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Abstract 
We seek here to determine the exact quantitative 

d e p e n d e n c e of per formance of best - f i rs t search (i.e., A* 
a lgo r i t hm) on the amount of error in the heuristic 
f unc t i on ' s est imates of distance to the goal. Comparative 
p e r f o r m a n c e measurements for three families of heuristics 
for the 8 -puzz le suggest general conjectures that may also 
ho ld fo r more complex best - f i rs t search systems. As an 
examp le , the con jectures are applied to the coding pnase 
of the PSI p rog ram synthesis system. A new worst case 
cost analys is of uni form trees reveals an exceedingly 
s imple genera l formula relat ing cost to relat ive error . The 
analy t ic model is realistic enough to permit reasonably 
accura te per fo rmance predict ions for an 8-puzzle heuristic. 
The analyt ic resul ts also sharpen the distinction between 
"Knowledge i tse l f " and the "Knowledge engine itself". 

One has the sense that the men who 
conceived these high buildings [Gothic 
cathedrals ] were intoxicated by their 
new- found command of the force in the 
stone. How else could they have 
proposed to build vaults of 125 feet 
and 150 feet at a time when they could 
not calculate any of the stresses? 

J. Bronowski , The Ascent of Man 

Introduction 

Bui ld ing speech understanding systems or other 
e x p e r t p rob lem solv ing systems can be liKened to medieval 
ca thed ra l bu i ld ing : it can be done but it is by no means 
easy to do so. This paper attempts to show how some 
p e r f o r m a n c e measurement experiments wi th the 8-puzzle 
and some mathematics of t ree search can hope to ease the 
b u r d e n a- l i t t l e , as civi l engineer ing has done for cathedral 
bu i l de rs . 

Some of the di f f icul t ies in building such systems 
ar ise f rom an inabi l i ty to predict performance a pr ior i , to 
"ca lcu la te the s t resses" , so to speak. Suppose it's design 
dec is ion t ime for such a system: Which will give bet ter 
p e r f o r m a n c e , heur is t ic A or heuristic B? Debate is 
somet imes avoided by using both in a mult i - term evaluation 
f unc t i on , if this sys tem uses an evaluation function of some 
sor t to guide behavior . But performance depends on how 
much we igh t each term is given. The choice of the scalar 
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we igh t values remains largely a matter of educated 
g n o s e s combined w i th tr ial and er ror [^.g., Hayes-Roth & 
Lesser 77 ] . These predic t ion questions -- which is better? 
what we igh t i ng value? — const i tute the focus of the 
e x p e r i m e n t s and the analysis repor ted belcw. 

It is a ce r ta in ty that in the fu ture we wil l understand 
more of AI more mathematically than today. But if we 
somehow succeed in developing an exact mathematical 
model of the HEARSAY-II system [Hayes-Roth & Lesser 77] , 
say, comple te w i th formulas to predict performance 
quan t i t a t i ve l y under the most diverse parameter sett ings, 
w i l l such a theo ry say anything at all about the HWIM 
speech unders tand ing system [Woods 76 ] , or about the F 51 
p r o g r a m synthes is system [Barstow 77, Barstow & Kant 
77 ] , or about a chemist ry synthesis program [Powers 75]? 
This wi l l be possible only if the theory captures a common 
denomina to r of these systems. The four systems mentioned 
use b e s t - f i r s t schedulers to decide what to do next. 

The A* algor i thm [Hart et.al. 68, Nilsson 71] 
embod ies the idea of a bes t - f i rs t search. In basic terms, 
y o u have a f in i te set of discrete options of what to do 
nex t , and each t ime you choose an action and do it, you get 
a new set of opt ions: the sti l l unchosen ones plus new 
ones gene ra ted by per forming the chosen action. If there 
is no obv ious way to total ly order these actions in advance 
(<md remember that some don't exist until you per form 
o the rs ) , then one approach is to assign a number to each 
ac t ion as it appears, according to how good you think it is 
to do that one, independent ly of any you may have done 
a l ready . Then i te ra t i ve ly choose the action that has the 
smal lest value (smallest is best). The A* algorithm [Hart 
et .a l . 68, Nilsson 71 ] operates on this principle, using an 
a r b i t r a r y o rde r i ng funct ion P(s) to solve problems like the 
8 - p u z z l e . The Graph Traverser and the HPA algorithm are 
essen t ia l l y the same as A* [Doran & Michie 66, Pohl 69] . 

