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Abstract
This paper is a comparison of ABSTRIPS, planning
(as defined in Newell and Simon, 1972) and GPS.
Each of these methods has parameters chat contain
heuristic information which is problem dependent.
These parameters are used to guide the methods'
search and usually cause them to be incomplete in
the sense that they cannot solve some problems that
have solutions. We show that the parameters of the
methods serve the same function in the following
sense: Given the parameters for one method we can
formulate the parameters for the other two such
that all three can solve the same class of problem;
i.e. those which have totally ordered solutions.
This result is somewhat surprising because the
search spaces of the methods are different. The

Implications of this result to the efficiency of
search Is discussed at some length.

1. Introduction
The purpose of this paper is to compare 3 differ-

ent problem solving methods:
1974); planning (Newell and Simon,
(Ernst and Newell, 1969)+ .
tween planning and GPS is

ABSTRIPS (Sacerdoti,

1972) and GPS
The relationship be-

reasonably well under-

stood, but their relationship to ABSTRIPS has been
much less understood.
All three methods are incomplete in the sense that

they cannot solve certain problems that have solu-
tions. Hence, it makes sense to attempt to
characterize the class of problems that they can
solve. This should allow one to answer such ques-
tions as, "Under what conditions can GPS solve any
problem that ABSTRIPS can solve?" To answer such
questions we will build a formal model of ABSTRIPS

This research was supported by the National
Science Foundation under grants GJ-1135 and
MCS75-23412.

APlanning and GPS were conceived of by Al Newell,
Cliff Shaw and Herb Simon in the 1950's. The
references given here were chosen because they are

more accessible than their original publications.
This use of the word 'planning’ is somewhat
different than its use in robotics research.

Problem-Solv Inft-2:

Ohio

12

44106

and planning. The model deviates slightly from
the way ABSTRIPS really works but it is a close
approximation to ABSTRIPS. Using this model and
the one for GPS (Ernst, 1969) we can answer the
above question.

The formalisms are not in themselves particularly
interesting. However, they do reveal the rela-
tionship among parameters of the three methods.
That is, each method has certain heuristic infor-
mation as parameters to guide its search. In GPS,
the parameters are the differences and difference

ordering; in ABSTRIPS they are the criticality
levels of the various predicates. Our analysis

clearly shows the relationship between these two
kinds of parameters. In addition, since there are
formal conditions of "good" differences for GPS
(Ernst, 1969), these conditions should place con-
straints on "good" parameters for ABSTRIPS and
planning. Sacerdoti (1974) gives some informal
rules that he uses in assigning criticality levels
to predicates which are consistent with the condi-
tions of good differences but the latter are con-
siderably stronger than his rules.

We start off with a brief description of ABSTRIPS
and planning. This is followed by a formalization
and analysis of ABSTRIPS and planning. The last

section contains a discussion of the three meth-
ods.

2. Problem Specification
A problem state of ABSTRIPS (and its predecessor
STRIPS (Fikes and Nilsson, 1971)) is a set of
formulae in first-order logic. For example, if
the formula Inroom (Robot, Rooml) were part of the
state, that would indicate that the Robot was in
Room 1 in the state. The set of desired states is
also represented by a formula, W. Any state

which implies that W is true is a desired state.
The operators are
into another. For

move Boxl to Box2

rules for transforming one state
example, if the robot wanted to
it would use the operator
Pushb(Boxl, Box2) where Pushb is given in Figure
1. For this operator to be applicable, the pre-
conditions must be true of the current state,

i.e., the preconditions give the domain of the
operator. The current state is modified by de-
leting all of the formulae listed under deletions

and adding the formulae under additions. For
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example, if Nextto(Boxl, Doorl) was in the current
state it would be one of the deletions and
Nextto(Boxl, Box2) would be one of the additions
in forming the new state resulting from applying

Pushb(Boxl, Box2). The $1 in Figure 1 is just a
variable.
Pushb (x,y)
Preconditions:
Type(y, Object)
Pushable(x)
Nextto(Robot,x)
3r [Inroom(Robot,r) & Inroom(y,r)

& Inroom(x,r)]

Deletions:

Nextto(Robot,$I)

Nextto(x,$1)

Nextto($1,x)
Additions:

Nextto(x,y)

Nextto(y,x)

Nextto(Robot,x)

Figure 1.

The ABSTRIPS operator that pushes box x to
object vy.

For the purposes of this report the details of
the problem specification are not important. The
important thing is that each problem has a state
space, an initial state, a set of desired states,
and a set of operators. Each operator is a par-
tial function from states into states. The domain
of the operator is given by its preconditions. It
should be noted that Pushb is really a partial
function schema; it becomes a partial function
after values are specified for x and y, i.e.,
Pushb(Boxl, Box2) is a partial function. The
point is that ABSTRIPS is not dependent on the
problem specification language but its underlying
algebraic structure. Hence, ABSTRIPS could be
applied to problems specified in the other langu-

ages such as the one given in Ernst, et al (1974)
in which states are represented by arrays.

