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Abstract
We seek here to determine the exact quantitative
dependence of performance of best-first search (i.e., A*
algorithm) on the amount of error in the heuristic

function's estimates of distance to the goal. Comparative
performance measurements for three families of heuristics
for the 8-puzzle suggest general conjectures that may also
hold for more complex best-first search systems. As an
example, the conjectures are applied to the coding pnase
of the PSI program synthesis system. A new worst case
cost analysis of wuniform trees reveals an exceedingly
simple general formula relating cost to relative error. The
analytic model is realistic enough to permit reasonably
accurate performance predictions for an 8-puzzle heuristic.
The analytic results also sharpen the distinction between
"Knowledge itself" and the "Knowledge engine itself".

One has the sense that the men who
conceived these high buildings [Gothic
cathedrals] were intoxicated by their
new-found command of the force in the
stone. How else could they have
proposed to build vaults of 125 feet
and 150 feet at a time when they could
not calculate any of the stresses?
J. Bronowski, The Ascent of Man

Introduction

Building speech understanding systems or other
expert problem solving systems can be liKened to medieval
cathedral building: it can be done but it is by no means
easy to do so. This paper attempts to show how some
performance measurement experiments with the 8-puzzle
and some mathematics of tree search can hope to ease the
burden a-little, as civil engineering has done for cathedral
builders.

Some of the difficulties in
arise from an

building such systems
inability to predict performance a priori, to

"calculate the stresses", so to speak. Suppose it's design
decision time for such a system: Which will give better
performance, heuristic A or heuristic B? Debate is

sometimes avoided by using both in a multi-term evaluation
function, if this system uses an evaluation function of some
sort to guide behavior. But performance depends on how
much weight each term is given. The choice of the scalar
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weight values remains largely a matter of educated
gnoses combined with trial and error [*.g., Hayes-Roth &
Lesser 77]. These prediction questions -- which is better?
what weighting value? — constitute the focus of the
experiments and the analysis reported belcw.

It is a certainty that in the future we will understand
more of Al more mathematically than today. But if we
somehow succeed in developing an exact mathematical
model of the HEARSAY-Il system [Hayes-Roth & Lesser 77],
say, complete with formulas to predict performance
quantitatively under the most diverse parameter settings,
will such a theory say anything at all about the HWIM
speech understanding system [Woods 76], or about the F 51
program synthesis system [Barstow 77, Barstow & Kant
77], or about a chemistry synthesis program [Powers 75]?
This will be possible only if the theory captures a common
denominator of these systems. The four systems mentioned
use best-first schedulers to decide what to do next.

The A* algorithm [Hart et.al. 68, Nilsson 71]
embodies the idea of a best-first search. In basic terms,
you have a finite set of discrete options of what to do
next, and each time you choose an action and do it, you get
a new set of options: the still unchosen ones plus new
ones generated by performing the chosen action. If there
is no obvious way to totally order these actions in advance
(<md remember that some don't exist until you perform
others), then one approach is to assign a number to each
action as it appears, according to how good you think it is
to do that one, independently of any you may have done

already. Then iteratively choose the action that has the
smallest value (smallest is best). The A* algorithm [Hart
et.al. 68, Nilsson 71] operates on this principle, using an

arbitrary ordering function P(s) to solve problems like the
8-puzzle. The Graph Traverser and the HPA algorithm are
essentially the same as A* [Doran & Michie 66, Pohl 69].

The 8-puzzle [Schofield 67] is a one-person game
the objective of which is to rearrange a given
configuration of 8 tiles on a 3x3 board into another given
configuration by iteratively sliding a tile into the
orthogonally adjacent empty location, like so:
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This problem can be modeled exactly as a collection
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of points (configurations) and lines connecting them
(moves), i.e., as a graph. Since some problems differ only in
that they are defined by different graphs, we define a
problem to be a finite, sjnongly connected graph with no
self- loops and no multiple edges. (Throughout, underlining
indicates a formal definition.) Actually, the 8-puzzle graph
is not strongly connected, but rather consists of two
disconnected components ("can't get there from here"); for
our purposes we consider one such component. The 8-
puzzle is an undirected graph since every move has an
inverse.

