EG — A CASE STUDY IN PROBLEM SOLVING
WITH KING AND PAWN ENDINGS'

Crispin Perdue and Hans J. Berliner
Carnegie-Mellon University
Pittsburgh, PA 15213

We present an overview of the design of a program that
playr, simple chess endings with pawns and details of
interesting aspects. The program evaluates positions
according to production-like rules and also generates
moves through the mediation of rules that produce
"strategies". Effects of the design are discussed, partly
through examples. The design affects the application of
standard chess programming principles, among them use of
cutoffs, the definition of a repeated position, and the
comparison of values of positions. We also describe
problems and solutions of problems concerning concepts
peculiar to this type of design, especially the concept of
search within the context of pursuing a particular strategy.

Introduction

King and pawn endgames are an appealing subject for
study for several reasons. Even in very simple pawn
endings straightforward searching may not deliver a
correct answer. A reason to stop searching may not
appear within 15 ply, and even at branching factors of 7
this is too much search. See (Newborn, 1977). These
endings are also easily divided into easier and harder
classes of problems. The easiest problems can be solved
by less sophisticated means and yet they can be solved
better by the more powerful techniques that are essential
in solving the more complex endings.

Because objectives in the king and pawn endings tend to
be few in number, but may be several moves away, we felt
this was an opportunity to explore analysis of a "strategic"
nature. We have also found it possible to substitute
calculations for substantial amounts of searching in many
situations.

EG has developed over a period of time and changed as
it has done so. This development has left behind a series

of object lessons in the design of such a program which
are more important than the fact that it solves certain
problems.

In the presentation, parts of the program will be

presented in simplified form. These views will be refined
or altered as needed further on.

This work was supported by the Advanced Research
Projects Agency of the Office of the Secretary of Defense
(contract F44620-73-C-0074) and is monitored by the Air
Force Office of Scientific Research.

Problem-Solvin?-I'
u21

A first view — evaluating positions

1 he information most readily available to the would-be
chess programmer relates descriptions of the king and
pawn endings positions to facts about them. As available
from technical books on the endings such as (Averbakh and
Maizelis, 1974), it can wusually be described for the
computer in terms of ordinary geometrical relations and
the "functional" relations of the king and pawn endings
(bearing relations on pieces and squares). The
descriptions are usually stated in such a way that it is
easy to test whether or not a description holds. EG has a
set of rules whose condition parts are in this form which it
uses to evaluate positions.

Let us look at the rule of the square, Example K If the
king is inside the square shown after his move, he will be
al,)le to capture the pawn by the time it promotes. The
test condition of the rule of the square appears in the
condition parts of several rules for evaluating positions.

Example 1:

ROl ot AT
i e s
iy - Pness
A A
Uhi te to move

An exceedingly simple yet powerful evaluation rule
states that in positions where white has a king and pawn
against black's king, white need never lose. (Of course he
actually CANNOT lose.) In general we will always refer to
the side with a distinct advantage as "white". This
convention simplifies the statement of rules.

Looked at from a very simple point of view, EG searches
moves proposed by move suggestion rules. Any branch of
the search terminates when it reaches a position whose
game-theoretic value is known to be either good enough or
bad enough to be definitely accepted or rejected by the
side on move at the root of the search tree. (For instance,
in a position where it is known from the start that one side

Pordue

cannot win, a drawn position must be considered good
enough for that side.) Every position is evaluated by
applying the position evaluation rules to it when it is first
reached. The values are represented by a pair of values
from the set: ({black win, draw, white win). The pair
represents a range within which EG is sure the game-
theoretic value of the position lies. In the simple endings
we have investigated a good player can expect to
completely analyze a position, so we have tried
successfully so far to avoid heuristic values, instead
obtaining exact values by analysis.

The information about values of positions thai is
obtained from static evaluation is used in several ways to
control search. The most obvious use of the information is
to prevent search at positions (other than the root) where
the true value of the position is Known. The availability of
this kind of information can save a great deal of effort, as
in Example 2.

Example 2@

White to move

Even though the principal variation from this position to
the promotion of the pawn is 77 ply deep, one of the basic
"patterns" (position descriptions) for endings with a king a
pawn against a king applies after just one ply of search.
EG would try the (unique) winning move before any others,
but even if they were suggested, any of the other legal
moves in this position would be rejected after 1 to 2 ply
of search, when positions known to be drawn would be
reached.

