Experiences in Evaluation with BKG -
A Program that plays Backgammon 1

Hans Berliner
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213

ABSTRACT

Because of very high branching factors,
program must rely on knowledge rather than search for
performance. We here discuss insights gained about
the structure of evaluation functions for a large domain
such as backgammon. Evaluation began as a single linear
polynomial of backgammon features. Later, we introduced
Mate-classes, each with its own evaluation function. This

a backgammon

improved the play, but caused problems with
odge-effects between state-classes. Our latest effort
uses models of position potential to select across the
set of best members of each represented state-class.
"This has produced a significant jump in performance of
BKG.

Because of the localization of knowledge,
permit relatively easy modification
evaluation.
models

opponent

state-classes

of knowledge used in

They also permit the building of opponent

based upon what evidence shows the
knows in each state-class.

Our program plays a generally competent game at an
intermediate level of skill. It correctly solves a high
percentage of intermediate level problems in books.

I. Why Yet Another Game?

Backgammon is a game of skill and chance. It is an
interesting object of study for Al because in any given
position (of with there are 107° [Le76]), there are 21
possible combinations that the throw of two dice can
produce. Each of these, can be played legally in the
average board position about 40 different ways (
about 17 in actual game positions). Thus if one were to
investigate a backgammon position by tree searching, it
would be necessary to deal with a branching factor of
more than 800 (!) at every node. Clearly this is
completely impractical. Therefore backgammon must be
approached with evaluation and knowledge in mind.
Position Pi will have to preferred over position P2
because it has features that more endear it to the player
who can produce it than the features that obtain in P2.

In a game such as chess, it has been customary to
search very large trees of 5000 to 2 million terminal
nodes. In such a paradigm, the execution of a terminal

evaluation function
which must then

requires a certain amount of time,
be multiplied by the expected number

of terminal nodes in the search. Thus designers of
chess programs are very circumspect in creating
Tins work was supported by the Advanced Research

Projects Agency of the Office of the Secretary of Defense
(contract F44620-73-C-0074) and is monitored by the Air
Force Office of Scientific Research.

Prohl f»n-Sol v Jor 1

428

evaluation functions which require lengthy execution
times. For this reason certain features that are not
trivial to compute are wusually left out, so that the
program may operate faster and search more. Since
there can be little or no searching in a practical
backgammon program, these contingencies will not apply.
On the contrary, it is desirable to apply all possible
knowledge to successor positions of the root node, in an
attempt to find the best next move. Further, the fact

that modern backgammon involves doubling places an
even greater emphasis on the use of knowledge, since it
requires an understanding of a position (not just the
ability to discriminate the best move) to know when to
double and when to accept or refuse.

I1. the Structure of BKG

BKG is an interactive program. For a given roll of the
dice, it generates a list of all possible legal plays. If it is
the program's turn to play, it serves these potential
plays up one at a time to the evaluation procedure. It
then selects the best. |If it is a human opponents's turn
to play, it waits to receive a legal play from its
environment.

BKG now plays a completely legal game of backgammon. It
is capable of doubling and accepting or refusing doubles

at all times. It will also resign positions in which there is
no possibilty of winning, and accept resignations when
there is no possibility of it winning a gammon.

IIl. Some Evaluation Terms

In versions of BKG up to the end of 1976, a linear
polynomial of backgammon features was used to

produce evaluations in positions where the two sides
were still engaged. This polynomial derived most of its
strength from excellent recognition of blot danger (the
danger of a man being hit by the opponent on his next
roll), and blockading factor (the ability to keep
opponent's men bottled up). Both these calculations
went through a considerable history of experimentation

which is described in [Be77]. Below, we briefly
describe their current form. When the sides are
disengaged, a running game calculation is performed

since capturing and blocking are no longer possible.
A. Blot danger calculation

Our procedure considers all
potential hitters and blots. It finds the optimal way to
play every potential roll so as to hit the greatests
number of blots or point on a blot. If only one blot can
be hit, it calculates hitting the most advanced one. Thus
it can decide for any position what the probability is of
having one or more men hit, and what the expected
loss of pips in being hit is. This information is basic to
understanding the risk of any potential play.

hitting relations between

B. Blockading Factor

A blockade consists of a set of points
side, which prevent an opposing man from having access
to those points. Clearly, such points can have a great
effect on the opponent's movements, and their location is
of great importance.

