
UNDERSTANDING AND IMPROVING 
LISP PROGRAMS 

Harald WERTZ 
Universite Paris 8 
Departement d'lnformatique 
75012 PARIS 

We are currently investigating the creation of an 
didactic environment for the teaching of a programming 
language to approximately 1500 students each year. At 
this effect we are constructing a robust and perspicious 
system : VISION & CAN & PHENARETE (GREUSSAY 
1977, GOOSSENS 1977, WERTZ 1976), a system designed 
to help the individual apprentice in the process of deve­
loping, writing and debugging programs. 

In this note we will describe some aspects of 
PHENARETE, the convivial part of the system : PHENA­
RETE receives as input a student proposition of a program 
- which may contain as well syntactic as semantic errors -
and will deliver as output her improved propositions of 
this program : a finite sequence of approximations. 

With the help of our system, the learning of a 
programming language is done in a cycle : 

improvement —- propositions 
user and 

^proposition ~~*" approximation ~"o t 

■_system \ -PHENARETE 

PHENARETE 

Before constructing PHENARETE we observed for 
one year our students beginning to learn LISP, to see 
which kinds of errors are statiscally the most current. 
There we found principally five sorts of errors : 

— absence of variables 
— inversion of variables 
— grouping errors 
— absence of the conditionnal instruction 
— non-representation of the termination of a 

computation. 
Our system is particularly efficient in the detection of 
these kinds of errors. It doesn't try to verify the program 
with respect to the intentions of the programmer, but it 
tries to understand the programming language constructs 
used in the program, to see the interaction of the d i f ­
ferent parts of the program and to detect inconsistencies, 
with a particular emphasis on the verification of the 
termination of the program. In some way PHENARETE 
may be considered as an intelligent interpreter : she does 
not execute but she injerpiejjLthe program, and the result 
of an interpretation are some propositions (propositional 
interpreter). PHENARETE incorporates the programming 
knowledge of a programming apprentice. 

Let me illustrate the reasoning involved in an inter­
pretation of a simple LISP program (main steps only) : 
suppose a student has submlted the following program 
(the numbers are for references in the tetf). 

First, (line 2 and 3) the grouping of the body 
of the function suggests that the user has omitted the 
COND-function call, so PHENARETE introduces (line 
2-b) «COND». Then (line 2) we find as the first clause 
of the COND immediately a recursive call of the function 
REV, and following (line 3) another clause. Knowing that 
line 3 can never be attained during an execution of the 
program we can invert the two clauses. This gives : 

So far the surface improvements. Now a closer 
look at line 4' tells us that X and Y will be lists, when 
the function is invoked, and that the first argument (X) 
is inchanged and the second argument (Y) will grow 
longer. In line 3' the case second argument — NIL is 
solved, but this is the only case where the computation 
of REV will terminate. If Y is different of NIL, the 
only constructive computation done in the program is 
the creation of the new list argument 2. So, when hypo­
thesising that the result of REV will be this list just 
created, we have to force a recursion stop. Let us try to 
call REV with the CDR of argument 1 : 

but the recursion will not stop either. So let's try to 
introduce a supplementary test ((NULL X)). And, always 
under the hypothesis that Y will be the result of the 
computation, this gives us : 

This will be the first proposition of PHENARETE ; 

Proposition 1 

But this new line is just the line 3' with X and 
Y inversed, so let's try without line 3'. Ok, that is also a 
recursive procedure which stops with the correct algorithm, 
so another proposition : 

Finding no more possible interpretation, PHENARETE will 
stop, after these two propositions. During the interpreta­
tion-phase she justifies all the modifications she proposes 
in a way similar we did. 

The system is implemented in VLISP-10 and is 
currently used by about 1500 students. 

REFERENCES : 
CHAILLOUX J., VLISP-10, Manuel de references, Dpt. Informatique. 
Universite Paris 8, RT-17-76, 1976 
GOOSSENS D., CAN, RT-03-77, 1977 
GREUSSAY P., Difference et repetition dans les systemes VISION,, 
RT-06-77, 1977 
W E R T Z H . P H E N A R E T E S p r i n g e r VERLAG' G l 6 Jahrestagung,Stuttgart, 

. - 1 : Wer t7 A u t o . Pror:. 
377 


