SISP/I AN INTERACTIVE SYSTEM ABLE TO
SYNTHESIZE FUNCTIONS FROM EXAMPLES

FRANCE
de Programinati on

Jean-Pierre JOUANNAUD
Maitre-Assistant a 1'Institut
Universite Paris VI

A, Place Jussieu

75005 PARIS

FRANCE
Laboratoire de Recherche

Gerard GU1THO

Maitre de Conference -
en Informatique
Universite Paris
91405 ORSAY

Sud

Jean-Pierre TREUIL FRANCE
Chercheur - Laboratoire de Recherche en
Informatique
Universite Paris

91405 ORSAY

Sud

The research presented in this paper is supported
by IkIA-CESORI under contract number 76.
ABSTRACT
SISP/i is an interactive system whose goal is
the automatic inference of LISP functions from a
finite set of examples {(x., f(x.))) where x. is a

list belonging to the domain of the function f we
want to infer. SISP/I is able to infer the recur-
sive form of many linear recursive functions and

its stop-condition. SISP/l tries to work with one

example only. When it fails, it asks for new ones:

using then a method of generating new partial sub-
problems, SISP/l is able to perfect its generated
recursive function until it gets a correct one.

I INTRODUCTION
In this paper we describe the system SISP/I
whose goal is the automatic inference of LISP func-
tions from a finite set of examples {(x., I1(x.))},

where x. is a list belonging to the domain of the
function f we want to infer.

The problem originates from a more general
one: how to build a "Learning-Question-Answering-
System" (L.Q.A.S.) using a functional method to
provide an answer to any given question. The me-
thod we propose in SISP/l is naturally well adap-
ted to the L.Q.A.S. we are. developping (6.1, 17 1.

In the field of "Automatic Programming from
Examples", an important piece of recent work is

THESYS by SUMMERS L5J. The major result of this

work, is the following: using a small number of

well chosen examples

((NIL, f(NIL)), ((A), f((A)))...} THESYS is able
to infer a recursive expression $ equivalent to f
for every x belonging to the domain of f.

class of functions can however
be obtained by Summers's method, which works by loo-
king for a recurence relation between representati-
ve predicates p. of the given input structure and

Only a small

recurence relation between the map functions
the given outputs from the given
using a fixed point theorem, V is cons-

for a
m. providing
puts. Then,
tructed .
Although Summers's method

in-

is very powerful it

Auto.
412

Prop:.-3 :

has four important drawbacks:

1.- The constructed expression <p is necessarily
recursive: for instance the identity function will
be infered by V (x) » if X * NIL then NIL

else CONS (CAR(x), “(CDR(x)))
chosen examples, which in
the stop condition of the
For instance, the construc-

2.- THESYS needs well
particular must contain
recursive function V.

tion of the function REVERSE requires the following
set of examples:

{(NIL + NIL), ((A) - (A)), (A B) - (B A)),

((A B C) + (C B A))}

3.- The function to be constructed has to present
only one "iterative level''. For instance, THESIS
fails to construct a correct function corresponding

to the example: (P QR S) > PPQPQRPAQRS).
4 .- When THESYS has to solve a difficult problem,
it does not try to generate a partial, simpler
problem for which it could either find a correct
solution or perhaps use a knowledge previously
stored in a data base by the system itself. Thus,
THESYS cannot be efficiently used in a L.Q.A.S.
without important modifications.

The method we propose in this paper
differentin particular, it has the built
to use a Professor in interactive mode. It does
not lie yet on any theorical groundwork, but allows
us to overcome some of the previous drawbacks, al-
though new ones appear:

- recursion is not automatically infered by the
synthesis algorithm; for instance, using the exam-
ple (A B C) -* (A B C)), STSP/1 infers the function
P vp (x) = x for any x.

- for some "simple" functions,
one example (x, f(x)).

is very
capacity

S'ISP/1 needs only

In the case where a recursive expression is infered,
the stop condition is then found by SISP/l itself.
However the. list x must be long enough to be re-
presentative of the function f. For instance,
REVERSE is obtained using the only example
(WBCD) + (UC B A)), but is not obtained with
(A B C) > (C B A)).