The 8-puzzle is to this work as the fruit fly is to the
geneticist: simple, convenient to manipulate, yet exhibiting
interesting phenomena that hypothetically hold for a
broader class of subjects. To approach a predictive theory
of heuristic search experimentally, we define search
performance functions (e.g., number of nodes expanded and
length of solution path found), measure their values
experimentally over a range of realistic parameter values
(e.g., as a function of N, the distance to the goal, and of W,
a weighting coefficient in the evaluation function), look for

patterns in the data (e.g., cost grows (sub-)exponentially
with N wunder certain conditions), and conjecture certain
general relations to hold (e.g., increasing W changes an

exponential cost heuristic into sub-exponential).
Cost, Quality and Error for 8-puzzle Heuristics

Heuristic search is supposed to be better than
breadth-first search, but how much better? Do heuristics
boat the "exponential explosion" that besets breadth-first
search? Figure 1 shows the number of nodes expanded as
a function of the depth of the goal for three particular
heuristics for the 8-puzzle. The qualitative difference
between Kg and the other two is of particular interest:
could this have been predicted a priori? This work differs
from previous experiments [Doran & Michie 66, Michie 67,
Doran 68, Michie & Ross 70] in: a) volume of data collected,
giving statistical significance over a large range of
parameter values; b) measures of the error in the
heuristics themselves; c) different measures of internal
behavior. A few definitions are required to make Figure 1
meaningful. (Note: what we call K, [Hart et.al. 68] calllv)

Fach possible choice of initial node s, and goal node
s of a problem graph defines a distinct problem instance
[$iJipI* hence a graph G having V nodes induces a set U(G)
of VA problem instances. The minimum distance m \he_
£1_*P.h between any two nodes sj and S: is always defined
since the graph is strongly connected, and is denoted

This section assumes that the A* evaluation function
takes the form E(s) « R(S) + K(s), where g(s) is the distance
of node s from the root node of the search tree. Note that
K is a function of two nodes of G (i.e., current and goal),
but for simplicity we write K(s) instead of K(s, s,) when
goal node s, is implicit. A K function estirrates the
distance in the graph from s to the goal node; informally, K
contains the knowledge or information about the graph G
available to guide the search.

For a given G, K, and (s, s,), the cost of search and

the goodness of the solution found can be defined,
respectively by: X(G. K. s,. s,), the number of nodes
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expanded before search terminates, excluding the goal
nodr; and P(G, K, s;, s.), the length pi the solution path
foundKG. K. sr Sg) ->(G, K, s> s¢) / h(s s;) expresses

solution quality as a fraction of \he_ minimal len*tti cM a
"91"y°J2 path for an instance. So L > 1, with equality iff a
minimal length solution is found. (We will conveniently
drop arguments from formulas when the argument is known
implicitly.)

We will consider three K functions for the 8-puzzle
taken from the literature [Doran & Michie 66, Nilsson 71].

Kj(s) = the number of tiles that occupy a board

location in s different from the location

occupied by that tile in the goal node
c

9
the sum, over all 8 tiles in s, of the

minimum number of moves required to
move the tile from its location in s to its
desired location in sy, assuming that no
other tiles were blocking the way.
Kz(s) + 3 m seq(s),
where seq(s) counts 0 if the non-central
squares in s match those in s up to
rotation about the board perimeter, and
counts 2 for each tile not followed by
the same tile as in the goal node.
For comparison purposes we also measure the
performance of KQ(S) * 0, which gives breadth-first search.
What can be predicted about the performances of

Ka(s) -

Ks(s) «

these three K functions for _arbitrary problem instances?
Little, beyond that L - 1 for Kj and K, (by the A*
admissibility theorem [Hart et.al. 68], since
Kj(c.j, s.) s h(r.j, s:) for all (sj;is.) and similarly for Kj).

