of RESOURCE begins with an 
access to RESOURCE which is an arrival of the same message 
M at RESOURCE and ends with a reply for the access which is 
a return of some result of the invocation. (See the figure 4 
below.) 

Our aim of using a one-at-a-time guardian G is to 
control invocations of RESOURCE by parallel requests so that 
only one invocation of RESOURCE takes place at a time. In order 
to do so, if we have two concurrent requests, the end of the 
invocation by one request should always precede the beginning 
of the invocation of the other request. This in tu i t ive 
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description of the desired behavior of a one-at-a-time guardian 
can be described in terms of the order of the events request, 
access and reply introduced above. Suppose we have two 
requests, REQUEST} which is an arr ival of a message M i at G, 
and REQUEST, which is an arr ival of a message M1 at G. T h e n 
REQUEST^ causes ACCESS^ wh i ch is an a r r i v a l of Mk at 
RESOURCE resulting in reply-for[ACCESSK], in this order (where 
K stands fo r either i or j). To ensure the one-at-a-time property 
of invocations of a resource, the fol lowing ordering relation 
must be satisfied: 

mif REQUEST1 precedes REQUESTj, 
then rep/r/orfACCESSj] must precede ACCESS:". 

Since REQUESTR always precedes ACCESSK and ACCESSK always 
precedes rep/y-for[ACCESSK], the desired ordering relation can 
be expressed by the fol lowing diagram. 

Th i s behavior of the one-at-a-tima guardian is formal ly 
described as a specif icat ion in Figure 5 below. Note that 
RESOURCE must be guaranteed to reply. 

<event: (orw-at-a-tima) <■ RESOURCE) 
<return: G* > 
<po*t-cond: (G i$-a (ONE-AT-A-TIME RESOURCE)) » 

<for-event*: REQUEST;, REQUEST, 
where REQUEST- « (G <« Mj), REQUESTj ■ (G <* Mj) 

<pre-cond: 
(G i*-a (ONE-AT-A-TIME RESOURCE)) 
(RESOURCE i*-g**ranteed-to-reply) 
(REQUEST, precede* REQUEST-) > 

<cau$ed-*ventt: ACCESS:, ACCESS], 

7 . S y m b o l i c E v a l u a t i o n 
o f t h e A i r L i n e R e s e r v a t i o n S y s t e m 

Our implementation of the air line reservation system is 
expressed by the following simple code. 

(craata-flijht at) a (ona-at-a-tima (craata-flijht-data «)). 

(Equivalent^, 
(cr^ata-flight =«) i (on«-at-a-tima <« (craata-flight-data <= s)). ) 

In this section we demonstrate that the above code meets the 
specification of the air line reservation system given in Figure 1. 
O u r method for the demonstration is symbolic evaluation. 

T h e symbolic evaluation of the code 

(ona-at-a-time (craata-flifht-data •)) 

reveals the fol lowing facts: 
1) an actor FD is created by (craata-flight-data <= s), 
2) G is created by (one-at-a-time <= FD) and returned, and 
3 ) t h e t w o ac to rs sa t i s f y the f o l l o w i n g a s s e r t i o n s 
immediately after the creation of G 

(FD i*-e (FLIGHT-DATA (trait-fret: t) (*ite: s))) 
(G i*-a (ONE-AT-A-TIME FD)). 

T h i s means that the f l ight actor is created as a one-at-a-time 
guardian G which contains a fl ight-data actor FD with s free 
seats. In what follows, we wil l establish that the ona-at-a-tima 
guard ian G satisfies the specif ication fo r the f l i g h t actor in 
Figure 1. 

T h e <even:..>c1ause in the specification for the f l i gh t 
actor in F igure 1 specifies the behavior of G in terms of the 
conceptual representation 

(G it-a {FLIGHT (seats-free:...)(*ize:...))) 

(No t i ce tha t F in the spec i f i ca t ion f o r the f l i g h t actor is 
instantiated as G.) On the other hand, G is implemented as a 
onav-at-a-tima) guardian which contains the f l ight-data actor FD. 
T h i s means that we have two views of G and correspondingly 
two di f ferent conceptual representations are used to describe the 
state of G. In order to show that the implementation satisfies the 
specification, we need to establish some relation between the 
state of G expressed by 

(FLIGHT (seats- free:„.) (tize:..,)) 

and the state of FD expresssed by 

(FLIGHT-DATA (*eat*-free:...)(*i*e:..)). 
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The relation we need is: 

"If G satisfies the assertion 
(G ii-a {FLIGHT beau-free: n) (tize: s))) 

in a situation where G receives a message M, then FD 
always satisfies the assertion 

(FD it-a (FLIGHT-DATA (teatt-free: n) (size:s))) 
in the situation where FD receives the same message M 
(through the ore-at-a-time. guardian), and vice versa." 