The winning move is K-B3. The condition met by the
position it yields is typical. It says that when one side has
exactly one pawn and the other side has only a king, if the
pawn is not at the edge of the board, the side with the
pawn "has the opposition" and his king is more advanced
than the pawn, the side with the pawn can force a win.

To "have the opposition" is a chess term for a situation
where two kings face each other frontally, as after white's
correct move, and with an odd number of squares between
them. The side not on move is said to be the one having
the opposition.

Problem-Solvinp-1:

422

Since the statically determined values of positions are
consistent with the game theoretic values, it is possible to
use these values to return similarly consistent values from
the search. Let us call the first value of the range
indicated by a value the "lower value" and the second one
the "upper value". The lower value of a node may be set
to the maximum of the lower values of its daughter nodes,
and its upper value may be set to the maximum of its
daughters' upper values.

Sfarchinig_and. strategies

Only moves suggested for a particular reason are
considered in any position. This restricts the search
further. Example 3 illustrates the structure of EG and
some issues of searching with this design.

Example 3:

1. K-B2 K-BZ2 2. K-03 KK3 3. K-K& [uinl

K-K2 3. K-Kbd K-K3 [draul
I. K-B2 K-B2 2. K-03 K-K3 3. ¥-K& [uini

K-kK2 3, K-Ufs K-03 lidranl

Each of the nodes with no descendants is followed by its
value. In this example, the range of uncertainty of each is
nil 17 nodes are searched including the root. How does
FG decide what to try?

All moves are generated by what we call strategies. As
part of the problem solver, strategies combine the
characteristics of means and goals; a strategy specifies
goal information and also is a means for obtaining the

situation specified. EG being written in LISP, strategies are
implemented as S-expressions which are evaluated and
also inspected by EG. When a strategy is evaluated in the
context of a particular node in a search tree it produces a
list of moves, possibly empty. This list of moves goes into

a buffer. If a move is needed and the buffer is empty, a
new round of strategy suggestion occurs. If no new

strategies are proposed, EG tries no more moves from the
node.

Pe/Miie

The list of moves generated by a strategy at a
particular node in a search basically depends on its
arguments, which help to define the goal, and on the chess
position at the node. Usually either one move or no moves
are generated at one time by a strategy.

In Example 3, EG considers six squares to be critical for
the white king to reach, shown starred. (Advancing the
pawn can only be harmful.) White must bring the king to
onr of these or he will only achieve a draw. Of the six,
only those nearest to the white king need to be
considered; if they fail all the others will also. In this
position there sre two squares at a distance of three from
the white king: Q4 and K4. Two strategies are suggested,
one to reach Qfl and one to reach K4. Only moves
generated for either one of these two strategies are
considered.

White does not adhere strictly to his initial strategy
(march to Q4). There is what amounts to a hierarchy of
strategies, and the rule which suggests taking of the
opposition in the critical situations can take precedence
over the basic strategy. Actually, this arrangement has
proved to interfere with the improvement of the program.
We will be in a better position to explain this once
feasibility testing has been presented. (See the section on
Calculations.)

In this common type of position where the pawn is not
on a rook file black marches toward a square on the file of
the white pawn: either the square of the white pawn or
onr of the squares in front of it. There is a feasibility test
based on distances which can declare squares to be
impossible for black to reach if white tries to prevent his
occupation of them. Black heads for the square of those
not ruled out by the distance test which is closest to the
pawn. If he fails to achieve a draw, he tries squares as far
as the third square in front of the pawn. If all of these
fail, the strategy fails, which in this case means the
position is lost.

Blac.kV. basic strategy of reaching K4 suggests an
inferior move at his second turn before the correct one is
suggested. Black's correct moves are made because EG
recognizes that when white succeeds because he gets the
opposition, there are special techniques black can use to
prevent this. (The evaluation rules that involve the
opposition are written to record the fact that it occurred
and the move suggestion rules check for such a message.
7 his is the same kind of mechanism that is in the Causality
Facility described in (Berliner, 1974), but here the causes
of failure recognized and the counter-strategies tend more
in the direction of being special cases.) Black tries to just
mark time for one move by moving to a square adjacent to
the one he was on when white succeeded by obtaining the
opposition. In this example he happens to make the
correct move on the first try. In some other examples ECs
behavior may be somewhat less appropriate.