Regarding the X measure, formal theory [Hart et.al. 68, Pohl
69, Pohl 70, Nilsson 71, Harris 74, Vanderbrug 76] tells us
nothing about these particular heuristics for this particular
problem, not even that X(K;) is always less than X(K1).
Intuitively, K3 may seem to be better than K, [Nilsson 71,
p. 66], but is this true always, sometimes, or never? Two
example problem instances suffice to suggest that it is
risky to guess on the basis of limited data (example on left
from [Doran & Michie 66]):

X _p x__ P
92 18 16 11
K~ 23 18 K* 90 21

(s.s )=

(216.S08.753, 123.804.765) (485.163.702, 368.405.172)
shows the result of
the search) for a set of 875 randomly chosen
problem instances of the 8-puzzle (of 108 possible
instances). The instances are grouped on the abscissa
according to the actual minimum distance h(s;, sq) between

initial node and goal node. For example, for N * 10 there

Figure 1
executing

measuring X (by

are random 40 problem instances such that h(s,, Sg) = 10,
and hence 40 measurements of values of X(Kz, s, sg). The
mean of these 40 experimentally measured values s

plotted as XMEAN(K,, 10). In general, the true value of
XMEAN(G, K, N) is defined to be the mean number of nodes

oxpanded usinR heuristic K over al[ (s**I| in U(G) such
that h(s:, sg) »» N. The vertical bar measures twice the

standard deviation of the sample XMEAN a statistical
measure of how accurately the experimentally measured
value of XMEAN approximates the true value of XMEAN.
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ihe lower dashed tine in figure | shows perfect search:
XMLAN(NY = N, if only solulion peth nodes are expanded.
The same sel of random problem instances is used for Kl,
Ko, and Kq, in this and all subsequent experiments. Octails
and additional experimental results are given in [Gasthnig
770

In the above experimenls, Ky always found minimal
tength  solution paths fie, L=1) for Nz9 with
LMEAN(Kg, N} 5 1.3 for larper N (LMEAN is defined in
terms of L as XMEAN is defined in lerms of X.) For human
subjects, 1.1 2 LMEAN 5 3.3 has been reported [Hayes
cial. 65, Doran & Michie 66).

The differences in performance among the heuristic
funttions resull from the diflerences in the values they
tompute, but what s the dependency? What in tacl are
the walues? Figures 2, 3, and 4 plot the range in a
heuristic’s estimates of distance to the poal vs. the actual
chntance to the goal. KMIN(G, K, i) 15 defined to be Lhe
minimum yalue of Kis, 5.} aver all node paits (5, 59} in
LKG) such that his,sgl =i  For example,
KMINK, 10} = & £ Kx(s) s KMAXTK,, 10) - 10 for il s
whose distance to the goal is 10. Each tigure represents
11,448 distinct observations of K(SI' s.) va his:, s,),
recolded during the same experiments as E(or ligure ll: the
™ noces are the peal nodes in the sampie set and the 54
are the nodes along the solution path,

Behaviar Measures

It is not obvious exactly how XMEAN and LMEAN
depend on KMIN and KMAX, but the clear superionty of Kq
1= compelling: what is A* doing differently in this case?
The foliowing experimenis (Fipures B-7) show interesting
1elations between external performance and two measures
of bhehavior during search: LEWG I(‘__s_r,iﬁ,_Q, the number
of nodes accurring at level i in the final search tree; and
RUNIG, K, 5, 55) the mean "run lenglh” of the search, ie,
ithe number of nodes expanded, divided by one plus the
numbier of "hops" that occur when the next node expanded
i< not a son of the las! node expanded. RUN = N for ophimal
search {no mistakes), and eguals about | for breadth-first
wearech,

Figure % shows LEVMEAN(K , N, i) for j = 1, 2, 3, and
a representative case N =20, Note that the maximum
valup of LEVMEAN(} occurs at about i » Nf2 = 10 for each
K:, and that LEVMEAN() is approximately symmetric about
thiz wvalue of i. (A partion of the K3 curve is cult off the
battom of this semi-log plol.) Observe for K| and K3 that
LEVMEAN(i} increases {and then decreases} approximately
cxponentially with i, in contrast, LEVMEAN() for Ky is
cistribuled more uniformiy with i, suggesting that uniform
distribulign of LEVMEAN() is correlated with sub-
cxponential XMEAN,