3. Description of ABSTRIPS
ABSTRIPS assumes that each predicate in the pre-

conditions of operators has a criticality level
assigned to it. (Actually Sacerdoti (1974) has a,
semi-automatic way of assigning criticality le-
vels.) The intuitive idea behind criticality
levels is that high level predicates are more
difficult to change than low level predicates.

A simple problem is given in Figure 2 and
ABSTRIPS' solution is depicted in Figure 3. It
starts off by trying to transform the initial
state in Figure 2 into one in which Bl is next to
B2. (This is subproblem 1 in Figure 3.) ABSTRIPS
notes that the operator Pushb(B1,B2) is relevant
to this problem and applies it, which solves the
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problem.

Robot

1 -1

" B1 \D!

Initial State:

[ RI R2

Desired states: Nextto(BI,B2)

Operators: Pushb(x,y)—Push box x to object vy.
PTD(x,y)—Push box x through door y.
Gotob(x)—Go to box x.
Pushd(x,y)—Push box x to door vy.

Other operators are not given here
because they are not necessary to
solve this problem.

Criticality: Level 6—Type, Pushable
5—Inroom

2—Nextto

Level

Level

Figure 2. A simple problem for ABSTRIPS.

The reader will quickly note that this is illegal
because the initial state is not in the domain of
the operator. However, this subproblem is being
solved at criticality level 6 which means that all
predicates of level 5 or less are ignored. Nextto
has been designated as level 2 and Inroom is level
5. Hence, at level 6, ABSTRIPS considers the
Preconditions of Pushb(BI, B2) (see Figure 1) to
be Type(B2, Object) and Pushable(Bl) which is true
in the initial state and consequently the opera-
tor is applied. Normally, several operators will
be necessary to solve the problem but in this case
one suffices.

The next subproblem, #2 in Figure 3, is to get
from the initial state to a state in which the
level 5 and higher predicates of the preconditions
of Pushb(Bl, B2) are true. In Figure 3 we have
only listed the predicates which are false in the
initial state for purposes of exposition. We
are assuming that the variable r is assigned the
value R2.) ABSTRIPS notes that PTD(B1, DI) is
relevant to this subproblem and applies it which
solves the subproblem. The level 2 predicates in
the preconditions of PTD(B1, DI) are ignored be-
cause this subproblem is being solved at critica-
lity level 5.

Next, Pushb(Bl, B2) is applied to the result of
this subproblem and this new state is transformed
into a desired state. But is is already a desired
state; i.e., applying (PTD(B1, DI), Pushb(Bl, B2)
to the initial state results in a state which
satisfies Nextto(Bl, B2). Hence, no subproblem
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2 % |Fig. 2 | PTD(B1,D1) Inroom(Bl,R2) &
Inroom(Robot ,R2)
3. 2 Fig. 2 { Gotoh{(Bl), Nextto(Bl,D1i} &
Pushd(B1,D1)} Nextto{Rebot,D1)

Figure 3. Subproblems of the problem in Figure 2.

is created in this situation. This completes the
activity at criticality level 5.

The next discrepancy shows up at level 2 because
the preconditions of PTD at this level are not
satisfied. ABSTRIPS sets up subproblem 3 in Fi-
gure 3, and notes that Pushb(BI, DI) is relevant.
However, this operator is not directly applicable
because the level 2 predicates in its precondition
are not satisfied. Gotob(Bl) rectifies this sit-
uation and hence (Gotob(BIl),Pushd(BI, DI)) is
applied to the initial state which results in a
state s in the domain of PTD(DI). Since this sub-
problem is solved, ABSTRIPS applies PTD(DI) to s
which yields a new state t and then attempts to
transform t into the domain of Pushb(BI, B2). All
of the level 2 predicates in the preconditions of
Pushb(BI, B2) are considered because this subpro-
blem is being solved at criticality level 2. But,
since t is already in the domain of Pushb(BI, B2),
this subproblem is trivially solved. Hence,
Pushb(BI, B2) is applied to t and ABSTRIPS at-
tempts to transform the result into the set of
desired states. But the result is already a de-
sired state and thus this subproblem also has a
trivial, solution. Since criticality level 2 is
the smallest level, the solutions of the subpro-
blems comprise a solution of the main problem.