"made" by one

Be*r 1 \ner

We note that since there are only 15 men on a side, it is
impossible to have more than 7 blockading points. For
each combination of zero to seven blockading points at a
distance of 1 to 12 spaces in front of a man, we
computed the number of rolls that could legally be
played by the blockade runner. This number was put
into a table associated with the blockading pattern. This
allows quick lookup of the degree to which each man is
blockaded.

C. The Running Game

BKG has been doubling and accepting doubles in the
running game almost since its inception. There has been
much published on when to double and accept in the
running game phase of backgammon [Ke75, Th75,
7ar77]. We have tried to follow this advice in
structuring algorithms for deciding who is winning and
by how much. This has resulted in quite good
performance by the program, even in situations where
the decision is close.

To support decision making during the bearing off
phase, BKG has extensive tables which give the
probability for a given position of one side, of bearing
off all men in 1,2,-- 8 rolls and the expected number of
rolls (ENR) to bear all men off. The tables cover all
situations for up to and including 8 men in the home

board, and up to and including 25 pips worth of men in
the home board.

The use of the tables in move selection is simple. BKG
moves to the position with the lowest ENR. There are
two exceptions to this case; that is when it is far behind
or far enough ahead to have a chance of winning a
gammon. In the former case, it moves to the position
which has the greatest probability of bearing all men off
in the number of rolls that are expected for the
opponent to get off. When it is far ahead, it moves to the
position which gives it the greatest chance of bearing all
men off in the number of rolls it expects to have before
the opponent gets his first man off.

for doubling and accepting doubles the situation is more
intricate. Whenever, BKG can legally double during this
phase, or when it has been doubled, it executes a win
probability calculation. If the positions of both sides
can be looked up in the tables, then BKG can calculate

the exact probability of the side on move winning
by itteratively calculating the probability that the side
on move will get all its men off on this roll, and then
changing whose move it is, until the sum of the
probabilities - 1.0. If both positions cannot be looked
up, the win probability calculation is based on adjusted

pipcount of both sides, but this is notably less accurate
than the table lookup method, which performs
superlatively.

The power of the bear-off tables is very impressive.

To illustrate the type of thing BKG does to amaze
author, we show an example.

its

ProM*n-So1 v?nr;-I:

uo

123«’4553|“k?89181112

24 23 22 21 20 19 YMit* 18 17 16 15 14 13

Figure 1

In the bottom part of Figure 1, White is to play a 6,2.

The 6 must obviously be played from the 21 point. But
what is the correct way to play the 2? Almost every
human player would say 21-23. However, this is not
correct; 22-24 is better. The bear-off tables report the
respective ENR's to be 2.748 and 2.739. Upon
examination, it turns out that all sequences of future
tolls produce the same results in the two positions
except when one of the next two rolls is 1,1. If this
occurred, it would leave men on the 21 and 23 points
with the preferred play, which allows 6 additional

combinations of getting them both off on the next roll
over the other way of playing it.

The second example in the top part of Figure 1 has
similar features. Here Black is to play a 6,1. The 6 must
be played from the 4 point; the question is how to play

the 1. Again human players would automatically play
2-1, but this is incorrect. 3-2 is correct because of
future double 2"s. For these two examples it would seem
that the rule: "When there are a small odd number of
men on the board, play to maximize use of doubles"”
would seem to be the correct way for humans to
capture the knowledge that is contained in the tables.
This illustrates that at times precise calculation will
outdo good intuition.