We refer to exponentially distributed LEVMEAN) as
"mid-cdepth bulge", quantified as foilows. For K|, the sum
ot LEVMEAN() for i = 1], 12, and 13 is hatt the sum of
LEVMEAN(} for all i. (Note that the latter value equals the
velue of XMEAN) We say then that the 507 LEVMEAN-
interval for K, is {11,13] Similarly, the 207 LEVMEAN-
interval for Ky is {B,18] Since [1,20] is the entire interval
{i.e., N » 20}, we define the BOZ LEVMEAN-intervai fraction
to be {13 - 11 + 1) /{20 -1 + 1} = .15 Similarly, the 907

LEVMEAN-interval fraction is (15 -8B+ 1) f20= 4. In
general let JF(p) dencle the value of the p LEVMEAN-
interval fraction. If LEVMEAN(i} were uniformly distributed
with i then IF{p} = p, Figure & plois IF{p} vs. p for p = .25,

B, .7h, and .9, for Ky, Kp, and K. Mid-depth bulge may be

measured by IF{p} - p, by which Ky and Ky ere easily
cistinguished from Kg. A possible scalar measure of mid-
depth bulge {MDB} is the mean value of IF{p) - p. For the
four values plotted for each K function in Figure & we have
MK ) = (26 - .05+ 5-.15+75-25+9-4)/4=
39 and MDB(K,) = .29 and MDB(Kg) = .06 Pending further
experiment and mathematical analysis, we lentatively
conjecture that XMEAN(G, K, N} is subexponential in N iff
MDB(K} < 15,

Figure 7 shows RUNMEAN(K, M) for i=1,2 3.
RUNMEAN{N} « N for small N becsusa these K functions are
oplimal or mearly 50 for small N, Whereas by the MDB
measure Kq differs qualitatively from K; and Kp, by
RUNMEAN 1he difference is only one of degree, suggesting
ne credible means of distinguishing subexponential from
expenential cost heuristies. Js the similarity in form af the
ithree curves cointidental? And why this particular {hree
phawe "decay” form? The fact that RUNMEAN for K, is littie
are than 1 for large N, together with the mid-depth buige
tata above, suggests that ordered depth-first search, using
1he same K function, may actualiy be hetter than best-first
search for large N for "poor” heuristics.

Effects of Changing Term Weight

How does performance change if instead of
M{s} = gis) + K(s) we use Fis} = Kis} ar
Fls) = (1 - W) - gle} + W Kis}, where 0<W < 1?7 Cerlain

formal analyses [Pohl 69, Poh! 70, Nilsson 7], Vanderbrug
76] suggest the value of the g{s} term for "insurance”, but
fhe results do nol strictly apply to these B-puzzle
heuristics {see "Analysis” section}.”

figures 8 through ]1 show how performance varies
with W, for W =00, 0.1, .., 1.0. Note thal by definition
W = 5 gives the same behavior as F(s) = gis} + K(s), ang
thal W = O gives breadth first search. Nole in Figure B that
for Ko, as W increases the funclional form of XMEAN
trecomes subexporential in N, and that for medium-sized
values of N, XMEAN(Ko, N, W} increases as W increeses. The
same holds for K; and K3 {not shown), except thal Kqy has
“reached its limit" at W =5 (no further improvement).
Figure 9 is comparable to Figure 1, but uses W= 10
instead of W =.5. Note in Figures 1 and 9 that tor every
N, K4 is betler than K5 is betler than K; (with statistically
insipnificant exception); the same is true for each value of
W measured. Hence determining which heuristic is bast for
amall N {cheap experiment) lells which is best for large N
foo. This may not be trve generally. Figure 10 compares
ihe three heuristics by length of the solution path (LMEAN}
for W = 1.0. Note that K5 is now better than Ky and K|,
whereas for W = 5 the opposite is true. For large N,
XMEAN and LMEAN are inversely related for fixed K as W
varies, but are positively related for fixed large W as K
varies. This says that if Nis large, speed can be traded for
quality by changing W but not by changing K. Figure L1
shows this cost/quatity tradeoffl explicitty as W varies from
0.0 to 1.0, for a "mid-sized" case N = 15: increasing W

Problem~Solving~2: faschnlp
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beyond a certain value brings poorer quality at greater
cost.