To summarize, ABSTRIPS sets out to solve a pro-
blem at a given criticality level by essentially
removing from the preconditions of all operators,
predicates whose level are less than the given
level. After finding a solution it goes to the
next level down and adds the predicates at this
level back to the preconditions of the appropri-
ate operators. This gives rise to subproblems
that ABSTRIPS attempts to solve at the current
criticality level, i.e., with lower level predi-
cates removed from operator preconditions. This
process is repeated until the subproblems at the
smallest criticality level, which is 2 in the
above example, are solved. Of course, there is
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search involved at all levels because at any given
level a problem may have several different solu-
tions some of which may generate unsolvable sub-
problems .

4. Planning

ABSTRIPS is quite similar to what Newell & Simon
(1972) call planning. ABSTRIPS and planning dif-
fer in 2 major respects:

Pl. Planning uses an entirely new problem
solving space—both states and operators.

P2. Planning uses only 1 level of abstraction
while ABSTRIPS has one for each criticality
level except the lowest which is the pro-
blem space itself.

Although planning does not presuppose criticality
levels, they can be used to define the planning

space. We will apply planning to the example of
the previous section to contrast the two methods.

In the planning space of the problem in Figure 2
all of the level 2 predicates are removed. (In
this example Nextto is the only level 2 predi-
cate.) Thus, a state in the planning space will
be described exclusively by level 5 and level 6
predicates. All level 2 predicates are removed
from operators to get the planning space opera-
tors. This includes the level 2 predicates in the
addition and deletion lists as well as in the pre-
conditions of the operators. Of course, removing
these predicates causes some operators to become
identity maps, e.g. Pushb, in which case they are
not used in the planning space. All level 2 pre-
dicates are removed from the formula that des-
cribes the desired states to get its analogue in
the planning space. Hence, the planning desired
states must be given by Inroom(BI, R2) & Inroom
(B2, R2). Removing the level 2 predicates from
the description of the desired states in Figure 2,
gives the null description which represents the
set of all states.

The solution to the problem in Figure 2 in the
planning space is the single operator PTD(B1, DI).
This generates 2 subproblems in the original pro-
blem space: transforming the initial state into
the domain of PTD (BI, DI), and transforming the
result of applying PID (BI, DI) to the solution
of the first subproblem, into a desired state.

In general, planning is a two phase process: the
first phase is to solve the problem in the plan-
ning space. The second phase is to elaborate the
solution so that It works in the original problem
space. This is done by inserting operators into
the solution that was found in the planning space.
The operators to be inserted are found by solving
subproblems of transforming the appropriate states
into the domains of the appropriate operators.

£._ Formalization of ABSTRIPSLand,Plaiming

Our formal model of ABSTRIPS is based on two as-
sumptions in addition to the above description.
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Al. The set of desired states is processed
in the same way as the preconditions of
operators.

A2. When solving a subproblem at criticality
level i, ABSTRIPS will reject any sub-
subproblems of criticality level greater
than i.

By the first assumption we mean that at critica-
lity level i, ABSTRIPS will ignore all predicates
less than level i in the description of the de-
sired states. This is what planning does. For
example, the Nextto(Bl, B2) in the goal states of
Figure 3 would be considered at level 2 but not at
level 6. We are not suggesting that this is a
good idea, but without it and A2 we could not
characterize the solutions that ABSTRIPS can find.
This will be discussed further in section 7.

The second assumption has to do with efficiency
of search. Suppose ABSTRIPS is working at criti-
calitv level 2 on a Nextto predicate and an
incorrect Inroom predicate is generated by at-
tempting to apply an operator. "Fixing" the Inroom
predicate is a level 5 subproblem, but when it is
considered at level 2 it is much more difficult
bee ause all of the level 2 and level 5 predicates
are considered to be part of the operator precon-
ditions. Assumption 2 above specifies that all
such subproblems are rejected as being too diffi-
cult.

At this point it 1s convenlent to formalize the
notion of the difficulty of a subproblem. A sub-
problem with initial state s and desired states T
has difficulty { if there ig a level 1 predicate
in T which is not satisfied by & and all predi-
cates of higher criticality level Iin T are satis-
fied by a8, We define Di(s, T} to be rrue if and

only if the subproblem defined by s and T has
difficulry 1.

Only certalin operators will be used te s¢lve the
subpraoblems of difficulty i; these operators will

be denored by Hi' To define Hi we first define

the notion of relevance and irrelevance. The
operator £ is irrelevant to Di if for all s and T,

Di(s, T) 1iff Di(f(s). T). That ie, f ir irrele-
vant to D1 if it never changes the difficulty le-

vel of a subproblem of difficulry 1. All opera-
tors f that are not irrelevant to Di are relevant

to D,. We can now define Hi to be the set of
operators which are relevant to Di but ifrrelevant
to D3 for § > 1.