- when the function f is "more complicated" SISP/I

fails to construct a correct function with only one
example and it then tries to work with two examples.
- when the function f is "much more complicated",
SISP/I generates a new partial simpler problem

(y> &(y)) where y is defined in terms of x and

g(y) is defined in terms of f(x). To solve this
new problem, SISP/I sometimes needs a new example
(x", f(x')) which is used to deduce an example

(y'» g(y"))« The interaction is only used in the
sense of asking for new examples, when necessary.
SISP/l is thus extensible and has the potentiality
to use a self constructed knowledge data base.

Some objections can be raised to our interac-
tive method:
- when a function f needs several examples to be

infered, the professor sometimes has
appropriate sequence of examples.
- we do not exactly know the class of functions

to give an

which SISP/I is able to infer. However, it seems
to be much larger than THESYS one. For instance
((PQRS)-»(PPQPQRPQRS)) is infered by

SISP/l using only one example whereas the HALF

function (P Q R S T U) + (P Q R)), which is infered

by THESYS, requires two examples by SISP/I. In fact,
JouannauH

that SISP will be able to infer a
linear recursive functions.

we hope
class of

larger

I'l. GENERAL DESCRIPTION OF THE METHOD
1.- L§ngu§ge

SISP/I infers functions defined on character
strings "ABCD..." which will be represented by the
list (A B C D...).

SISP/1 synthetizes LISP-functions built with
the following basic functions, described here by
examples:

LCAR: (A B C D) -* (A) CDR: (A B CD)-> (B C D)

LRAC: (A B C D) -+ (D) RDC: (ABC D) -> (A B C)

CONC: (A B), (C D) m> (ABCD)

CONCT: (A B), (C D), (EF) + ABCDEF

PREF: (BC), (ABC D) «> (A) LPrefix of (B C) in
(ABC D)]

SUFF: (B C), (A B C D) m+ (D) | Suffix of (B C) in
(A B C D)j

and a control structure using COND and NULL.

2*~ Notion_of_tYp_e

A type is a set of lists which can be defined
by rules which are summarised as follows [6 1:
a) the set of known inputs "x" and the set of out-
puts "f(x)™ of the function f to be synthetized are

types.
b) if X is a type and f a LISP function, then the
set of outputs of f restricted to X as input is a
type.
c) if Y is a type and g a LISP function then the

set X of x such as g(x) C- Y is a type.

3«~ Segment”].i_on_pattern

Let f be a function to be synthetized and
(x, f(x)) an example of "input-output" of this
function.

SISP/1
expression of

uses a general heuristic to create an

the function:

a) segmentation of strings x and y = f(x) into
three consecutive segments such that:

CONCT (px, ¢, sx) m+ X

CONCT (py, ¢, sy) -» vy
where c¢ denotes the larger string common to x and

y, px and py denote the prefixs of ¢ in x and vy,
sx and sy denote the suffixs of ¢ in x and vy.
b) building of relations between these segments.
A "Segmentation Pattern" of (x,y), for all x
and y, is defined as the network shown in figure |I.
We can see on this network:
- seven nodes representing types respectively as-
sociated to the strings x,y,c,pXx,py,sx,sy.

- twelve relations between nodes. Each relation
consists of a function and a scheme (l,» l«, <>
I ->J) which indicates the input nodes | , | ,...,
| in this order and the output node J. This order

n
is represented on the network by a double arrow.
Note that functions FX, FY, GPX, GPY, GSX,
GSY are built by SISP/1 using the basic functions
LCAR, CDR, LRAC, RDC, and the composition rule.
They are choosen of the less possible complexity
(the smallest number of basic functions).
In some cases, the segmentation pattern is
simpler:
- when one or several
the associated nodes are suppressed
pattern.
- when

strings are empty (NIL),
from the

two strings are equal, the associated

Auto.

Pror.-V

nodes are joined
x and y are the same,
node; if x and y have no common part,
is reduced to only two nodes.