Implications for the PSI System

Will comparable experiments with more complex
best-first search systems yield results similar to those
reported here? To be concrete, we consider one such
system, the program consiruciion phase of the PS]
program synthesis system, which is being implemented as a
best-first search [Barstow 77, Green 77] We inlerpret
the current experimental resulls as if 1hey applied to some
exient to PSL

The coding subsystem of PS] converts a high level
propgram specification into a legal LISP implementation by
applying rules to refine a specification inlo a slightly more
detailed specification. The rule sel induces a tree in which
the terminal nodes correspond to tegal programs for the
piven input. These target programs can differ drastically
in efficiency, so that a goodness value may be assigned to
rach terminal node, comparable to the L measure here.
Search of the entire tree 1o find 1the most efficient
implementation  (program with smallest L} may incur
prohibitive expense (i.e., X = number of nodes expanded in
refinement tree). Hence an "efficiency expert” (comparable
to a K function} guides the search in an attempt to keep
both L and X acceptably small [Barsiow & Kant 76] The
variable N, the number of refinemen steps, mighl refer to
the length of the shortest lerminating path, or to the
length of the path to the most efficient program,

The 8-puzzle experimental results support the
following conjectures abaut the performance of this phase
of PSI, assuming best-first search with an evaluation
function comparable to F{s) = {1 - W} g{s) + W - K(s).

1} for W = 5, unless the efficiency expert (EE) is very
rood, it will not be feasible to synthesize programs
that require very many refinement steps (i.e. large N},
hecause the number of nodes expanded (i.e., XMEAN(N}}
will grow exponentially with N. (See Figure 1)}

2) By simply choosing W =10 instead of W= 05
XMEAN(N}Y  becomes sub-expanential: it will ¢os!
somewhat more to synthesize medium-sized programs,
but fer less to synthesize large programs (Figures 8,
g9). However, the synthesized programs may be less
etficient than if W = .5 is used (Figures 10, 11}

3) If EE is improved so as to reduce XMEAN, then the
improvement will be observed for every value of W
(Figures !, 9 compare K, to Ka, or Ky to Kg)
Furthermore, for large W, the improvement in speed
will alsg cause an improvement in the efficiency of the
synthesized programs: faster heuristics find better
solutions {Figure 10).

4)  The XMEAN parformance ol a version of £E for large N
can be predicted by measuring mid-depth bulge tor
medium-sized N {Figures 5, 6).

5) The program will hop around the search tree quite g
ot unless N is smatl (Figure 7). Mean run length < 2

indicates poor EE. In this case, ordered depth-first
search may be better than best-first search,

Worst Case Cost Analysis

The objectives of analysis of Ax are bpoth practical
and theoretical. A practical objective is to find a formula
for XMEAN(G, K, W, N), say, valid for an arbitrary problem
graph G, heurislic function K, and over the range of W and
N. Then to determine for a particular Gy whether heuristic
A performs better than heuristic B, simply evaluate the
tormula with G = Gy once with K = Ka and once with
K = Kg to find a good value of W, evaluate for different
values of W, This most general objective may not be
feasilble, but Figure 12 illustrates an application of the
poneral results described in this section: a reasonably
accurate prediction of the worst case performance of Kz
for the 8-puzzle. )

A printipal theoretical objective of A% analysis is to
dotermine the exact dependence of performance on error
in the heuristic estimates. For a Lroad range of heuristic
tunclions it turns out that werst case cost (number of
nodes expanded) is a simple expanential funclion of a

funclion 8(i) thal measures the retative errar in the
heuristic estimates, as a function of distance from the goal,
lhus:

XWORSTIM, KMIN, KMAX, N} “rel"

é MLi‘B(KMIN, KMAX, i} _]
1sisN

£}

where "rel" denotes "<" if (i) 1s weakly monotonic

decreasing for i@ = 0, and "2 if $i) is weakly monolionic
mereasing for 0 >0, The remainder of this section
dencribes the above results in somewhat more delail. Full
delail and proofs and other results are given in {Gaschnig
727a]

