
A SUMMARY OF 
THE PSI PROGRAM SYNTHESIS SYSTEM 

Cordell Green 
Computer Science Department 

Stanford University 
Stanford, California 94305 

Abstract: This paper describes the current status of the PSI 
program synthesis system. It alloius program specification 
dialogues using natural language, traces and examples from 
which a high-level program model is acquired. This model is then 
refined into an efficient implementation of the program. PSI 
consists of several modules including a parser-interpreter, trace 
and examples inference expert, dialogue moderator, program 
model builder, coder and efficiency expert. 

Keywords; artificial intelligence, automatic programming. 

high-level algorithm and information structures. Fragments, on 
the other hand, form a looser program description. Fragments 
occur in the order of occurrence of the dialogue, rather than in 
execution order, and allow less detailed, local, and only 
part ia l specification of the program. Since the fragments 
correspond rather closely to what the user says, they ease the 
burden of the interpreter as well as the trace and example 
inference module. The model builder must then apply 
knowledge of correct high level programs to convert the 
fragments into the model. The model builder processes 
fragments, checking for completeness and correctness, fills in 
detai l , corrects minor inconsistencies, and adds cross-references. 
It also generalizes the program description, converting it into a 
fo rm that allows the coder to look for good implementations. 
T h e completed program model may be interpreted by a special 
model interpreter to check that it performs as desired by the user 
and also to gather information needed by the efficiency expert 
such as statistics on set sizes and on probabilities of outcome of 
tests. 

T h e PSI program synthesis system is a computer program 
that acquires high-level descriptions of programs and produces 
efficient implementations of these programs. Simple symbolic 
computation programs are specified through dialogues that 
include natural language, input-output pairs, and partial traces. 
T h e programs produced are in LISP or in SAIL. 

PSI is organized as a collection of interacting modules or 
programmed experts. The overall design is a group effort with 
one ind iv idua l having responsibility for each module as follows: 
parser-interpreter Jerrold Ginsparg [Ginsparg-77]; trace and 
example inference module Jorge V. Philips [Phillips-77]; 
moderator Louis I. Steinberg; domain expert Ronny van den 
Heuvel ; model builder Brian P. McCune [McCune-77]; coder 
Dav id R. Barstow [Barstow-77]; and efficiency expert Elaine 
Kant [Kant-77]. Th is paper presents a short description of PSI. 
For fur ther details and discussion of related work, see the 
references above; for a fuller overview see the description of the 
design of PSI as of one year ago [Creen-76]. 

T h e major data paths and modules of the PSI system are 
shown in the diagram below. Multiple program specification 
methods are allowed in the user's dialogue with PSI, including 
Engl ish, input and output examples, and partial traces. A 
more conventional method, that of a very high-level language is 
a planned addit ion to PSI as shown in the diagram. 

PSI's operation may be conveniently factored into an acquisition 
phase (those modules shown above the program model which 
acquire the model) and the synthesis phase (those modules 
shown below the model which produce a program from the 
model). Sentences are first parsed, then interpreted into 
fragments. The parser is a relatively general parser which 
l imits search by incorporating considerable knowledge of 
English usage. The interpreter is more specific to automatic 
programming, using program description knowledge as well as 
knowledge of the last question asked and the current topic to 
facil itate the interpretation into fragments. 

Fragments and the program model form two of the major 
interfaces wi th in PSI. Both are high level program and 
data structure description languages. The program model 
includes complete, consistent, and executable (but slowly) 

Auto. Pro? .« 
380 

nropn 



Another input specification method is partial traces. A trace 
includes as a special case an example input-output pair. 
Examples are useful for inferring data structures and simple 
spatial transformations. Partial traces of states of internal 
and I /O variables allow the inductive inference of control 
structures. The trace and example inference module infers 
loose descriptions of programs in the form of fragments, rather 
than programs themselves. This technique allows domain 
support to disambiguate possible inferences, and also separates 
the issue of efficient implementation from the inference of the 
user's intention. General programming knowledge is 
distr ibuted throughout the modules described above. 
Current ly, domain-specific knowledge is also distributed where 
appropriate, but a domain expert module is being implemented. 
Appl icat ion domain-specific knowledge (e.g., knowledge about 
learning programs) wil l be concentrated in this module, which 
wi l l supply domain support by communicating with other 
acquisition modules through the fragment interface. 

T h e moderator, not shown in the diagram, guides the dialogue 
by selecting or repressing questions for the user. It attempts to 
keep PSI and the user in agreement on the current topic, 
provides a review-preview on a topic change, helps the user that 
gets lost, and allows initiative to shift between PSI and the 
user. A new module being planned by Richard Cabriel i% 
an explainer, which wil l generate reasonably clear questions 
about and descriptions of program models as they are 
acquired, in order to help verify that the inferred program 
description is the one desired. It also will be able to explain the 
how and why of the acquisition and synthesis process to the 
interested user. 