This relation is expressed formally as follows: 

S i t [ E ] expresses the situation where an event E takes place. 
The above implementation commentary formally describes 
the basic idea of the implementation. It can be viewed as the 
counterpart of an "invariant" in parallel process environments, 
which was first introduced by [Hoare 1972] to show correctness 
of implementation of data structures which are supposed to be 
used serially. 

It should be noted that the first-come-first-served based 
scheduling by the guardian G guarantees the above relation. If 
the guardian does more complicated scheduling, the relation 
needed for the demonstration may not be so simple. For more 
general scheduling cases, see [Yoneiawa77]. 

I. Establishing the <event: (G <■ (reserve-a-ieat:))...>-c\dLUse 

There are two cases to be considered. We only consider 
the (Case-.2...)-c1ause. 

Case-2: (G is-a [FLIGHT (seats- free: n) (tize: t))), (n > 0) 

The guardian G receives a (reterve-a-neat:) message M. 
To know the result of this event, the specification for 
one-at-a-time in Figure 5 is used. Since the flight-data actor FD 
is guaranteed to reply, the specification for one-at-a-time 
guarantees that the (reserve-a-seat:) message M is received by 
FD. To know the state of the flight-data actor FD at the time of 
the arrival of M, the above implementation commentary is used. 
Since the state of G at the time of the arrival of M at G is 
described as: 

(G i$-a (FLIGHT ($eatt-free: n) (siize: s)). 

the state of FD at the arrival of M at FD is described as 

(FD i$-a {FLIGHT-DATA (eat$-free: n) {size: s))). 

T h e n the (Case--2...)-clause in the <event.\..>-clause of the 
specification for flight-data actors in Figure 3 is referred to. 
Since the precondition that FD must be used serially is satisfied 
(because FD is contained inside the one-at-a-time G), the 
(Case-2~)-clause of the specification for flight-data actors tells 
us that 
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(1) (ok-iu-reterved:) is returned, and 
(2) the state of FD is now expressed as: 

(FD it-a (FLIGHT-DATA (seat-free: n - 1) (tize: ■))). 

(1) is what the <return:..>-clause in the specification for the 
flight in Figure 1 requires. Since the state of FD expressed as 

remains unchanged until the next message M' arrives at FD. by 
using the implementation commentary in the other direction this 
time, we know that the state of G remains unchanged as 

until the message M' arrives at G. This is what <next-cond:..»> 
clause in the specification for the flight actor in Figure 1 
requires. Thus Case-2 is shown. Case-1 may be shown 
analogously. It should be noted that induction on the order of 
arrival of messages is used. 

I I . Establishing the <event: (G <■ (cancel-a-teai:))..>-c\*\ise 

The argument for this event is analogous to that of I. 

III. Establishing the <for-eventt:J><\zuie 

The event where the flight actor G receives a message 
means that the one-at-a-time guardian receives the same 
message. Suppose that M and M' arrive at G in this order. 
The specification for the one-at-a-time guardian specifies that 
M' is not received by FD until the reply from FD for M is 
completed. Therefore the reply to M' always takes place after 
the reply to M. This is what the specification requires. 

I V . Establishing the Confinement of the flight-data actor FD 

The discussion in I, II and I I I above assumes that no 
one can access the flight-data actor FD except through the 
guardian G. T h i s assumption always holds because the 
flight-data actor FD created by (create-flight-data <« t) is never 
released outside the one-at-a-time actor. 

8 . F u r t h e r W o r k 

We are currently working to establish a coherent 
methodology for demonstrating that a distributed 
message-passing system will meet its specifications. By using 
the technique of symbolic evaluation, we would like to analyze 
the relationships and dependencies between modules in a 
distributed system. This approach will be instrumental in 
assisting us with the evolutionary development of distributed 
systems. 