IV. The Evaluation Process

In the first several years of development of BKG, we
used a linear polynomial to order states in the state-
space. This was fine while new and better terms were
being developed for the polynomial. However, once a
firm basis for detecting advantages and disadvantages
was established, it became apparent (as indeed the
research of Samuel [Sa63, Sa67] would indicate) that
such a polynomial would not serve. It was possible to tell

Berliner

BKG about the general utility of any feature, but not
enough about the utility of the feature in specific
circumstances.

Therefore, we began partitioning the state-space into
state-classes. The issues associated with state-classes
are these: We assume that it is possible to partition alt
states in the state-space into mutually exclusive state-
classes. This is not difficult and can be
accomplished by merely having recognizers for a set of
state-classes, invoking these recognizers in a canonical
order, and putting all not-recognized states into a
grab-bag class. We further assume that within a state-
class, a linear polynomial function exists which can order
the members of this class according to goodness. It is
apparent that this is true in the limit, when there is a
state-class for each state; however, the degree to which
this is possible when there are a large number of
members in a given class is not clear. In practice it is
possible to get very good (if not perfect) orderings, and
to split a state-class when the ordering procedure
becomes too complex.

This approach produced a significant improvement, but
also brought some additional problems to the forefront.
Whenever it was normal to progress from one state-class
to another, but such a transition required the program
to submit to temporary danger, it would not do so unless
there was no safe alternative. With this organization as
with earlier ones, BKG was unwilling to take any
unforced risk, since it had no understanding of the
advantages that could be accrued if the risk succeeded,
but did understand the dangers of the risk. Another
cause of vacillation comes up when a reshaping of the
advantage is required in the transition. This can occur
when the new state-class does not value highly what is
valued highly in the old state-class. An example of this
would be reluctance to give up containment of enemy
men in order to make a transition to a superior running
game position. This type of problem occurs in chess too.

To correct the above problems within the framework
of the linear polynomial, it would be necessary to
pinpoint where postponing the taking of the risk could
no longer be justified, or when a certain advantage had
outlived its usefullness.

We tried to overcome these problems by having some
functions which were invoked only when a change of
state-class occured. This type of recognition produces
in effect a different state-class for two identical
positions, given that one is reached from a member of
the same state-class and the other not. We found this
to be a very difficult method of doing business that did
not look anything like a long term solution to the
problem.

The purpose of having state-classes was to get away
from the purely linear relations among terms in the
evaluation function. This way we could emphasize
certain features that would have a strong impact on
future situations derivable from the current state-class.
Such features include the stability (likelihood of being hit
in the case of backgammon) of the state, and measures of
the degree of difficulty in making further progress.
Usually, the side that is closest to winning will want

more stable positions, and the side that is closest to
losing more unstable ones. However, this is not always
the case. The side that has a slightly better position
may want to introduce some instability in the hope it will
result in an even more favorable position (or even
won), while risking losing the advantage or possibly
getting slightly the worse of it. This kind of decision is
very difficult to program, unless the terms in the
evaluation function interact with one another.
However, the edge-effect situation between state-
classes became extremely difficult to overcome.

Actually, notions such as progress and risk are crutches
that are not needed when a universal measure of
goodness such as expectation exists, as it does in
backgammon. Thus we should always move to the state
with the greatest expectation, and state-classes are not
needed at all. However, this is only in a system with
perfect knowledge. When there is imperfect knowledge,
such crutches appear necessary.

Therefore, our present system attempts to overcome
edge-effects in the following way: For each applicable
state-class, the best member is chosen by the linear
polynomial for that state-class. Then we compute the
expectation associated with each selected state-class
representative, and choose the one with the highest
expectation as the actual move. This has the advantage of
applying the linear polynomial of a state-class to select
the play with best local features, and then letting
procedures with more global knowledge select the best
across state-classes. The difficult part of this is to be
able to compute the expectation in complicated positions.
In Figure 2 below, we show how this can be done for
a moderately difficult example.