Until we discover how to plug an arbitrary problem
praph and heuristic function info a mathematical formula (as
Enphish texi? as ALGOL source ¢ode?), we must resort to
making simple models that capture oniy a part of what we
want, bul which hopefully have some limited predictive
rower, To simplify, here we model an arbitrary graph by
a «ingle positive integer M, the branching factor ol a
uniform tree. A single node at level N of the tree is
distinguished as the goal node. A K function an the
uniform tree becomes simply the KMING) and KMAX()
funclions that bound the estimates of that K function, So
the heuristic is now represented by a pair of real-valued
functions on the non-negative integers (e.g., Figures 2, 3,
and 4). We have thus blurred the disiinction between all K
functions that happen to have a particular KMIN and KhMAX
as bounding functions, We can't predict their performances
individually any longer, but can only give the best case or
average case or worst case performance. The latter can be
defined as

XWORST(M, KMIN, KMAX, W, N),
which is a particular function of the form
N2 (N= Rix{Na RIx[0llx N - N
where N denotes the non-negative integers end R the
non-negative reals. XWORST gives tha number of nodes
expanded by A% in searching the uniform tree, using the
following K function, for a given KMIN and KMAX:

PrahYem=5nlviner=2: faschnls
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if node ¢ is on the soclution path

KWORST(s) mKMAX{h{s))
if s is not on the solution path

KMIN(h{s})

Note that KWORST returns relatively high values
when it should give low values, and vice versa.

The above is an informal description of a standard
formal worst case cost model [Poh! 69, Poht 70, Nisson
71] Herelofore, however, XWORST results have
concentrated on KMIN and KMAX functions that take the
form KMING) » i - a and KMAX(i} =i + b, where a and i are
real-valued constants, ie., straight lines with slope 1. So
really the KMIN and KMAX functions in such analyses can
e represented by real numbers a and b. This simplifies
the analysis, but excludes heuristics whese KMIN and KMAX
are more arbitrary, eg., those in Figures 2, 3, and 4.

To get the general case, we note first that the
ohjective is 1o determine the dependence of performance
on error. The KMIN and KMAX functions, however, do not
measure error, They bound the numerical eslimates
compulied by a K function. To denote the relative error, or
spread, in these estimates, we can rewrite

KMINGY = (1 - 8ty - A
KMAX() = (1 + 8(i)} - AL}
and solve for 8§} and A¢) in terms of KMING) and KMAX{):
KMAX{i) - KMINID
KMAXD) + KMING}
By this definition, A1) is the arithmetic mean of XMIN(} and

KMAX(), and 8) is the relative errar of KMING) or KMAX(}
with respect to A(i), for example Figure 13. By definition,
0 2 &i) < 1 for any KMIN and KMAX.

Formula (1} holds for ali "wsll-behaved, never
overestimating” K functions. The fermal conditions are that
W = 5; that KMAX(i) = i, as is true ot K5 for i <21 {Figure
3).  Aiso, that O < KMING) 3 KMAX() and that for all i
KMING + 1) 2 KMING) - L, as is true for Ky Ko and K3 for

all i plotted in Figures 2, 3, and 8. Note that §i) = constant
is weakly monotonic both increasing and decreasing, hence
formula {1) is exact (i.e., equalily holds}). In this case,
KMIN(G) is a straight line through the origin.

Formula (1) tells how much error in a K function can
be tolerated and slill achieve a given level of performance.
For example, for each of the KMIN functions shown in

SKMIN, KMAX, 1) =

Figure 14, the corresponding i) is plugged into formula
(1} and simplified, to obtain the following resulfs:

BIKMIN, KMAX, i) XWORST(M, KMIN, KMAX, N)

c oM CN} {exponential in N)
1 /7 SO(N Mm) (< subexponential)
log i /i <o '8 M (% polynomial}
< /i < OINM ) (s linaar)

This table expresses a guarantee: if a K function
meets the specified condition, then its performance is no
worse than that indicated above.