The reamon for these definitione is that all sub-
problems that ABSTRIPS attempts to solve at criti-
cality level 1 have difficulty 1; i.e., Di(s, T)

where s 1e the initiael state and T is the desired
ptates. In fact the reason for Al and A2 18 to
make this statement true. ABSTRIPS actually
violates Al and hence considera some level 2 pro—
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blems at level & as shown by the example in sec-
tion 3. It is not clear from the description in
Sacerdoti {1974) whether or not ABSTRIPS adheres
te A2, 1In any case our formal model assumes both
Al snd A2, The only operators that ABSTRIPS uses
at criticality level 1 are in Hi' Of course, this

ia true because all gubproblems at this level have
difficulty 1.

We formalize ABSTRIPS as a process which searches
exhaustively, for well stratified solutions as
defined below. Let (fl""’fk> be the solution of

a subproblem whose Initisl state is & and whose
desired states are given by T. That 1is, fk(...fl

{8)...)eT and each intermediate state is in the
domain of the appropriate ocperator. Below we will
denote a subproblem by a pair (s,T) in which s im
the current state and T ie the set of desirad
states and 5f will denocte the domain of the opera-

tor f. Define a non-empty subsequence ¢, , f, ,
4
vensy f1 ) of the selution and an interger m such
t
that

1) fiq e W for all g4 (1 < q < t);

11) fj ¢ Hp for 1 < 1 £k &p>m

114y £, # H unless j = 1q where 1 < q < t.

h|

This subsequence defines the following set of sub-
problems and a corresponding solution far each.

1. If 1. > 1, define (f f ) to be

1 ) 11—1
the solution of (s, Sfi ).
1
2. For all j when 1 < j < t=1 and 1 +

b
1«4 define (f £

i+l ij+l 1j+2

£, _1) te be the solution of the
i+1

problem (fi {...fl(a)...), sfi Y.

. $+1

3. If it < k then gefine (f f

+ 1 1
1t 1 1t+2

...,fk} to be the solution of (fi (...
t
fl(s)...),T).

Such a subsequence of a sclution im called the
stratification of the solution and the subproblems
it defines are called its stratified subproblems.

This definition is conceptually much simpler than
it appears to be, aa shown by the followling exam-
ple. Suppose that (f3, fs, fe, flo) is the

strarification of the sclution (fl,fz,...,flo) ta
the problem (s.W). This stratification "groups"
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the sclution as (flfz)fB(fA)iSfG(foafé)flo' Each

of the parenthesized quantities are solutions
corresponding to stratified subproblems. For
example, (f7,fs,f9) is the corresponding solution

to (£ .(...f,(8)...), 5. ). Note that there is
6 1 flo
no subproblem between f5 and f, .

6 In addition,
£3, fS' f6 and le

are in some H‘n and all the
other f's are Iin "smaller" H'a.

A polution (f
(f

1'""fk) with a atratification

yrersf, } is called well stratified 1f D
(o, T) and D (f, (...f.(8)...}, T) for I = 3} < ¢,
n 13 1

and the correspending solution of each of the
stratified subproblemes is well stratified. That
is, each subproblem is of difficulty m. (Note
that 1-11i above only refer to the H's and not

the D's.) The definition of well stratified is
recureive since it requires all of its subpro-
blems to be well-stratified also, By the way the
stratification subsequence 1s defined, m decreases
with each level of recursion. Continuing with the
above example, the sclution is well stratified

if all the difficulty of all top level subpro-
blems is m: e.g. , Dm(f3(f2(f1(s))),w). In

addition all of the stratified subproblems must be
well mstratified. For example, (fa) might be the
stratification of (£7,fa,f9) which groups it as
(f7)f8(f9). This indicates that f, 1s the cor-
responding solution of (fﬁ(---fl(s)---),sfa). The

diffiéulty of the subproblems in this stratifica-
tion is m' where fs [3 Hm, and ' < @ e.g.,

D {fo(-++F,(8)+-),5. ).
m'* "8 1 flO

To eummarize then our formal medel of ARSTRIPS

18 an exhaustive search procedure for well stra-
tified solutions. Of course, ABSTRIPS uses a
epecific search strategy; i.e. first 1t looks

for the stratification subsequence from "left to
right" and then for subproblem solutions and back-
tracks in its own special way. We have not mo-
deled this search order. 1In additioen, our formal
model 1is only approximate since it has Al and A2
built into it.

Our formal model of planning is an exhaustive
search procedure for well stratified solutions
that have 2 levels. Again we do not model the
order of search. 8Since planning uses Al, the only
approximation used by our model is A2.