)
!gQ'!i
900

24 23 22 21 20 19 White 18 17 15 15 14 13

Figure 2

White is on move. The current state-class (I} is

Problem-Sol vinr,-1 Rerl Iner
430

characterized by the winning side being ahead in the
pipcount, having to cross exactly two more enemy points

with his most-back man, and having no hitable blots.
We can now imagine an evaluation function for this
class which would consider the position of the doubling

cube, the exact difference in the pipcount, the ease with
which the most-back man can be safely moved up, the
containment power of the losing side should he succeed
in hitting a blot, the time lost in entering such a hit blot,
and the number of pips that arc available to be played as
slack before any of these values are materially
changed. This function would compute the expectation of
White. Such a function could be derived either by
analytie means or by actual simulation of positions in
the class to find out how each of the above variables

affected the expectation of White. Further, such a
function could be tuned as experience is accumulated.
Let us assume that such a function exists and

predicted that in the situation of Figure 2 White should
win 667 of the time, win a gammon 27 of the time, lose
30/ of the time and lose a gammon 27 of the time, for a
net expectation for White of +.36.

Now from this position it is possible to move to four
state classes: the present one (class), an unstable
state-class where White has two points to cross, but
has a blot in danger of being hit (class IlI), an unstable
class where White has only one more point left to cross

(class 1V), and a stable class where White has only one
point left to cross (class |Ill). Further, if a blot is
hit in state-classes Il or IV, we have another state-
class (V) in which White has a man on the bar which
must enter in front of Black's blocking position. For

each of these state-classes an evaluation function will be
able to calculate the expectation.

White's win probability, W, in a state where he is to move
is the SUM i**l to n (TAW,-) where T. is the probability of
transiting to state i on the play by playing it optimally,
and Wy is the probability of winning once state i is
reached. |If it is Black to play, White's win probability
can be computed in a like manner. This method can be
used to decide between plays that result in differing
state classes even though one class may be unstable and
the other not. We illustrate by an example.

Let PH denote the probability of a blot being hit on the
next roll. Let W'j be the probability of winning in state-
class i if the losing side is on move. Further, assume W2 =
.85, Ws- - .92, and W4 .-.92. Then:

WX -+ PH * W5 + (1-PH) * W,, and

W', - PH * Ws + (1-PH) * W4,

To get W5 we must compute
escaping over the blockade on
he will be doubled and will have to resign. If he does
escape, he has about an even chance in the resulting
position. These constants should make clear the
computation below. It should be noted that when W for a
side that is on roll and can double is £ .75 (i.e. his
expectation > .50) he can double and force his
opponent's resignation. Thus such terms should be
ignored as their value drops to 0. This is true for
instance of the term dealing with the situation where
White is hit and contained.

the probability of White
his next roll, as otherwise

Problem-Solving

431

Wo now use this method to decide how to play a
difficult roll, 6-1, in Figure 2. There are basically two
plays: run one man from the 12 point resulting in a
position of class IlI, or play both men from the 18 point

remaining in class |. For the first play:

W- (1 -PH)*W, + PH*W;
- 20/36 * .85 + 16/36 * 2/36 *.5 - 48
For the second play, there are 5 rolls which result in
transition to state-class Il (2-2, 3-3, 4-4, 5-5, 6-6), 2
rolls that result in a class |l position (6-2), 8 rolls that
result in class IV positions (6-1, 6-3, 6-4, 6-5), and 21
rolls that result in remaining in state-class |. The
appropriate computation is: (note that Wj has dropped
to .55 since White reduced his chances of bringing up
his most-back man safely)
U~ (21 * .55
+ 8% (16/36 *
f 5 * .92
+ 2« (23/36 * 2/36 *.5 + 13/36 *.75))
/36 - 20.61 / 36 * .57

(1
(1)
(1)
(1v)

2/36 *.5 + 20/36 v< .85)

Therefore, it can be seen that it is better to make play
two. It should be noted that as the probability of
containing a hit man varies with Black's defensive
formation, this calculation will also vary accordingly. The
Wj- "s we have given above are very crude and probably

off by a considerable amount. However, the main purpose
of this exercise was expository. As of this writing,
we have implemented somewhat as sketched the

state-class computations required for the above example.
BKG now plays all rolls involving 6's correctly.