We are also working on the application of procedural 
objects (such as actors) to the area of business automation. In 
order to replace paper forms and paper documents, we use 
"active" forms and "active" documents which are displayed as 
images on the TV terminal accompanied by procedures. Active 
forms and documents are sent from one site to another whereby 
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clerks are requested to provide necessary information with the 
guidance of the accompanying procedures. Such procedures 
may also check the consistency of filled items and point out 
errors and inconsistencies to persons who are processing forms. 
Thus active forms and documents accompanied by procedures 
enormously increase the flexibility and security of message and 
document systems. Furthermore we propose to use the 
"language" of forms and documents as the basis for the user to 
communicate with the information processing system. One of 
the ultimate objectives in our research is to develop a 
methodology for the construction of real-time distributed 
systems which can be efficiently and effectively used by 
non-programmers. 
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UNDERSTANDING AND IMPROVING 
LISP PROGRAMS 

Harald WERTZ 
Universite Paris 8 
Departement d'lnformatique 
75012 PARIS 

We are currently investigating the creation of an 
didactic environment for the teaching of a programming 
language to approximately 1500 students each year. At 
this effect we are constructing a robust and perspicious 
system : VISION & CAN & PHENARETE (GREUSSAY 
1977, GOOSSENS 1977, WERTZ 1976), a system designed 
to help the individual apprentice in the process of deve­
loping, writing and debugging programs. 

In this note we will describe some aspects of 
PHENARETE, the convivial part of the system : PHENA­
RETE receives as input a student proposition of a program 
- which may contain as well syntactic as semantic errors -
and will deliver as output her improved propositions of 
this program : a finite sequence of approximations. 

With the help of our system, the learning of a 
programming language is done in a cycle : 

improvement —- propositions 
user and 

^proposition ~~*" approximation ~"o t 

■_system \ -PHENARETE 

PHENARETE 

Before constructing PHENARETE we observed for 
one year our students beginning to learn LISP, to see 
which kinds of errors are statiscally the most current. 
There we found principally five sorts of errors : 

— absence of variables 
— inversion of variables 
— grouping errors 
— absence of the conditionnal instruction 
— non-representation of the termination of a 

computation. 
Our system is particularly efficient in the detection of 
these kinds of errors. It doesn't try to verify the program 
with respect to the intentions of the programmer, but it 
tries to understand the programming language constructs 
used in the program, to see the interaction of the d i f ­
ferent parts of the program and to detect inconsistencies, 
with a particular emphasis on the verification of the 
termination of the program. In some way PHENARETE 
may be considered as an intelligent interpreter : she does 
not execute but she injerpiejjLthe program, and the result 
of an interpretation are some propositions (propositional 
interpreter). PHENARETE incorporates the programming 
knowledge of a programming apprentice. 

Let me illustrate the reasoning involved in an inter­
pretation of a simple LISP program (main steps only) : 
suppose a student has submlted the following program 
(the numbers are for references in the tetf). 

First, (line 2 and 3) the grouping of the body 
of the function suggests that the user has omitted the 
COND-function call, so PHENARETE introduces (line 
2-b) «COND». Then (line 2) we find as the first clause 
of the COND immediately a recursive call of the function 
REV, and following (line 3) another clause. Knowing that 
line 3 can never be attained during an execution of the 
program we can invert the two clauses. This gives : 

So far the surface improvements. Now a closer 
look at line 4' tells us that X and Y will be lists, when 
the function is invoked, and that the first argument (X) 
is inchanged and the second argument (Y) will grow 
longer. In line 3' the case second argument — NIL is 
solved, but this is the only case where the computation 
of REV will terminate. If Y is different of NIL, the 
only constructive computation done in the program is 
the creation of the new list argument 2. So, when hypo­
thesising that the result of REV will be this list just 
created, we have to force a recursion stop. Let us try to 
call REV with the CDR of argument 1 : 

but the recursion will not stop either. So let's try to 
introduce a supplementary test ((NULL X)). And, always 
under the hypothesis that Y will be the result of the 
computation, this gives us : 

This will be the first proposition of PHENARETE ; 

Proposition 1 

But this new line is just the line 3' with X and 
Y inversed, so let's try without line 3'. Ok, that is also a 
recursive procedure which stops with the correct algorithm, 
so another proposition : 

Finding no more possible interpretation, PHENARETE will 
stop, after these two propositions. During the interpreta­
tion-phase she justifies all the modifications she proposes 
in a way similar we did. 

The system is implemented in VLISP-10 and is 
currently used by about 1500 students. 
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