6. Totally-Ordered Sclutioms

GPS uses the strategy of working on difficult sub-
problems first, saving the easier subproblems for
later., The difference ordering is used to speci-
fy the difficulty of a subproblem. This strategy
is not complete in the pense that some problems
that have solutions cannot be solved using this

ordered,

etrategy. Ernst (1969) has characterized the
class of solutions that GPS can find as totally-
ordered scolutions. Intultively, & totally

ordered solution is one which generates a sequence
of states in which the difficulty is monotonically
nonincreasing, In additiom, #ll subproblem
solutions are also totally ordered., The mubpro~
blems of a scolution are defined in terms of m

and 10. Given a solution (fl.....fk) of & sub-
problem {8, T}, let m and 10 be defined as fol-
lows:

1) fj 4 Hp for p » L and 1 = j < k;
i1) 1<1 <k
21, =

111) f. eH

1iv) fjtum for 1 <3 <4

That is m is the "highest level" of the operators

in the polution and fi is the firat of such

[
operators occuring ir the solution, Let M(a, T)
denote the difficulty of the subproblem. That 1s,
M(g, Td = ¢ 1if Dc{s, T) and not Dj(s, T) for j »

¢. Then (fl,...,fk) is a totally ordered selution
to the subproblem (s, T) if

1) H(fj(...fl(s)..-), T) 3H(fj+1(...fl(s)
«ee),T) for 1 2] < k;

11} if io > 1 then (fl""’fi ) 1= a totally
43

ordered solution to the subproblem

(s,Sf Y.

10

iii) if k » 10 then (fio+1,....fk) ie a to~

tally crdered solution te the subproblem
(£, (...f£,(s)...), T.
i, 1

Totally-ordered is not only a characterization of
the solutiona that GPS can find but is also a
characterization of the solutions that either
ABSTRIPS or planning cen find.

Theorem: Any well srratifies molution ie totally
The proof will not be given in this
paper; the proof of this theorem, stated in a
slightly different formalism, is given in Banerji
and Ernst {(1977), Although we have not proven
the converse of the theorem we believe that it is
true when "good" difference informations is used.
If so, then the set of totally ordered mplutions
is a cheracterization of the class of solutions
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that ABSTRIPS or planning or any other process that
can find all and only well stratified solutions
can find.

In Ernst (1969) a triangular table of connections
was shown to be good difference information for
GPS and it appears that this also specifies good
parameters for ABSTRIPS and planning. Rather than
giving a formal definition of a triangular table
of connections we will give an example of it using
the Fool's Disks problem. Figure 4 gives the
initial state of the Fool's Disks problem, in which
there are 4 concentric disks each containing eight
numbers. These numbers line up so as to form 8
columns radiating from the center of the disks. A
move consists of rotating one of the disks inde-
pendent of the others. The desired state is one
in which each of the 8 radial columns sums to 12.

3 \w._\
2
2 4 1
,. ;2 e ‘
4 S 1. i
3 1 22 5 5 3 1,
3 3
. 4
N 2 , 3
\ g 4
o
5 2 3.7
4 /’/
R -
Figure 4.

The initial state in the Fool's Disks problem,
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™ 3 m 2 W
— L] M
- 0O w~ O
«© =x o
S a T 1] —
P S v N I v -
The vertical and
horizontal diameters 1 0 0
does not sum to 48,
Some diameter does
not sum to 24, 1 1 0
Some radius does not
gum to 12, 1 1 1

Figure 5.

A triangular table of comnections for Fool's Disks.

Problem

A triangular table of connections for this pro-
blem is given in Figure 5. A 0 entry in the ta-
ble indicates that a difference is invariant over
the operators. For example, the 0 in the upper
right corner of Figure 5 indicates that turning
a disk 1/2 revolution does not change the sum of
the horizontal and vertical diameters. Note that
Figure 3 has all O's above the main diagonal and
no O's on it. The entries below the main dia-
gonal are unimportant. The difference ordering
is just the row order; i.e., the top row heading
is the most difficult difference while the bottom
is the easiest.

GPS only uses the entries on the main diagonal to
solve the problem. Hence, first 1/8, 3/8, 5/8
and 7/8 revolution of disks are used to remove
the most difficult difference, i.e. used to get
the horizontal and vertical diameters to sum to
48. Next, 1/4 and 3/4 revolutions are used to
get each diameters to sum to 24. And finally the
180° moves are used to get a desired state. No-
tice that once a difference is removed it is
never reintroduced because of the triangularity
of the table in Figure 5.

7. Discussion

In the previous 2 sections we made a number of
highly technical definitions ending with a some-
what cryptic theorem, but what can be concluded
from all of this? There are 3 major points,
listed below; they are followed by a more general
discussion.