ProMpm-Sol vinp-1 :
u23

More search control issues

Repetition of positions

The reader may have noticed that several positions are
repeated. It is necessary to allow this; the reason is that
in different contexts different variations may be tried from
the same position. One component of the context is a
statement of the strategy being pursued. Another is a
He Ascript ion of events, such as the occurrence of the
pattern of the opposition, for which there are particular
countermeasures. In particular, the same position may be
reached during the pursuit of two different strategies.
That is exactly what happened in this case. Nodes in the
search tree can be considered the same if the positions
are the same in the usual sense and the contexts are also
the same.

Searching_in context

If a strategy fails somewhere other than the root node
of the search, EG will usually try fewer strategies than it
would if that position were a root node. Typically, the
strategies in simple king and pawn positions have the
property that if the strategy generates any moves at all,
one of them will be at least as good for its goal as the best
move- generated by any strategy not generating moves
diiected to that end. This implies that if a strategy is tried
at a node, it does not need to be tried anywhere in the
search trees rooted at siblings of the nodes generated by
the strategy. Eor this reason we calf it the exclusionary
property. This method of reducing tree search is based on
a suggestion in (Berliner, 1974). Other aspects of control
of the tree search are also directly related to concepts
described there.

In Example 3 both of white's basic strategies are
suggested at the root node and they have the exclusionary
property, so white does not initiate branching except at
the root node. |If the exclusion did not occur, white would
try two moves at each of depths 2 and 3.

Strategies that fail

If in some position a strategy cannot make a consistent
move or it is known that the value it was aiming for is not
obtainable, we say that it has failed in that position. (Each
strategy has associated information giving the minimum
value it is designed to achieve if successful, effectively a
standardized piece of goal information.) We make the
assumption that the principal variation will end at a leaf at
which a strategy has succeeded. Since the minimum value
can be chosen to be the absolute minimum value, it is easy
enough to choose the value conservatively, and some
cutoffs can be made this way.

When a strategy fails, it may do so at a position where
the static evaluator is wuncertain of the value of the
position. If some other strategy is not a failure at the
node, the failure of the strategy is hardly more significant
than, say, suggestion of an illegal move. If all proposed
strategies fail, the "success" assumption affects the value

Perdue

backed up. Under that assumption, the variation could be
discarded, and as a practical matter that would usually be
equivalent to giving the position the absolute minimum
value. In practice, we subordinate this assumption to the
assumption that the static evaluation is consistent. Instead
of returning the absolute minimum value, we return the
minimum value indicated by the static evaluation. This
provides a consistency check in those cases where the
principal variation is generated by a strategy that fails.

As has been mentioned above, with the "interruption"
scheme sometimes positions are played correctly only
because one strategy suggests the first moves of a
variation, at which point another strategy suggests the
best continuation. It is hard to ensure that the
interruption will occur if the interrupting strategy has the
exclusionary property, though under some circumstances it
will.

Kinf and two pawns versus kinf

The main problem in endings with king and two pawns
against a king is to use the information about the pawns
individually along with the information applying only to the
two pawns together. It has turned out to be fairly simple
to use the existing information about endings with a king
and pawn against a king.

The problem of evaluation of positions was handled by
generalizing the evaluator for king and pawn versus king
endings a little bit. It was given parameters and expanded
somewhat. One typical (and important) change was that
those positions leading to stalemate with only one pawn on
the board almost always lead to wins with two pawns. The
rules for detecting these classes of positions were
modified to distinguish between positions with and without
an extra pawn which can make a move for the simple
purpose of forcing black to move. The evaluator for
positions with a king and two pawns versus king has a rule
which says with minor exceptions that if a position can be
recognized as a win for either pawn "by itself" it is a win
with the two pawns together. Suggestion of strategies and
moves is handled in a similar way. EG solves almost all
endings with king and two pawns versus king. The known
exceptions involve potential stalemates and a few unusual
positions. There seems to be a tendency for a few unusual
kinds of positions to be overlooked when rules are being
written. -

Unfortunately, it does not appear that things can be this
easy in general. To be used in more complex positions,
knowledge sources like the position evaluators would have
to be able to give much more information, certainly things
such as reasonable bounds on the time needed to win with
a particular pawn and the squares each side needs to have
available to it.