4*" §Y.£It}Esis fron}_on£_exam£le

The synthesis consists of three steps:
a) SISP/1 generates a network (called a "Segmenta-
tion Structure") by the following process:

(1) Generate the segmentation pattern of
(x,y).The generation gives the two sets of pairs:

together. For instance, if
the pattern is reduced to one
the pattern

{(px» py), (c,py), (sx, py)} Kpx,sy), (c,sy), (sx, sy)}
(2) As long as py and sy are not empty, choose

one pair in each set by a heuristic way; for each

of these pairs, rename it as (x,y) and go to step 1.

b) SISP/1 looks at the segmentation structure for

a lattice in which the minimal and final nodes are

respectively X and Y (that is x and y types). This

lattice is stepwise constructed using Algorithm 1,
defined as follows:
Def initi ons:

- LAT is
at any step (except in
a lattice).

- an incomplete node of LAT
that the relation ending at this node (in LAT)
owns some entries which are not connected to X.
These nodes are called unsatisfied entries.

lattice
is not

the constructed part of the
the final step, LAT

is a node such

- BEG (Z) is the set of nodes in LAT which
are less than Z and which are not unsatisfied
entri es.

- P is a "path" from BEG (U) to V, where U

and V are nodes of LAT, if P is an oriented path

starting from one node belonging to BEG (U) and
ending at V. This path may contain incomplete
nodes together with their unsatisfied entries*

Example of LAT:

Nodes 6, 7, 11 are
Nodes 12, 13, 14,

incomplete nodes
15 are unsatisfied entries
All others nodes are complete nodes.

BEG (9) - {X, 1, 2, 7, 8}

Algorithm 1:

1. LAT « X

2. Look for a path P between X and Y.
3. Add path P to LAT.
4.

Lf there is no incomplete node in LAT then
stop
else select the minimal one and call it N.

(It can be demonstrated that Algorithm 1
generates a set of incomplete nodes which
is totaly ordered on LAT).

JonannauH

o L

7.
I

Let Y. be one unsatisfied entry of node Ni
Look “for a path P between BEG(N.) and Yi'
Let X. be the origin of P on ﬂEGtN.) and

try to detect a recursivity between X, and
Yi using Algorithm 2.

Go to step 3.

follows from algorithm | that when Algorithm

2 is called, a part of LAT has the following struc-

ture:

Sublat

X. N.
1 1

1
P
Y.

1

where sublat is restricted to he a lattice, and Yi
is the previous unsatisfied node.

Algorithm 2:

or

1f no path from X. to N. (in sublat) matches
a subpath of ¥ (ifi the fense of an identi-
cal sequence of operaters) then step alpo-
rithm 2,

EIﬁc liet x.+] - N,+I be the subpath of P
which has heen malched.
The above structure is changed to:

Sublat

. If the segmentation struclure does not con-—

tain a lattice starting in X. " ending in
N.+1 and analogous tov sublat then stop
aigorithm 2 elsc assume Lhe following re-
cursion:

Ki b Ni
@(x) = h lsublat (x), v{p{u(x}))1

X, —f N,
1 1

¥ (x)=hl v{¢(u(x))), sublat{x)]

3.

depending on the order of arguments of h.

Find & primitive stop condition of the re-
cursive funttion ¢ as follows: mateh the
operators of path P from X. Lo Ni in

A 1+é +1
the segmentation structure, then

from Xi+ to Ni and s0 oun, until it fajls.
Assumg 1? failes From X, te N.. Find a path
w from X. to N.. The primitive stap con~
ditien id assuthed to be:

if x € Kj, Lthen w (¥)

Reduce the primitive stop condition as fol-

lows:

a) remove Sublat from LAT.

b) if 4 relation from tho'Nk+1

itk <}, cannot be found in the segmentatiun

gtructure, then set P+ (X, ¥, N.) and
stop algerithm 2 else let r be thé found
relation.

c¢) find k, the smaller non negative integer

guch that w, = rk (w(x)) is not a fixed
point of eguation:

for every k,

Auto.

Prog.-3:

n [sublat (W(0), v(r(w (0N T = ()
for gvery x € X..
d) Set P e (X, —%N)
with w{r} ={1f x € ok (Xj) then zk(k)
[gublat (x), v{@(u(x)))]

is solution of the following

else h

where 2
equation:

ik (uk {x)}) = rk{w(x)) for every x & Xj

Remark To roduce the primitive stop condition,
the following process is iterated:
Suppose the last stop condition is

1f x € Xi then wix)

Using the functions u and r, it i% possible
Lo caleulate ¢ (x}), X € X., as shown on the follo-
wing figure: 3

X; W » w(Xi)
u T
u(Xi) —— npew stop cendition— T(W(Xi))

that is: ¥ (x)= b {sublat (x), viw{u(x}))i

x h [Tsublat {x), v(r{w(x)})3' = wix)

which means, i1f the correct answer w(x) is obtained
that w{x) is a fixed point of the lasL equation.