Point 1. Given the "same" heuristic parameters
planning, ABSTRIPS and GPS (or at least our for-
mal models which approximate them) can all solve
precisely the same class of problems, i.e. those
that have totally ordered solutions. The rela-
tionship of parameters of the different methods
is described below but note that the Di of
Section 5 are just differences for GPS.
This result is somewhat surprising because tne
search space of GPS is quite different than that
of planning or ABSTRIPS. For example, for all
states s generated by GPS there is a path from
the initial state to s. This is not true for
planning or ABSTRIPS because many of the subpro-
blems may not be solvable. For any given problem
probably one of the three methods is more effi-

cient than the others, but none is best for all
problems.
Point 2. Selecting heuristic parameters can have

a much more drastic effect on the search effi-
ciency than selecting one of the three methods,
as shown by the Fool's Disks example above. The
reason for this is that all of the methods are
designed to search efficiently for totally-
ordered solutions; they will not even consider
subproblems that give rise to unordered solutions.
Totally-ordered is defined in terms of the para-
meters which are problem dependent, and hence the
parameters determine whether the class of totally
ordered solutions is the same as the class of all
solutions or whether the former is much

smaller than the latter. In fact, one can view
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the problem of selecting good parameters as the
problem of making the class of totally ordered
solutions as small as possible without eliminating
all solutions to problems of interest.

Point 3. Any parameters which are good (in the
sense of guiding search) for one method will have
analogues which will be good for the other me-
thods. A triangular table of connections (see
Section 6) is a property of good difference in-
formation for GPS. Another property of good dif-
ferences is given in Banerji and Ernst (1977).
These properties, after suitable translation, are
also properties of good parameters of planning
and ABSTRIPS. Currently, we are implementing a
program to discover difference information for
GPS which satisfies these properties. Hence, this
program effectively will discover good parameters
for planning and ABSTRIPS also.

We feel that point 2 is the most important of the
three points. Not much is known about the pro-

cess of selecting good parameters. Some initial
work on this topic is outlined under point 3 but
more research is needed on this topic.

To understand the above points, we need to know
the relationship among the parameters of the 3
methods. The D, of Section 5 are just the dif-
ferences of GPS. That is, subproblem (s, T)

possesses difference d if D,(s, T) where d cor-
responds to D.. The subscripts on the D's give

e.g., the difference
in the example in Figure 2

the difference ordering,
corresponding to D,

is the easiest (smallest) difference because 2 is
the smallest crlticality level. The table of con-
nections indicate that the operators in H. should

be used to reduce D.. Note that in our formal

models of both ABSTRIPS and GPS an operator f may
be relevant to D. but not in H,. This will hap-
pen when f e H for some j > 1 which indicates

that f is relevant to the more difficult dif-
ference D* and hence is used solely for the
purpose of reducing D.. Including f in H. would

give rise to more search but not to more totally-
ordered solutions.

Planning, in many respects, looks like ABSTRIPS
with 2 criticality levels. In fact our formal
model of the previous section is really a hybrid
of ABSTRIPS and planning; it has many levels of
abstraction like ABSTRIPS, and like planning as-
sumes Al. The heuristic parameters of planning
are basicly the difference information of GPS.
Although planning requires a entire planning
space as input, this information is really de-
rived from the difference orderinc. In fact one
of the innovations in ABSTRIPS is its ability to
automatically generate the various planning or
abstracted spaces from the criticality levels of
the predicates.

Our formal model of ABSTRIPS uses assumptions Al
and A2 (Section 5) which is a deviation from the
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real ABSTRIPS. Why might ABSTRIPS want to violate
Al and/or A2? The answer lies in the fact that
the class of totally-ordered solutions may be a
little too restrictive because some solutions may
not be totally-ordered. Violating Al and/or A2
allows ABSTRIPS to find solutions that are "almost
but not quite" totally-ordered. We do not know
how to measure the degree of unorderedness or what
these violations due to the efficiency of search.
To see how an unordered solution is generated note
that ABSTRIPS' solution to the problem in Figure
2 is unordered because the difficulty of the
original problem is level 2 whereas the difficulty
of some of the subproblems is level 5. This un-
ordered solution is a result of violating Al. To
have planning solve the problem in Figure 2 the
desired states had to be more completely specified
as described in Section 4 because planning adheres
to Al.

What is the relationship of the properties of good
differences in (Ernst, 1969) to the parameters of
ABSTRIPS? As mentioned above the criticality

levels of predicates basically specify the dif-
ferences and difference ordering. |If the table of
connections is generated as defined in Section 5
(i.e. use operators in H, to reduce D ), then the

properties of good differences are automatically
satisfied except that some of the H, may be

empty. What this means is that if all solutions
of a problem contain subproblems of difficulty I,
then the problem has no totally-ordered solution.
In other words the criticality level assigned to
predicates is not good. A better approach is to
ask what assignment of criticality levels results
in no empty H's. This is very similar to the
approach in Eavarone and Ernst (1970) .