Calculations

EG's ability to detect properties of positions without
searching is distinctly better than has been indicated up to
now. It has the ability in many cases to detect that
patterns can be achieved without going through a search

Problem-Solvining-I:
424

to reach a position where the pattern actually applies. The
calculations are based on time and distance.

For example EG assumes in king and pawn against king
situations that if the white king is "as close" to the pawn
as the black king and "closer" to one of the three squares
marked with stars in Example 3, white can win the ending.
Conversely if the black king is "closer" to the pawn than
the white king he will be able to capture the pawn and
draw.

Two algorithms have been developed which handle time
and distance measurements with great precision within
their domains of applicability. They both operate by
marking squares of the chess board with indications of
distance. They each do their analysis with all other pieces
stationary by assumption.

One is a variation of the A* algorithm for finding
minimum cost paths, described in (Nilsson, 1971). The
variation is that this algorithm finds ALL minimum cost
(shortest) paths for a king of a given color between two
given points on a board rather than the one path given by
A*. The other algorithm is less interesting from an
algorithmic point of view," but more interesting in the
assumptions behind its use. Its purpose is to determine
which squares of the board the white king can reach
before the black king and which squares the black king can
reach first. The idea is that each side starts out claiming
the square that its king is on. The sides then alternate in
claiming all the wunclaimed squares adjacent to squares
already claimed by them and not adjacent to any square
already claimed by the other side. The algorithm
terminates when neither side can claim any more squares.

This divides the board up into "spheres of influence" of
the kings and it provides a very useful approximation for
the set of squares which each king can reach despite the
efforts of the other. Certainly each king can reach all of
the squares indicated by this algorithm. However, if one of
the kings only needs to reach one of a set of two or more
squares, he may be able to do so even when the algorithm
does not indicate it. This analysis is quite effective and it
solves very much the same set of problems that people
Solve by "counting" analysis on the chessboard. See
Botvinnik, 1970) for a proposal to apply this type of
analysis to the movements of all types of pieces for
analysis purposes.

Example 4 is one where EG's calculation abilities can be
used and are, but some searching is still done. If the black
king were at N2, black would not try the first variation. If
the white king were at N2, white would not try the second
variation shown.

Perdue

Example &:

e

51
7 G

7
Black to move

1. e K-B3 K-D4 3. K-B4 K-B4

winl

K2 K-N& 3. K-(UZ K-N&

5. K-N3 K-B6 6. K-B4 [lpse)

K-B3 K-B4 [drawu)

K-K3 2,
4. K-Ké& [draw
1. ... K-B3 2.
4. K-B2 K-Ni
2.

The values given are all relative to white. The initial
position is evaluated as [draw win], at least a draw for
white. Black abandons the first variation upon realizing it
cannot succeed at its aim of achieving a "loss". White's
strategy of attacking the black pawn from the other side is
fairly reasonable, but fails. The last variation, which black
uses to select his move, is good play for both sides.

Feasibility and interruption

In many positions the calculations can also determine
when simple strategies will fail. We call this the use of
calculations for feasibility testing. Feasibility testing is an
important means for reduction of search in the endings we
have seen. In the design of the program we found that
feasibility testing interacts badly with careless reliance on
interruption of strategies by higher-ranked strategies.

The problem is that when a strategy may be interrupted
in unspecified ways by unspecified other strategies, it is

impossible to reject in advance any moves it might
generate. This is the problem referred to in the
description of Example 3.

Since feasibility testing is so useful, the wuse of
interruptions has been modified to make allowed
interruptions explicit in the representation of each
strategy. This has required better understanding of the
situations where we had relied on interruption of
strategies before.

The fact that we need to eliminate arbitrary
interruptions does not mean eliminating searching. It only
means that arbitrary interruptions cannot be implicitly
allowed in all strategies. It is not necessary in all
strategies. To solve more difficult problems with limited
search will require the ability to automatically generate
strategies in which limited and specified types of

interruptions are allowed.