It thug follows that there exists a funcrion
z such that:

z{u(x)) = r{wi(x)) for cvery x € xj
Thus now the stop condition is:

if xEu {Xj) then z{x)

5.- Synthesis_from two cxamples

Let us suppose that after a first example,
SISP/1 generates a function which fails on a second
example. Let the two examples be {x,y) and (x',y").

The principle is always to build a structure
from the generation of segmentation—patterns; SISP/I

here generates the segmentation palterns associated

with the initial pairs OGLx") L (r,y') (X y), (x7 L y™)

and goes on in the same way as in the first method.
SISP/1 then tries to find a three parts split-

ted path from X to ¥:

- a path from X to X'.

- the function witself from X' to Y'.

~ a path from Y' to Y.

Remarks: - using this technique, SISP/1 looks expli-

citely for a recursive form of the function ¢.

— when unsatisfied nodes are remaining in
the path, SISP/) generates sub-problems which are to
be solved either by algorithm | or again by using
onc more example when algorithm | fails {3 bis].

For instance, let YI be a remaining unsatisfied node
in the path:

Jouannaud

SISP provides the following expression of ¢:
w(r) =(if x € X' then w(x)
else b 19(f(x)), ¥(x}]

whete § is a sub-problem to be sclved by SISP/I and
wherte w(x) is the function which has been found by
algorithm | working on only the example (x',¥').
This stop condition can then be reduced as explai-
ned in algorithm 2.

III. PRACTLICAL EXAMPLES

t. Let ws use cur method to {ind Lhe REVERSE
function. The input (A B C D E) is given to
SISP/1: it does not knrow the answer and asks the
Frofessor whe returns: (F D C B A). S18P analyses
input and output and generates the segmentation
structure indicated in figore 3.

S15P looks then for a path from the Ques-
rion Q containing the list (A B C D E) te the
answer R containing {E D C B A) and {inds Lhe

following onc:
LCAR r HCONC

Q= — R

"

Looking for the unsatisfied entries, SISF

finds r . 1t lovks again for a path from BEG(R)
to 1, and finds the folluwing one:
g .— .50 LEAR CONC
! 2 TTTTTREIE Ry

S$1SP now cxamines both paths. %he mapping (LCAR-
CONCY of the first one matches into the mapping
{CDK-LCAR-CONC) of the second one. This statement
is sufficient to infer a recursive expression ¢:

¢ix) = CONC L@(CDR(x)), LCAR (x)1

5ISP has to still find the stop condition. Mat-
ching the three cperators CDR, LCAK, CONC with the
strTucture, it remarks that it can apply CDR on

type Ay giving ty but cannot apply LCAR on type Cye

SISP/1 thus knows Lbat the stop condition is to be
found in this part of the structure:

cun\\\\
LCAR CONC

q3 * T4 ,T3

CDR

Auto.

Prog,.-3:
415

SI8P/I
from t5
here to be identical to t.. It finds the trivial

one and generates the primitive stop condition:

tyies now to find a new binding of the path
to the unsatisfied entry of Ty which happen

itxg tg Lthen x

S15F now has to reduce the stop condition, using
the following mappings:

LIHR
e o —RBC
9 Yies i Tisl
Assuming that CDR ((E)) = NIL-Y—s RDC((E)) -
N1l is the firsL reduced stop condition, SISP cal-

culates now ¢(x} for every x belonging to LS:

@{L) = CONC @ (CDR({E)}), LCAR((E})!
e CONC L¢(NIL), (F}|

using the new stop vondition: w(E) = CONC | NiL,
{F)] = (E) which here gives the correct answer.

The process cannot be performed further, because
CDR(CDR{(E)}) does not exist. The function
generated by SISP is thus:

¢{x) =}if x = NIL then NIL
wlse CONC (@w{CDR(x)), LCAR (x))
that is the usuval REVERSE.