We feel that the biggest restriction in ABSTRIPS
is its use of a very restrictive class of dif-
ferences, i.e., those defined by the predicates in
the problem specification. Most of the good ideas
in ABSTRIPS apply to a more general class of dif-
ferences; and we hope that the restriction is
removed in the future. As an example of a dif-
ference not defined by a predicate in the problem
specification, the logic task in Newell and Simon
(1972) uses the number of different proposition
letters in an expression as a difference. Figure
5 also contains some more complex differences. We
believe that ABSTRIPS can be extended to a wider
class of differences such as these.
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Abstract

The data structure that drives the General
Problem Solver is the Connection Table. This pa-
per describes the theoretical basis for the auto-
matic construction of this table by computer pro-
grams. The programs for this purpose have been
developed at the Case Western Reserve University.
They basically isolate certain attributes of the
problem states which are invariant under certain
moves and then put those attributes together to
"triangularize" the Connection Table.

Descriptive Terms

Theory of Heuristics, General Problem Solver
1. Introduction

According to our view of mechanical problem
solving, there are a number of different problem
solving methods each of which has problem depen-
dent parameters. For each method there is a con-
dition which specifies the properties the parame-
ters should have in order for the method to
"work". Hence, we view problem solving as the
two phase process shown in Figure 1. In the first
phase, the method's condition is used to generate
"good" parameters for the method. The input to
this phase is the problem specification, since the
parameters are usually problem dependent. The
output is either good parameters or an indication
that this method should not be used on the given
problem. The second phase attempts to solve the
problem (as specified at the input to the first
phase) using the method with the parameters gener-
ated in the first phase. Of course, there is a
Dicture like Figure 1 for each method, and if the

first method is not applicable, we merely move on
to the next method and attempt to use it.

So far, all the methods studied this way [Co-
ray (1970), Ernst(1969), Banerj1(1971)] seem to
depend on the recognition of certain attributes of
the problem states which remain invariant under
some of the moves. We have previously published
two reports on the design and implementation of a
program which would isolate some of these attri-
butes on the basis of the problem description
[Ernst efa_I1(1974), >Oyen(1975)].

Our present effort deals with the combination
of the invariant properties to yield the Connec-
tion Table of GPS [Newell & Simon(1963), Ernst &
Newell(1969)]. Our efforts in using our previous
theory [Ernst(1969)] for the purpose of mechaniz-
ing the heuristic were not successful, because a
difference (good or bad) was a binary relation
between states and sets of states, i.e., a subset
of S x 2s where S is the set of problem states,
which is a complicated concept.

In an attempt to simplify matters we said,
"What if a difference were just a set of states?"
In this case, a state s possesses difference D, if
s i D. With this simple view we can visualize
GPS's strategy as follows (Figure 2).

S is the set of all states. W is the set of
goal states: W e D' <D < 38, and g 18 the initial

state. GPS would artempt to solve the problem as
follows:
1. Find a path from SO to some state s D.

2. Find a path from s to some state s, °© D’
but the path must be entirely inside D.

3. Find a path from s, ' °°™° state s e W
but the path must be entirely inside D'.

In step 1 GPS is removing the most difficult dif-
ference D. In step 2 the second most difficult
difference is being removed without reintroducing
D. The easiest difference W is being removed in
step 3 without reintroducing either D or D'.

A point ought to be made here about the orig-
inal GPS which was a somewhat more general device
than the one we are describing here in that,

r Y
problem . Apnly I
i, Fched v Aoply
— , b 7 Paraneterized
specification Condvtion | Aroblen | Methad
[ e — wenencent —

not
applicable

Figure .

paramcters
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while removing an easier difference, a more dif-
ficult difference could get reintroduced. The
only search pruning involved in this general case
was that involved in the relevance of moves to
differences (vide ultra). The extra constraint
we have introduced here (and one which also char-
acterizes our previous work [Ernst(1969)]) con-
strains the search for greater efficiency, while
at the same time it neglects a certain class of
solutions. Our present analysis follows the same
line.

It is probably somewhat counterintuitive that
the most difficult difference contains all of the
other differences as subsets. One would normally
think that the larger the set of states, the eas-
ier it would be to "get" inside of it. Also, one
does not normally think of W as a difference.

But this somewhat unintuitive picture works quite
well.

Consider, for example the Fool's Disk problem.
Figure 3 gives the initial state of the Fool's
Disk problem, in which there are 4 concentric
disks each containing 8 numbers. These numbers
line up so as to form 8 columns radiating from
the center of the disks. A move consists of ro-
tating one of the disks independently of the oth-
ers. The desired state is one in which each of
the 8 radial columns sums to 12.

