
AUTOMATIC PROGRAM ANNOTATION 

Nachum Dershowitz 
Stanford Artificial Intelligence Laboratory 

Stanford, California 94305 

ABSTRACT 

Techniques were developed by which an Algol-like program, 
given together with its specifications, may be documented 
automatically. This documentation expresses invariant 
relationships that hold between program variables at intermediate 
points in the program, and explains the actual workings of the 
program regardless of whether the program is correct. These 
techniques, formulated as deduction rules for both guaranteed 
invariants and candidate invariants, represent a unification of 
existing approaches, and sometimes improve upon them. 

INTRODUCTION 

Program annotation is the task of discovering a set of invariant 
assertions and documenting a program with them. These invariants 
describe the workings of the program, independent of its 
correctness or incorrectness, by detailing relationships between 
the different variables at specific points. Not only are invariants 
necessary for the verification of a program by the 
invariant-assertion technique, but they may also be used to prove 
termination or incorrectness of a program, to analyze the 
efficiency of the program, aid in the optimization of the program, 
and guide program debugging and modification. 

This research is aimed at unifying previous approaches to 
annotation {e.g., Wegbreit [1974] and Katz and Manna [1976]) and 
extending some of the earlier techniques. The methods developed 
have been implemented in QLISP and a catalog of annotation rules 
has been compiled. 

THE RULES 

The annotation techniques are expressed as rules, each rule 
consisting of a set of antecedents and a consequent. There are 
two basic types of rules: algorithmic and heuristic. 
• A/gorithmic rules derive invariant relations between variables 
directly from the program statements. These rules may be further 
subdivided into two categories: 

• assignment rules, which yield global invariants that hold at 
all labels in the program, based only upon the assignment 
statements of the program; 
• control rules, which yield local invariants associated with 
specific points in the program, based upon the control 
structure of the program. 

• Heuristic rules have candidate invariants as their consequents. 
These candidates, though promising, are not guaranteed to be 
invariants and must be checked by a verifier. Initially all 
programmer supplied assertions are candidates. 

The assignment rules relate to particular operators occurring in 
the assignment statements of the program. For example, there are 
three rules for multiplication: a multiplication rule, which gives 
the range of variables which are updated by multiplication by a 
constant expression; a set multiplication rule for the case where a 
variable is multiplied by other variables whose ranges are already 
known; and a multiplication relation rule which relates variables 
that are always multiplied by similar expressions. Corresponding 
rules are formulated for other operators. 

Consider the multiplication rule. 

The anieceaeni stales mai me only assignments to the variable 
u in the program 

where the expressions uO , ul , u2 , . . . are of constant value 

within P. When this condition holds, the global invariant 
holds throughout execution of P. That is, 

once u has been assigned a value in P, it belongs to the set 
where N is the set of natural numbers and 

for any expression denotes the set of 
elements <x(sl,s2, . . . ,sm) such that 
sm c Sm . From such an invariant, specific properties, such as a 

bound on u , may be derived. Note that no restrictions are placed 
on the order in which the assignments to u are executed. 

An assignment where it is known that may 
be viewed as the nondeterministic assignment u :c a(S) of an 
arbitrary element of a(S) to u . Thus the above rule might be 
considered as a special case of a more general set multiplication 
rule. 

where 11$ denotes the closure of 5 under multiplication, i.e., the 
set of products of elements of S. If S contains the single 
element 

The following multiplication relation rule relates different 
variables appearing in the program: 

where a , B , . . . , are arbitrary (not necessarily constant) 
expressions. The simultaneous assignments in the antecedent of 
the rule may represent individual assignments executed along the 
same program path, such that whenever, for example, u := u.aul 
is executed, so for the same value of the 
expression a . 

While the previous rules completely ignored the control 
structure of the program, the control rules derive important local 
invariants by taking the program's structure into consideration. 
For example, the rule 

derives a loop invariant from the known invariants preceding the 
loop and following the loop body. It states that when control is at 
the head L of the loop-body, either the loop has just been 
entered, in which case the invariant A holds, or the loop-body 
has just been executed and B holds. 

In contrast to the above rules, which are algorithmic in the 
sense that they derive relations that are guaranteed to be 
invariants, the other class of rules, heuristic rules, can only 
suggest candidate invariants. An example is the following 
generalization heuristic, which is valuable for programs with 
universally quantified output specifications. Given a loop invariant 
6(k) at label L , where k (a variable or expression) counts the 

number of loop iterations, we have as a candidate for a loop 
j f " lV a r ' a n l I t - t a t O k/-\l/-4c tr\r n r c v / i A i i t w ^ l n a c r\f Is -»r W S A I I T h o t I * 

where k is the value of k when last at L and B[0:k] is short 
for " B holds for all values between 0 and k ". The "{?" and 
"?}" indicate that the consequent is only a candidate which must be 
verif ied. Another example is the top-down heuristic 

which may be used to push candidates backwards into a loop. 

REFERENCES 

Katz, S.M. and Z. Manna [Apr. 1976], Logical analysis of programs, 
CACM, Vol. 19, No. 4, pp. 188-206. 

Wegbreit, B. [Feb. 1974], The synthesis of loop predicates, CACM, 
Vol. 17, No. 2, pp. 102-112. 

A u t o . P r o g . - l : n e r s h o w i t z 
378 