2. The secund example we display now needs
more material than the first one since two couples
(input - gutput) are necessary. Let HALF be the
function to synthetize:

- first couple: (ABCUDEFG M) +
From this first example, SISP/! constructs
the fullowing structure:

(ABCD)

RDDDDC

The relation ¢:Q' + R' found here is thus
w(x) = RDDDEC(X).

- The professor gives now the following input:
(A BCDEF). SISFP uses ¥ to answer (A B), which
is false. The professer then gives the correct
answer: (ABCDEPF) - {ADBL).

SISP then generates the structure displayed
on figure 3. Assuming that EB' can be ocbtained
from Q" using the correct function ¢ to be synthe—
tized, SISP, as explained before, uses the follo-
wing path from Q' to R':

RDDC ' CONC
Q' - Q" —-l{" - R'

SR

Jouannand

The problem is now to find a path from BEG

{R'} to SR. The pimplest one which is found here
e SUFF LCAR
Q"—‘ﬁ—’ gn ——— SR
o’

¥ is thus represented by the lattice:

RDDC ¥ CONC

» R'

q r - Q" - R"

SUFF
& LCAR . oo
it follows that @(x) = CONC [w{RDBC{x)), LCAR({SUFF
L@ (RDBC(x)), RDDC{x)1)} with the trivial stop
coendition:

if x € @' then RDDDC(x)

SISP now has to reduce this stop condition using
the following mappings:

RDLC RDC

Q r Qll and RI R"

Assuming that BDDC ((A B C D E F)) = (A B C D)

—f 5 KOC ((A B C D)) = (A B)
S518P computes now ¥(x) for every x belonging to Q":

w{(A BCDETF) = CONC [¢(RDDC((A B C D E F)},
LCAR(SUFF [@w(RDDC{((A B C D E F)),
RODC({A B C D E F))])]
= CONC [w((A B C D)),
LCAR(SUFF [w({A B C D)), (A BCD)])I
= CONC [(A B), LCAR(SUFF L{A B),
ABCD)Y]
= CONC [(A B),
which is the correct answer.
The primitive =stop condition can thus be
reduced to:
if x € ROBC(G") then RDLC(X)

{C)] = (A B C)

where RDDC is the solution eof the following equation

on T
2 (RDDC({x)) = RDC (RDDDC(x}) for every x € Q".

This process is recursively applied and stops
when RDDC ((A B)) = KIL. At this step, we obtain
the function HALF defined as follows:

w(x) ={if RDDC(x) = NIL then RDC(x)
else CONC [¢(RDDC {x)),LCAR(SUFF
[w(RDDC{x)), RDDL(x)1)]

Iv. LIMITS AND PROSPECTS OF THE METHOD

.- Progpects
SISP/t is already able to synthetize most of

the functions given in SUMMERS [5] and HEDRICKS [2]

in particular it synthetizes the following ones by

uging algorithm I:

(ABCDE)—+>(EDCEA) -

(ABCDE) » (AXBXCXDXEZX)

(ABCDE)+ (AABBCCDDEE)

(ABCDE) > (AABABCABCDABCDE)

By uping two or more examples it synthetizes:

(ABCDEFG)» (AAGGCGBEFFCCELDID

(ABCDEFGH) > (ABCD)

(ABCDE)+(EDCBAEDCBEDCETDE)

(ABCD) (DCEACBABAADCBCBBDCCD
Auto,

{(ABCDE)Y» (ABBCCCDDDDETEEEE)
(ABCDEFGH » (DCBAHGTFE)
{ABYy » (AAAAAAAA (cube of the entry length)
(ABCD) ~{AAAAAAAA) (half square): such
a way is not always easy to use, as we shall see
now!
- agsume SISP has to synthetize the HALF function
using the previous example (A BCDETF G H} »
(4 BCD). Algorithm | fails and the professor
gives as second example:
(BCDEFG -~ (BCD)
SISP here generates the following HALF function:
P{x) = ii ® = NIL then NIL
clse CONC [LCAR(x), ¢(CDR(RDC(x}))1
which is muth simpler than previous HALF function.
This simplicity was however found by the professor
who gave better examples.
- assume new Lhat SISP has te synthetize
tion using the example
(ABCDE)>~(ABBCCCDDDDETEETEE).
Algorithm | fails and the professor gives as
second example (ABCDY+ fABRCCCDDD D).
SISP generatcs the following functions:
P(x) =fif = € " then R"
{elﬁc CONC [P (RDT(x)), ¥(x)
vhere W(x) is hound to the following subproblem:
(ABCDE ~(EEEEE)
Algorithm ! fails then to provide a correct func-
tion ¥ and the professor now has to give the two
particularly well choosen examples:
(BCDE}y~{(BCCDDDEEEE)
(BCD)y+(BCCULDD)
they allow SISF to generate a new appropriate
example in order to synthetize a correct
Y(x) =fif x = NIL then NIL
{ZTse coNC TW{CDR(x)), LRAC(x)]
the stop condition of ¢ is then found:
if x = NIL then NIL
the genetated function ¥ will thus be given by the
linear recursive system @
¢:{w(x) m if x = NIL then NIL else