The method we have described above can be used for
deciding the very important problem of when to move to
a state that is in a state-class different from the one we
are currently in. However, the whole method assumes
that an evaluation function exists for each state-
class which properly orders its members, and that
reasonable expectations can be produced across state-
classes. At the moment we have confidence in the first
part of this procedure, and the second part has been
coming along extremely well.

We would still like to comment on how such
can be improved in the face of error. For each
state-class there are new state-classes that can be
reached in one optimal play for each side without a
capture being made. We call these classes forward with
respect to the original class. Likewise, there are new
classes that can be reached from the current class in
one optimal play by each side, when there has been at
least one capture of a man. We call these classes
hack-ward with respect to the original class.

a system

It is possible to start with a class for which we have
excellent expectation data, ie. the class of bearing off
positions that can be looked up in our tables (class B).
Next, we consider all classes for which <class B s
forward, and improve the evaluation function for those
classes, tuning the coefficents of existing terms and
adding new ones as required. This will improve these
evaluation functions. We also note all classes that are

*1: Rerl lnpr

backward to this class, and put them on a list together
with the name of the current class. We can continue
this process indefinitely, but painfully until every class
has been encountered. Whenever the evaluation
function of a class that is on the backward list is
improved, we go back and modify all the evaluation
functions of the affected classes. We can thoh
continue our process or go back to one of the classes
whose function has just been modified and start anew
from there. It is clear that this is a converging
procedure. It would probably be necessary to
eventually automate this proceedure, if for no other
reason than that eventually the evaluation functions
would become so good that they would do a better job
of ordering members of a class than the experimenter
would. Such automation except for the introduction of
new terms has been previously done by Samuel [Sa63]
for checkers. It would appear likely that for a game
such as backgammon, it would be possible to get a
selection of terms such that no new ones will ever be
required. Then it will be merely a matter of tuning old
evalution functions, and occasionally trying a new (but
known) term to see if it can improve prediction.

BKG has a simulation facility which can be useful in
acquiring the above data. We can ask BKG to play both
sides repeatedly any number of times. It will play as it
ordinarily does; doubling and accepting when
appropriate. BKG plays all running game positions and
those where one side is bearing off, with one or fewer
points to cross, nearly perfectly. Data from simulations
can then be used to determine the expectation for the
winning side as a function of various parameters of
the original state. We have now done this for
representative states of some of the simpler state-
classes and used the data for fitting curves of
critical variables to the statistically expected
outcome. The equations derived appear reasonable,
and are working out quite well in practice.

As data are collected and the evaluation functions
improve, two things become possible. It is possible to
keep track of how the prediction works out for the
program's own play, which can be used as an indicator of
which functions need to be tuned next. It is also
possible to keep track of individual opponent's results
nnd come to the conclusion that they don't appraise
certain state-classes correctly, and use this information
in future games.

V. Testing of BKG

When testing BKG (we refer now to the version before
the expectation models were put in) on typical beginners
books, it gets the right answer in excess of 707 of the
time. A much better appraisal of the program can be
obtained by analyzing its successes and failures on
more difficult tasks. For this we chose, the problems in
a very fine intermediate level book [Ho74]. There are
74 doable problems in this book (alt the time of these
experiments, BKG could not do problems involving
doubling decisions before disengagement). We have
classified the problems according to the major
knowledge required to get the right answer. This is a
rather arbitrary way of looking at things, but it is
helpful in trying to understand the strengths and lacks

Prohlem-Solving,-I:

in the program. We divided the problems into seven
categories:

1) General positional,

2) Running game: bearoff,

3) Engaged: bearoff,

4) Back game (this a special defensive posture),

5) Timing (this involves advantages that presently exist
going away because one side or the other must destroy
his position),

6) Defensive plays,

7) Advanced defensive plays (including the return play).