The 8 -puzz le [Schofield 67 ] is a one-person game 
the ob jec t i ve of which is to rearrange a given 
c o n f i g u r a t i o n of 8 t i les on a 3x3 board into another given 
con f i gu ra t i on by i tera t ive ly sliding a tile into the 
o r t h o g o n a l l y adjacent empty location, like so: 

This p rob lem can be modeled exactly as a col lection 



of po in ts (conf igurat ions) and lines connecting them 
(moves) , i.e., as a graph. Since some problems differ only in 
that t hey are def ined by di f ferent graphs, we define a 
p r o b l e m to be a f in i te , sjnongly connected graph wi th no 
self- loops and no mult iple edges. (Throughout, underlining 
ind icates a formal def ini t ion.) Actually, the 8-puzzle graph 
is not s t r ong l y connected, but rather consists of two 
d i sconnec ted components ("can't get there from here"); for 
our pu rposes we consider one such component. The 8-
puzz le is an und i rec ted graph since every move has an 
i nve rse . 

The 8 -puzz le is to this work as the f ru i t f ly is to the 
gene t i c i s t : s imple, convenient to manipulate, yet exhibit ing 
i n t e r e s t i n g phenomena that hypothet ical ly hold for a 
b r o a d e r class of subjects. To approach a predict ive theory 
of heur is t i c search exper imental ly , we define search 
p e r f o r m a n c e funct ions (e.g., number of nodes expanded and 
l eng th of so lu t ion path found), measure their values 
e x p e r i m e n t a l l y over a range of realistic parameter values 
(e.g., as a func t ion of N, the distance to the goal, and of W, 
a w e i g h t i n g coef f ic ient in the evaluation function), look for 
p a t t e r n s in the data (e.g., cost grows (sub-)exponential ly 
w i t h N under cer ta in condit ions), and conjecture certain 
gene ra l re la t ions to hold (e.g., increasing W changes an 
exponen t i a l cost heurist ic into sub-exponential) . 

Cost, Quality and Error for 8-puzzle Heuristics 

Heurist ic search is supposed to be better than 
b r e a d t h - f i r s t search, but how much better? Do heuristics 
boat the "exponent ia l explos ion" that besets breadth- f i rs t 
search? Figure 1 shows the number of nodes expanded as 
a f unc t i on of the dep th of the goal for three part icular 
heur i s t i cs for the 8-puzz le . The qualitative di f ference 
b e t w e e n Kg and the other two is of particular interest: 
cou ld th is have been predic ted a priori? This work di f fers 
f r o m p rev ious exper iments [Doran & Michie 66, Michie 67, 
Doran 68 , Michie & Ross 70 ] in: a) volume of data collected, 
g i v ing stat is t ica l signif icance over a large range of 
pa rame te r values; b) measures of the er ror in the 
heur i s t i cs themselves; c) d i f ferent measures of internal 
behav io r . A few def in i t ions are required to make Figure 1 
mean ing fu l . (Note: what we call K, [Hart et.al. 68 ] ca l l l v ) 

Fach possib le choice of initial node s_r and goal node 
s of a p rob lem graph defines a distinct problem instance 
[$riJipl* hence a g raph G having V nodes induces a set U(G) 
of V^ p rob lem instances. The minimum distance m \he_ 
£I_aP.h b e t w e e n any two nodes sj and S: is always def ined 
s ince the g raph is s t rong ly connected, and is denoted 

This sect ion assumes that the A* evaluation funct ion 
takes the fo rm F(s) « R(S) + K(s), where g(s) is the distance 
of node s f rom the root node of the search tree. Note that 
K is a f unc t i on of two nodes of G (i.e., current and goal), 
but fo r s impl ic i ty we wr i te K(s) instead of K(s, sp ) when 
goal node s„ is implicit. A K funct ion estirrates the 
d is tance in the g raph f rom s to the goal node; informally, K 
conta ins the knowledge or information about the graph G 
ava i lab le to guide the search. 

For a g iven G, K, and (s r , s „ ) , the cost of search and 
the goodness of the solut ion found can be def ined, 
r e s p e c t i v e l y b y : X(G. K. s r . s , ) , the number of nodes 

e x p a n d e d be fo re search terminates, excluding the goal 
n o d r ; and P(G, K, s r , s . ) , the length pi the solution path 
foundKG. K. s r Sg.) - > ( G , K, s r> s r ) / h(s r t s c ) expresses 
so lu t i on qual i ty as a f rac t ion of \he_ minimal len^tt i cM a 
"•9! l lU°J2 path for an instance. So L > 1, w i th equality iff a 
minimal leng th so lut ion is found. (We wil l conveniently 
d r o p arguments f rom formulas when the argument is known 
impl ic i t ly . ) 

We wi l l consider three K functions for the 8-puzzle 
taken f rom the l i t e ra tu re [Doran & Michie 66, Nilsson 71] . 

K j ( s ) = the number of ti les that occupy a board 
locat ion in s d i f ferent f rom the location 
occupied by that ti le in the goal node 
c 

g' 
K 2 (s ) - the sum, over all 8 tiles in s, of the 

minimum number of moves required to 
move the ti le f rom its location in s to its 
des i red location in s p , assuming that no 
other ti les were blocking the way. 