a func-

T CcoNG [w(RDC(x)), W(x})
W(x) = if x = NIL then NIL else
CONC [y{CDR(x)), LRAC(x)]
These twe last examples show the main im-
portance of good examples. We hope however that
it would be possible to use “bad examples" joined
together with a unification process, in order to
improve the given "bad examples’.

- with the exception of stop-condition, the func-—
tions generated by BSISP do not use predicates in
their definition . Thus the functien:
if "length of x is even" then reverse (x)
elge x
cannot be synthetized by SISP.
attacked in (6].
- SISP/} requires a good sequence of example in
order to use the second technique. They have to
be of decreasing length and consecutive.
- 51SP/t! only works on atomic lists.

This problem is

V. CONCLUSION

In summary, the described wethod consists of
congtructing a structure from an adequate set of

Pror.=3: Jouannand
416

exanmples {{xi, f(xi))} and in extracting from the

structure a lattice which represents an expression
of the function f.

SISP is a L1ISP pregram working om PLUP 10

using VLISP 10 [1).

Future developments will tend to make SISP

able to:

- define and store self contained problems in its
Memory,

- recognize that a partial problem has already been
enicountered and solwved,

- improve the professor's bad examples in order to
be able to sclve partial problems which have never
before been encountered,

- synthetize n-any functions {the two presented
technigques can easily be generaliZzed).

L1t

L21

(23]

VI. BIBLLIOGRAPHY

GREUSSAY P., at all: "VLISP 10. Reference
wanuel". Rapport interne Univ. Vincennes.

HEDRICKS C.L.: "Learning Production System
from examples'”, Artificial Intelligence Jour-
nal n® 7, January 1976.

JOUANNAUD J.PF., GUIHO G., TREUIL J.P.,
COALLAND P.: "SISP, systéme interactif de
synthése de programmes & partir d'exemples".
Publication de 1'lastitut de Programmation,
Mars 1977.

{ 4bis | JOUANNAUD J.P., GUIHO G.: "Inference of

[6]

[7]

funclions with an intcractive system” to be
published in Machine Intelligence n? 9 edited

by D. MITCHIE.

POHL Irt.: "Bi-Directional and Heuristic Search
in Path Problems", Thesis, Computer Science
Dept. Stanford University, 1969,

SUMMERS P.D.: "Program Construction from
examples". Phd. Thesis, December }975.

TREUIL J.P., JOUANNAUD JF.E., GUIHC G.: "“Une
méthode d'apprentissage de concepts, Colloque
AFCET: Panaroma de la Nouveauté informatique
en France, Gif s/Yvette, Novembre 1976,

TREUIL, J.P., JOUANNAUD J.P,, GUIH(},G.:
"L.Q.A.S., un systéme question-réponses basé
aur 1'apprentisezge et la synthése de program—
mes A partir ¢'exemples. Publication de
1'Institut de Programmation, Mars 1977.

Autn, Proes,-3:
417

Segmentation pattern associated
to (x,¥)-

Figure 1:

e)

CONCG

TONG |

Segmentation structure associated
to the REVERSE function.

Figure 2:

Jouannaud

EDC RDDDDC RLC
/‘—-—‘_F

e

SUFF

O ()
___ RnbDe
ABCDEF ABC

Figure 3: Structure associated Lo the
HALF function.

Auto. Pror.-3: Jouannaud
418

