PREDICATE LOGIC: A CALCULUS FOR DERIVING PROGRAVIS

Keith Clark
Computing & Control
Imperial College
London, England

Abstract

We show how predicate logic can be used to derive
programs from axicmatic specifications. We also
show how its proof theory can be used to analyse,
and re-characterize, the computations of a program.

1. Programs as computaticnally useful theorems

We start with a set of axioms that give an intuit-
ively correct characterization of some input-cutput
relation we wish t¢ compute. Under the procedural
interpretation of logic 5,6} these axioms can be
used to ‘compute' the relation. So we 'symbolically
exccute' the axioms, gua program, for various forms
of input. From each symbolic execution we distil a
thecren that can double for the axioms in the
business of computing the relation. Our set of
derived thecrems is a logic program whose proced-
ural use Is computational.

Example

The following axioms are a specification for the
input-output relatioh, mem-test, of a program to
test Lf an element u is a member of a list z. The
output is to be T if uez, F if not. All free var-
iables (lower case) are implicitly universally
guantified.

Specification

wueNIL {or ueN1L <+ false }
VEVLX ++ U=V , UEX
mem-test{u,z,t) <+ t=T & ucz ,, t=F & "“arz

in several respects this axiomatisation is incom—
plete., Wo should realily axiomatise the eguality
relation for lists, and list elements, and express
the finiteness condition for lists by an induction
schema [3]. However the absence of explicit egual-
ity axioms is an implicit assumption that things
are egual only if they are identically named, which
ie what we intend, and we shall not need the indue-
tion schema for the program synthesis.

Synthesis

We 'evaluate' the definition of mem-test for the
cases z=NIL and z=v.x .

Z=NIL
mem-test (u,NIL,t) ++ =T & ueNIL ,, t=P & "ucNIL

Using the axiom ucNIL +— false the 'call' uegNIL
evaluates to false , glving

mem-test (u,NIL,t) ++ t=T & false y t=F & wfalse

The definiens now reduces to t=F using only logical
evaluation rules. 1In effect we have proved

mem-test {u,NIL,F} {1}

Z=V.%

mem-test (u, v, x,t) 4> £=T & uev.x t=F & “UEV.X

This time we evaluate the 'call' uev.x by substit-
Auto.

Prog.-3:

Sharon Sickel
Information Sciences
University of California
Santa Cruz, California

uting the equivalent expression usv 4 ucx .

mem-test (u,v.x,t) +—
=T & (u=v y WEX) t#F & “{usy , uex)

We now bring the components of the substituted
oxpression to the surface by distributing connect-
ives. We do this in order to throw together form-
ulae such as P& P that can he logically evaluated.
But, more importantly, we 'multiply out' in the
hope of eventually 'factoring out' an expression
that is just another instance of the mem-test def-
iniens. If we can do this we have found a recur-
sive use of the mem-test definition from which we
can infer a recursive theorem. Distributing gives

mem-test {u, v.x,t]

t<T & u—wv Vifj? & uex y t=F & u#v_furgiij
The boxed disjunction very nearly matches the moem-
test definiens. The 'difference' is the extra
condition u#v that appears in its right disjunct.
We could factor this out if 1t also appearcd in
the left disjunct. So we introduce it!

mem-test (u,v.x,t] +

t—T & u=v v t=T & urv K uEx v L=F & u#v & "urx

But note that the "-=" has been down-graded to “+".
Introducing ufv destroys the eguivalencc. However,
since t=T & ufv & ucx implies t=T & ucx, we still
have the if-half of the iff. We now factor out ufv.

mem—tost{u,v.x,t) «
E=T & u=v o ufv & (t=7 & uwux 4 t=F & “uex)

substituting mem-testiu,x,t) for its definiens gives
mem-test{u,v.x,t) + =T & usv y ufv & mem-testlu,x,t)
which we expand as the pair of theorems:

mem-test (u,u.x,T} (23
mem-test fu,v.X,t) + ufv Kk mom-test (u,x,t) (3}

Theorems {(1},{2), and (3) are the statements of
our derived program. With minor syntactic changes,
they are in fact a PROLOG program |l1o], PROLOG
being essentially a 'top-down' resclution theorem
prover., A request to refute
wmem-test (2, (4. (3. (5.NIL)}}, ¢}
is a vall of the program. It will generate the
recursive computation one expects. This computa-
tion is a constructive proof that binds t to F.

Correctness

A logic program that comprises a set of theorems
about the relation it is supposed to compute is, in
the computational sense, (partially) correct. (Com-
puting an instance of the relation is then proving
it is a correct lnstance.} Thus, a logic program is
verified by checking that each of its statements
are theorems; it ls synthesised (and verified) by
finding each of its statements as theorems. This
appreach to verification and synthesis 1s elabor-
ated in [2].

Clark

412

2., Proof theory analysis of computation

The computations of leogic programs are rescluticn
proofa. We can characterize such proofs as paths
through an interconnectivity graph [8], the unific-
ations that appear on each path being the easential
steps of the proof computation. Thi= conceptualiz-
ation of what constitutes a proof glves us a toocl
for analysing, and reformulating, a logic program.