We followed the practice in
giving BKG part credit for answers that were not
perfectly correct but showed it understood the main
point of the problem, although the execution was not
perfect. We also deducted part credit when it got the
correct answer without understanding what the main
problem was. Table | below shows the results of the
tests.

scoring the results of

TABLE |- Tests of BKG on "Better Backgammon"

Position Class Number Right Wrong % Right
Posi tional 28 18.75 9.25 67
Running Bearoff 5 5 0 100
Fngaged Bearoff 11 2 9 22
Back Game 8 3.25 4.75 41
Timing 13 4 9 31
Advanced Defense G 0.5 5.5 6
De fense 3 1 2 33
TOTAL 74 34.5 39.5 47

In evaluating these results, several things should be
noted. The subject matter is relatively advanced, and
would for the most part come up in only one of 20 or
more games. There are wusually on the order of three
plausible answers to a problem. BKG is good enough in
almost every case to know what these are; thus
attaining a score of 337. or less could be regarded more
or less as the result of chance. We can see that BKG is
extremely good in running game play. Also it has a good
understanding of the relative positional advantages.
However, its performance in other intermediate level
aspects of the game is at best mediocre. It has
heuristics to help it do bearing off while still
engaged, but these are for run-of-the-mill situations,
not for the more sophisticated ones in the test set. It
has no specific understanding of the back game. Since
the objectives in the back game are rather different
than anything else in backgammon, it will be
necessary to implement a specific set of state-classes
which recognize back-game potential and how to maintain
and destroy it. The problem of timing is one that will be
resolved soon. Essentially, this requires having a
measure of how many men are presently bound to
essential roles in the current evaluation, and how many
pips are available to be played by the remaining men
before the important men will have to be moved. BKG's
main knowledge of defense consists of its blot hitting
knowledge. It does not understand the concept of
coverage, i.e. controlling points on which an opponent's

Berliner

blot may land in the next roll or two. It does not
understand that at times it may be beneficial to expose
a blot in dire circumstances or to make the "return”
play. Thus this series of tests has pinpointed some
specific knowledge that BKG lacks and that is not
subsumed in its present knowledge base.

It is encouraging to note that even though we have just
begun implementing the expectation models, BKG now
gets correct 9 of the above set that it formerly got
wrong.

REFERENCES

[Be77], Berliner, H. J., "BKG-- A Program that plays
Backgammon", Computer Science Dept.,
Carnegie-Mellon Univ., Pittsburgh, Pa., July,
1977.

[Ho74], Holland, Tim, "Better Backgammon", Reiss Games*
Inc., New York, 1974.

[K*?7b], Keeler, E., and Spencer, J., "Optimal Doubling in
Backgammon", Operations Research, Vol. 23, No.
6, Nov.- Dec, 1975, pp. 1063-1071.

[l e76], Levner, David, "Is Brute Force Backgammon
Possible?", SICART Newsletter 58, June 1976,
p. 20.

[Sa63], Samuel, A. L., "Some Studies in Machine Learning
Using the Game of Checkers", in Computers
and Thought, (Eeigenbaum, E. A. and Feldman,
J., Eds.), pp. 71-105, McGraw-Hill, 1963.

[Sa67], Samuel, A. I|., "Some Studies in Machine Learning
Using the Game of Checkers, Il - Recent
Progress", 1BM Journal of Research and

Development, Nov. 1967, pp. 601-617.

[Th75], Thorpe, Edward 0., "Backgammon: Part I, The
Optimal Strategy for the Pure Running Game",
Presented at the Second Annual Conference
on Gambling, Nevada, June 1975.

[Za77], Zadeh, N., and Kobliska, G., "On Optimal Doubling in

Backgammon", Management Science, Vol. 23, No.
8 April, 1977, pp. 853-858.

Problem-Solvi

ng
433

Berliner