K 3 (s ) « K2 (s) + 3 ■ seq(s), 
whe re seq(s) counts 0 if the non-central 
squares in s match those in s^ up to 
ro ta t ion about the board perimeter, and 
counts 2 for each tile not fol lowed by 
the same tile as in the goal node. 

For compar ison purposes we also measure the 
pe r fo rmance of KQ(S) * 0, which gives breadth- f i rs t search. 

What can be predicted about the performances of 
these th ree K funct ions for arb i t rary problem instances? 
L i t t le , beyond that L - 1 for Kj and K2 (by the A* 
admiss ib i l i ty theorem [Hart et.al. 68] , since 
Kj(c. j , s.) s h(r.j, s:) for all (s j t s.) and similarly for K2). 
Regard ing the X measure, formal theory [Hart et.al. 68, Pohl 
69 , Pohl 70, Nilsson 7 1 , Harris 74, Vanderbrug 76 ] tells us 
no th ing about these part icular heuristics for this particular 
p r o b l e m , not even that X(K2) is always less than X(K1). 
I n tu i t i ve l y , K3 may seem to be better than K2 [Nilsson 7 1 , 
p. 6 6 ] , but is this t rue always, sometimes, or never? Two 
example prob lem instances suffice to suggest that it is 
r i sky to guess on the basis of limited data (example on left 
f r o m [Doran & Michie 66]) : 

X ___p_ x P_ 

K* 
92 18 
23 18 K* 

(s , s ) = 
(216 .So8 .753 , 123.804.765) 

16 11 
90 21 

(485.163.702, 368.405.172) 

Figure 1 shows the result of measuring X (by 
execu t i ng the search) for a set of 875 randomly chosen 
p r o b l e m instances of the 8-puzzle (of 1 0 8 possible 
instances) . The instances are grouped on the abscissa 
accord ing to the actual minimum distance h(s r , s g ) be tween 
in i t ia l node and goal node. For example, for N * 10 there 
are random 40 problem instances such that h(s r , Sg) = 10, 
and hence 40 measurements of values of X(K2 , s r , sg) . The 
mean of these 40 experimental ly measured values is 
p l o t t e d as XMEAN(K2 , 10). In general, the t rue value of 
XMEAN(G, K, N) is def ined to be the mean number of nodes 
o x p a n d e d usinR heuristic K over al[ ( s ^ ^ l in U(G) such 
that h ( s r , s g ) »» N. The vert ical bar measures twice the 
s t a n d a r d dev ia t ion of the sample XMEAN — a statistical 
measure of how accurately the experimental ly measured 
va lue of XMEAN approximates the t rue value of XMEAN. 
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This table expresses a guarantee: if a K function 
meets the specified condition, then its performance is no 
worse than that indicated above. 

Figure 15 illustrates schematically the distinction 
between the "Knowledge itself" (i.e., a lattice of heuristic 
functions) and the "Knowledge engine itself" (i.e., XWORST 

Problem-solving 



Theore t i ca l l y , the fact that performance is a funct ion 
of r e l a t i ve e r r o r ra ther than of absolute er ror would seem 
to mer i t care fu l thought . What makes relat ive er ror more 
special? The "l imits to g r o w t h " tabulated in the preceedling 
sec t ion are sober ing : A* must be given a very accurate 
heur is t i c in o rder to guarantee good performance \n the 
w o r s t case. What about average case? 

The symbol ic resu l t - -a mapping from a lattice of 
heur is t i c " e r r o r " funct ions to a lattice of performance 
f u n c t i o n s - - can serve as a def ini t ion for the (worst case) 
p e r f o r m a n c e capabi l i ty of the A* algorithm. The lattice 
r e p r e s e n t i n g heur ist ic functions exists independently of A*; 
it happens to be the domain of a particular funct ion we 
have cal led XWORST. In words, the "Knowledge itself" is 
d is t inc t f r o m the "Knowledge engine itself", for "Knowledge" 
in th is special sense. Hence a similar XWORST function can 
p e r h a p s be de r i ved , assuming as the "Knowledge engine" 
o r d e r e d d e p t h - f i r s t search or the B* algorithm [Berl iner 
7 6 ] ins tead of A*. If you give an engine more Knowledge, 
i.e., less e r r o r f u l knowledge, then it performs better. But 
some engines can do more than others (or do it faster) 
w i t h the Knowledge they are given. 

I g rea t fu l l y acKnowledge many f ru i t fu l discussions 
w i t h He rbe r t Simon regard ing this worK. 
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Figure 1. Number of nodes expanded v s . depth 
of goal fo r three 8-puzzle h e u r i s t i c s 
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