Af ter the acquisition phase is complete, the synthesis phase 
begins. Th is phase may be viewed as a series of refinements 
or as a heuristic search for an efficient program that satisfies 
the program model. The coder has a body of program 
synthesis rules [Green and Barstow-75, 76] that gradually 
transform the program model from abstract into more detailed 
constructs unt i l it is in the target language. Both algorithm and 
data structures are refined interdependently. The coder deals 
pr imar i ly with the notions of set and correspondence 
operations and can synthesize programs involving sequences, 
loops, simple input and output, linked lists, arrays, and hash 
tables. 

T h e refinement tree effectively forms a planning space that 
proposes only legal, but possibly inefficient, programs. This 
tree structure is shared by the coder and the efficiency expert. 
In cases where the coder proposes more than one refinement 
or implementation, the efficiency expert reduces the search by 
estimating the time-space cost product of each proposed 
refinement. The better path is followed and there is no backup 
unless the estimate later proves to be very bad. An 
addit ional planned method to reduce the size of the search 
space is the factori iation of the program into relatively 
independent parts so that all combinations of implementations 
are not considered. An analysis for bottlenecks can allocate 
synthesis effort to more critical parts of the program. 

In summary, we have formulated a framework for an automatic 
programming system and have a start on the kinds of 
programming knowledge that must be embedded therein. PSI is 
moderately successful in that it is currently running and has 
synthesized many significantly different programs including 
simple storage and retrieval and learning programs. However, 
not all of the planned modules are completed yet, and it is still 
too early to attempt an evaluation of the overall design, its 
appl icabi l i ty, or the methods used. 

Acknowledgements 

T h e individuals responsible for the work reported here include 
the current PSI members - Brian P. McCune, Jorge V. Phill ips, 
Louis I. Steinberg, David R. Barstow, Jerrold Ginsparg, Ronny 
van den Heuvel, and Elaine Kant, as well as former members 
Bruce Nelson, A v r a Cohn, and Juan Ludlow. 

This research was supported by the Defense Advanced Research 
Projects Agency at the Department of Defense under contract 
MDA 903-76-C-0206. 

References 

[Barstow.77] Barstow, David R., A Knowledge-Based System 
fo r Au tomat ic Program Construction, to be presented at the 
F i f th International Joint Conference on Art i f ic ial Intelligence, 
Cambridge, Massachusetts, August 1977. 

[Ginsparg-77] Ginsparg, Jerrold, A Parser for English and Its 
App l i ca t i on in an Automat ic Programming System, Ph.D. 
thesis, AI Memo, Art i f ic ia l Intelligence Laboratory, CS Report, 
Computer Science Department, Stanford University, Stanford, 
Cal i forn ia , forthcoming. 

[Green-76] Green, Cordell, "The Design of the PSI Program 
Synthesis System", Proceedings Second International Conference 
on Software Engineering, Computer Society, Institute of Electrical 
and Electronics Engineers, Inc., Long Beach, California, October 
1976, pages 4-18. 

[Green & Barstow-75] Green, Cordell, and Barstow, David, 
"Some Rules for the Automatic Synthesis of Programs", Advance 
Papers of the Fourth International Joint Conference on Artificial 
Intelligence, Volume 1, Art i f ic ial Intelligence Laboratory, 
Massachusetts Institute of Technology, Cambridge, 
Massachusetts, September 1975, pages 232-239. 

[Green & Barstow-77] Green, Cordell, and Barstow, David, "A 
Hypothetical Dialogue Exhibit ing a Knowledge Base for a 
Program Understanding System", in Elcock, E. W,, and Michie, 
D., editors, Machine Intelligence S: Machine Representations of 
Knowledge, John Wiley and Sons, Ltd., Chichester, England, 
1977. 

[Kant -77] Kant, Elaine, The Selection of Ef f ic ient 
Imp lementa t ions for a High-Level Language, to be presented 
at the A C M S1GART-S1GPLAN Symposium on Art i f ic ia l 
Intelligence and Programming Languages, Rochester, New York, 
August 1977. 

[McCune-77] McCune, Brian P., The PSI Program Model 
Bui lder: Synthesis of Very High-Level Programs, to be 
presented at the A C M SIGART-SIGPLAN Symposium on 
Ar t i f i c i a l Intelligence and Programming Languages, Rochester, 
New York August 1977. 

[Phi l l ips-77] Phil l ips, Jorge V., Program Inference f rom Traces 
Us ing Mu l t i p l e Knowledge Sources, to be presented at the Fif th 
International Joint Conference on Art i f ic ial Intelligence, 
Cambridge, Massachusetts, August 1977. 

A u t o . Pro*.-2: G r e e n 
3 8 1 