Example

The loglc program
Fact (0,1}
Fact (n+l, (n+l} Xy} + Fact(n,y}
is used to compute the factorial function by asking
for a refutation of a conjecture of the form
wFact (u,v) where u is some numeral input. Below is
an interconnectivity graph for the general theorem
proving task in which the conditional statement has
been expressed in clausal form. Umifiable comple-
mentary literals are connected with an edge labelled
by the unifying substitution.
T - ——L.Fact{0,1)
b:lo/n, 1/y] B
.

MFac?(n,y) v Factin+l, (n+l) X y)
d: {n+l1/u, (n+l) X yv/v]

c: [n+l/n", (n+l) Xy/y*]

a:EO/UuI/V]
“Fact {u, v)

A proof of Fact{u,v} is given by any path through
the graph that connects “Factiu,v} with Fact(D,1).
In this case the set of all possible paths can be
succinctly described by the reqular expression
a|be*d . 1In effect, this is an iterative charact-
erization of the set of compositions of unifications
that constitute a proof. Taking into account the
intended use of the logic program, i.e. that u is to
ke input and v output, it is a compact notation for
the iterative program:
1) a: if u=0 then v+l
2) b: initialise u'+D; w'+]l
c¥: repeat (Zero or more times)
u'vu'+l;
v'itu' Xv'
d: terminate ahove loop when u'=zu
vev!

Genegral method

The above example was simple enough for us to read
off directly from the graph a regular expression.
For more complex examples we may first need to char-
acterize the set of proofs by a context free attri-
bute grammar. This we can always do [9]. The
productions of such a grammar reflect the ground
structure of the problem, taking inte account unif-
jiable palrs of literals, but ignoring the necessary
substitutiens. The attributes carry the substitu-
tion information, Temporarily ignoring the attri-
butes we try to re-express the language generated
using regular expressions. To the extent that we
are successful, we then re-introduce the substitu-
tion constraints as refinements of the regular
expressions. Thug, in the Fact cxample, the regular
expression bo*d would be refined by the constraint
that ¢ is applied the number of times to satisfy

the substitution. The reflned expression is there-
fore belu1lg |

Domain _and range
Autrn,

Proe_ -3:
20

The attributes are consistency checks on the vari-
ables; a production can be applie@ only if its
agsoclated substitution censtraint is consistent
with the substitution constraint of all previous
steps in the derivation. The refined regular exp-
resslon therefore gives us restrictions on each of
the variables that must be satisfied in any proof.
The restrictions on the input variables determine
the domain, those on the ocutput wvariables the range.
For Fact, this analysis gives ua O+(+1)* as the
domain, i.e. the natural numbers, and, for n in the
natural numbers, nX ({n-1)..X{2X 1}..) as the range.

Termination

If we are able to describe the set of computations
as a regular expressicn we can use the attributes

to replace the *'s with specific integer functieons
af the arguments. Yf we can do this for every *,
that is for every implicit iteration, we have proved
that every computation terminates.

3, ¥inal remarks

So far we have only inveatigated the hand synthesis
of loglc programs. However it is Intended to imple-
ment an interactive system which becomes more aut-
onomous as the synthesis methodology 1s refined and
understood. The idea of synthesing a recursive
program from the recursive use of a specification
first appeared, independently, in [1] and [7].
Indeed the reader may have notlced the similarity
between our approach and that of Darlington and
Burstall[l,4]. Like them we use the same formalism
for both specification and program (they use
enriched recursion equations), and like them we
symbolically execute the specification. We have
derived much from their work.

The proof theory analysis of computation is also

in its beginning stages. It is in fact an applicat-
tion of more general work, currently in prograss,

on the analysis of resclution proofs. We believe

it provides a useful conceptualization, and will
provide a useful tool.

References

[1] R.M.Burstall & J.barlington, Some transformat-—
ions for developing recursive programs, Proc. Int.
Conf. on Reliable Sgoftware, Los Angeles [1975)

{2] K.L.Clark, Synthesis and verification of logic
programs,Research ;epoxt,CCD,Imperial College (1977)
[3] X.L.Clark & S-% Tarnifind, A first order theory
of data and programs, Proc. IFIP Congress (1977)
[4] J-pDarlington, Application of program transform-
ations to program synthesis,Collogues IRIA on Prov-
ing and Improving Programs, (1975)

[5] P.J.Hayes, Computation and deduction, Proc.
MFCS Conf., Czech Academy of Sciences (1%73)

fe] R.Kowalski, Predicate logic as programming
language, Proc. IFIP Congress (1974}

[7] z.Manna & R.Waldinger, Knowledge and reasoning
in program synthesis, Art. Int. Journal,&(2),(1975)
[8] s.sickle, A search technique for interconnect-
ivity graphs, IEEE Trans. on Computers, Aug. (1976)
[9] s.5ickle, A linguistic approach to automatic
theorem proving, Proc. CSCSI/SCEIC Summer Conf (1976}
[10] p.Warren,L.Pereira & F.Pereira, PROLOG-the
language and its implementation compared with LISP,
SIGPLBN/SIGART Prog. Lang. Conf.,Rochester (1977)

Clark