Problem-Sol viriK-1

125

More representation issues

A view of the kpk endings

We now turn to a large view of the king and pawn
versus king endings. EG's behavior in playing out an
ending can he viewed through an analogy to navigation,
f G has a pretty good idea of which way to go at any given
point, but is still subject to error. To avoid error, it has
memorized a number of landmarks in the area, and it
corrects itself by watching for them. That is, it backtracks
when a clearly wrong landmark is reached and stops
searching when a satisfactory one is found. (The analogy
works best when EG is playing the side which succeeds in
the ending.) A "landmark" a position meeting the
conditions for one of the static evaluation rules. Figure 1
is a "map" which portrays something of how EG interacts
with its environment in the king and pawn versus king
endings.

is

Each node in the graph represents an informally defined
(lass of positions, each associated with a few related types
of landmarks, i.e. known patterns or types of positions. We
give either a verbal description of the main kind of pattern
or a generalized description of the set of patterns
associated with each node. (There are really a number of
additional types of known positions which cover special
cases, especially where the basic rules would give
incorrect information. These are left out to keep the
figure simple.) EG may start a search from a position not
belonging to any node and search may pass through
positions belonging to no node while navigating from one
node to another. The nodes also mostly have self-loops
which are not shown.

D)o
“\
©

Figure 1: States of King and Pawn vs King Endings

Descriptions of nodes:

A: Positions where white has the win and the white king
can deny the black king access to the squares of the
file of the pawn which are in front of the pawn.

black has

Positions where white has the win but

access to the file of the pawn.

C: Positions where the pawn has been safely promoted.

D: Positions where the pawn is safe, but no win is

PfirHue

possible with correct sides.

Example 6.)

play by both (See

E: Stalemated positions.
F: Special case positions with the white King on the sixth

rank, as in Example 5.

Example D

i o
e e
s -
o £ ’

A 7 Lo
A, "
A b

Black to move

The clashed arrows represent transitions corresponding
to blunders a tyro might make because of unfamiliarity
with these endings. He might also fail to get the most out
of a position not belonging to a node.

The existence of this graph model of the king and pawn
versus king ending problem was not assumed during the
development of the program. The graph does not
coi respond directly to any structure in the program. It
does summarize some things nicely.

Making progress

For example, notice that the search does not terminate
only at positions known to be better than the initial
position. A variation is considered satisfactory if it leads

to a position as good as can be expected to result from the
root node. It would appear that EG should have trouble
with "endless" looping. It could loop among positions in a
node or among nodes. Mow does it know how to make
progress? The answer at present is that the search is
sufficiently well-directed that the issue doesn't occur. This
has been somewhat surprising to us, and we have
considered ways of giving EG "a better sense of direction".
More on this later.

Putting up resistance

Game-playing programs sometimes exhibit quirks of
behavior when choosing between moves of nearly equal
value. Behavior may look particularly strange when a
program is choosing between bad alternatives where the

Problem-Solv In*-1:

k26

loss comes immediately with one and sometime later with
the other. As described so far EG would choose arbitrarily
between any two variations leading to equal degrees of
failure for it. Where one way of failing is complex and the
other is immediate and simple, the result may look foolish.
Tor example, in some king and pawn versus king positions
white might unnecessarily abandon the pawn. If the
position weren't winnable, white wouldn't care whether he
had the pawn or not.

To try to prevent this problem, one might add some
slight credit to failing variations where the failure is
recognized deeper in the tree or create a measure of the
complexity of the search that must be performed to
determine that the variation fails. We have responded by
distinguishing individual positions from one another, rather
than looking at search depth or complexity. This s
convenient for us because we can use the evaluation rules
that already exist. We have been able to express our
subjective preferences successfully by this method.

In the king and pawn versus king endings we
differentiate positions where black can force white to show
a little understanding of the ending by using the opposition
properly and those where the question will not come up.
We also distinguish between the utterly dead draws and
positions where white retains his pawn and can force black
to play correctly for the stalemate.

Making
searching.

these fine distinctions can lead to problems with

The search looks for "the best move", and this
can lead to substantial amounts of searching to decide
which of two moves is slightly better than the other in a
situation where a truly better move has yet to be tried.

To resolve this problem we run the search in two
phases. In the first phase the search only concerns itself
with the major issues of winning and losing. If after the
first phase an issue of putting up resistance remains, the
search is extended (redone in fact) to decide that finer
point.