Figure 15 illustrates schematically the distinction
between the "Knowledge itself" (i.e., a lattice of heuristic
functions) and the "Knowledge engine itself" (i.e., XWORST

Problem-solving

is a function on the latticel Each point in the latlice
represents the § function corresponding 1o particular KMIN

and KMAX functions, The set of all these § functions is

partially ordered under the relation 51 5 52 iff Sl(i) < Ez(i}

for all i =1,2,. Associated with each § funclion is ils
terresponding XWORST value (depicted by a double arrow),
which is itself a function of M and N Formula (1)
delermines (or at least bounds) the "lengths" of 1he double
arFown,

For the conditions of (1), KMAX is fixed and hence

apocifying KMIN  determines bath 6 and A In the
unrestricted case, the XWORST mapping is like a function
7 = fix, ¥) Yhal describes a surface in 3-space above the
x-y plane. Each of tYhe awes, however, is not a linear
ortdering of integers or reals, but rather an infinile
continuous  lattice of functions on the non-negative
intepers,

Formula {1} only bounds XWORST, but another more
vomplicated expression gives XWORST exactly for ali KMIN
and KMAX without restriction. i is used to generate the
XWORST predictions, shown in Figure 12, of the
performance of Ko for the B-puzzie, given the KMIN and
KMAX values shown in Figure 3. In figure 12 XMAX is
delined like XMEAN, but takes the maximum instead of the
mean of the experimental values. For the 8-puzzie M was
estimated to be 1.715 experimenially. Note that this
prediction is a demonstration of technical feasibility, not of
"commercial marketability®.

The ewxient of agreement belween predicied and
measured values in Figure 12 is not particularly good in
abcolule terms, but is in some cense aslounding, since the
araph of the B-puzzie is not a uniform tree, and the Kj
funclion for the 8-puzzle does not have worst case
Lbehaviar like that of KWORST.

Conclusions and Future work

The experimental results show that some heuristics
beal the exponantial explosian and others do not. But the
latler can be made to dao so simply by giving more weight
(W) to the distance-fo-goal term {K(s}) in the evalualion
function and less weight to the distance-from-root term
{gis)). However, this reduction in the number of nodes
expanded (XMEAN(N}) occurs only i distance to the goal
(N} is large. For medium-sized N, XMEAN actually increases
with W, Why? There is & limit to what adjusting: W can do:
subexponential heurislics, e.g., Ky, do not get any better
by increasing W. Also, if K; has smaller XMEANIN} than K,
for one value of W, then the same ordering holds for any
other value of W, Increasing W also increases the lengths
of the solufion paths found: for large W, fasler heuristics
find better solutions, whereas for smaller W the opposite
can be true. How much of this is trus for PSI or other
complex best-first search systems? Clearly much remains
1o be investigaled. If predicability cen be exploited in

practice, then perhaps our current heuristic search
fechniques are only "model T,
The new analytic results permit prediclive

statements for heuristic functions that occur in praclice,
Bul much remains for future work. When, if ever, is
relative worst case performance a good predictor of
reiative average case performance? Are there effective
ways to experimentally or anpalytically estimate the KMIN
and KMAX of a given heuristic?



Theoretically, the fact that performance is a function
of relative error rather than of absolute error would seem
to merit careful thought. What makes relative error more
special? The "limits to growth" tabulated in the preceedling
section are sobering: A* must be given a very accurate
heuristic in order to guarantee good performance \n the
worst case. What about average case?

The symbolic result--a mapping from a lattice of
heuristic "error" functions to a lattice of performance
functions-- can serve as a definition for the (worst case)
performance capability of the A* algorithm. The lattice
representing heuristic functions exists independently of A*;
it happens to be the domain of a particular function we
have called XWORST. In words, the "Knowledge itself" is
distinct from the "Knowledge engine itself", for "Knowledge"
in this special sense. Hence a similar XWORST function can
perhaps be derived, assuming as the "Knowledge engine"
ordered depth-first search or the B* algorithm [Berliner
76] instead of A*. If you give an engine more Knowledge,
i.e., less errorful knowledge, then it performs better. But
some engines can do more than others (or do it faster)
with the Knowledge they are given.

| greatfully acKnowledge many fruitful discussions

with Herbert Simon regarding this worK.
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