A paradox

There are situations in chess where making progress in

a winnable position is a significant problem, as in the
ending of bishop and knight against a lone king. A
program has been written which uses search to resolve

those problems (Hueberman, 1968). It deals strictly with
situations which are already known wins for one side, so
its representation is designed to keep track of progress.
Its static evaluation yields conservative minimum measures
of progress and the role of search is to select a move by
the side with the advantage which definitely leads to
progress despite resistance. Information ranking won
positions according to progress is quite appropriate, so it
appears we could encode this information on the existing

That ending is known to be winnable, yet it is thought
that the more unfavorable positions require over 30 moves
for the mate. See Averbakh and Maizelis, 1974.

Perdue

numeric preference scale much as is done with the
"resistance" information. But in a sense we cannot do this.
It is interesting to see that the preferences of black and
white cannot necessarily be represented on a single linear
scale. Consider the positions in class F such as Example 6:

Example B:

s

How does each side compare the value of this situation
with the same position one or two squares further
advanced, e.g. pawn at QB5? We believe that white
prefers the position with the more advanced pawn if he
has any hope that black may blunder. Black's opinion may
not be quite as clear. Let us suppose that his preferences
are expressed on the same scale as white's. If this is true
he must prefer the less advanced position.

Thus if two strategies are tried, both maintain the draw,
and one ends with the pawn less advanced than in the

other, black will choose the one with the less advanced
pawn. We see no reason why black should behave this
way. If he has confidence in his understanding of the

situation he has nothing to gain by delaying -- he will
lengthen the time it takes him to reach his objective with
no other effect. We feel that black at least must not
prefer to slow down the game in such a situation, so his
preferences are not the inverse of white's.

The situation makes sense if the players have models of
each other. We are assuming that white has assigned black
a nonzero probability of failing to find the stalemate.
Black, we are assuming, does not do so.

The form of rules in EG

The form taken by rules of EG has proved a success.
Calls on complicated functions are allowed, notably those
described in the section on calculations, so it would be
difficult to determine in any definite way the absolute
power of the rules. Nevertheless, we can talk about the
power of the rules relative to the functions they call. The
rules have proved generally comfortable to use and
powerful enough for our purposes.

Problem-Solving-1:

uz27

The rules are interpreted directly by LISP, but we
restrict ourselves to a subset of the control structure and
almost bar side effects entirely. Side effects are limited to
use for the purpose of wuser-specified elimination of
common subexpressions. The control structure consists of
conditionals, mapping functions, find quantification over
lists.

The mapping functions are the standard MAPCAR and
MAPCAN functions. Treating lists as sets, they allow the
calculation of images of sets under transformations, unions
over sels of sets, and selection of subsets containing
elements with specified properties. The existential
quantifier is extended to indicate an element of the list
having the property if such an element exists. There is
also a universal quantifier. We do sometimes sort elements
of a list and pick the best with some property, but this
could be simulated with the other operations, although
inefficiently. We rarely do violate the rules.

These operations with the booleans and "primitive"
functions (and predicates) effectively give us the basic
operations of set theory for finite sets, implemented as
lists. This seems to be a very natural form in which to
stale rules and create lists of things like strategies, and it
is powerful enough to be used.

References

Averbakh, Y. and Maizelis, I,
Digest, Inc., 1974.

Pawn Endmgs, Chess

Berliner, H. J., Chess as Problem Solving, Doctoral Thesis,
Carnegie-Mellon University, 1974.

Botvinnik, M., Ccimj*yJerSj Chess, arid

Planning, Springer-Verlag, 1970.

Long Range

Hueberman, B., "A Program to Play Chess Endgames",
Technical Report CS-106, August 1968, Stanford
University, 1968.

Newborn, M., "PEASANT: An Endgame Program for Kings

and Pawns", in P. Frey, ed., Chrjss Skill in Man and
MA*hine, Springer-Verlag, 1977.
Nilsson, N. J., Problem-Solving Methods in Artificial

LntcilJRence, McGraw-Hill, 1971.

Pople, H. E., , "A Goal-Oriented Language for the
Computer", in Representation and Meaning, H. A. Simon
and L. Siklossy eds., Prentice-Hall, Inc., 1972.

Y For a much more ambitious implementation of a related
idea, see (Pople, 1972).

Perduo