Figure 3
in the Fool's Disk problem

The initial state

*

This problem fits the above picture exactly.
is the set of states in which each diameter
sums to 24, while D is the set of states in which
the sum of the N, E, S, and W radii is 48. To
keep the path from s\ to s, in D, GPS only consid-
ers moves which rotate disks 90°. To get from s
to s;, GPS rotates disks by 180° only.

D'

One might be disturbed that each difference
contains all of the easier differences. This is
not a difficulty, because any set of differences
not possessing this property can be converted to
differences which have this property. (In fact,
our theory [Banerji &. Ernst(1977)] does not re-
quire this "nesting" of differences.) Consider,
for example, the 3 disk Tower of Hanoi in which we
are trying to move all disks to peg P3;. Let D. be
the set of states in which disk i is on P3 where
disk 3 is the largest disk. Then, one might think
of using D,, D,, and D; as differences for this
problem. These are essentially the differences
that were given to GPS for this problem. Certain-
ly these sets are not perfectly nested. However,
this set of differences can be converted to the
above picture by intersecting them together, i.

D»D,, D' =03, mDp,,and W p, n D, n D,.

e.,

A more disturbing feature of this set of dif-
ferences is that they are only useful when the set
of desired states is W. In the original GPS (as
well as In our previous work) the same set of dif-
ferences served to characterize all subgoals -
including "make such and such a move applicable."
This is not the case anymore. If, for example,
the set of desired states is the domain of the
operator which moves disk 3 from P, to Pj;, the D,
seems to be a useless set of differences. The
difficulty is that we have "built" W into the dif-
ferences. We did this on purpose to simplify the
differences to allow mechanization. Our original
theory had differences as binary relations bet-
ween states and sets of states. If we specify
the latter to be W, then we are left with a mo-
nadic relation on states which is just a set of
states. But how are we going to accommodate goals
other than W?

The key to answering this question is that not
only W but also the domains of operators can be
the goals of subproblems. Since the number of op-
erators is usually quite small, we will use a dif-
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ferent set of differences for the domain of each
operator being the goal of a subproblem.

These modifications were introduced in our
theory of GPS to make it easier for person or
machine to discover "good" differences. An added
advantage of the modified GPS is that it can eas-
ily handle problems in which the sets of differ-
ences for subproblems with different desired
states are truly different.

The above discussions will, we hope, serve as
a motivation for the changes we have introduced
in the theory. We do not plan to give a formal
counterpart to these motivations or exhibit a for-
mal connection between the old and the new
theories. Instead, we shall exhibit and motivate
the new theory ab initio so that readers unac-
quainted with our previous work will find the
discussion self-contained. We shall, of course,
assume that the reader has had former acquain-
tance with GPS [Ernst & Newell(1969)1.

In the next section we give a formal defini-
tion of good differences. This is followed by an
example of good differences and how they are used
by GPS. Section 4 characterizes the class of so-
lutions that GPS can find given the kind of dif-
ferences described in Section 2.

2+« Definition of Good Differences

Since GPS builds its solution to a problem by
setting up subproblems, we cannot build this theo-
ry by defining what a problem is but rather by de-
fining a larger structure in which a class of sub-
problems can be embedded. Also, this structure
should contain the concepts which reflect the idea
of differences and the connection table. We shall
call this structure the problem domain, "domain"
for short. As in the previous models, we start
with a set S of states and a subset W of S, con-
sisting of winning states. We also have a set C
of partial functions (mapping subsets of S into S)
which we shall call moves or operators. If f e G
is a move, we shall denote by Sf its domain of de-
finition, i.e., states where f is an applicable
move. Since subgoals in GPS have the form "make
move f applicable," these Sf, for various members
f of G, serve as winning sets for subproblems just
as W serves for a problem. The class of all these
sets (W and Sf for various f) we shall call X.

For each set in this class we also define the dif-
ferences which allow GPS to work on them. That
is, for each T e X (T being either W or S; for
some f e G) we define a class of sets Tj, T,, T3
.., Tn with the property that Tj n T n...T,"= T.
The actual number n of specified differences of
course depends on the set T chosen. So, instead
of writing n we shall write n(T) when there is
any doubt as to which subproblem we are talking
about. Also, for reasons of convenience of dis-
cussion we shall often give the name TQ to T and
call S itself, Tp(7)+1-

It may be appropriate at this point to point
out that the TA catches the idea of difference in
that when a state s i T;s a difference exists bet-
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ween s and T.
difference is.

The higher i is, the larger the

The next important concept in GPS, of course,
is that of relevance of a move to a difference.
The major assumption on which GPS theory is based
is that a solution can be obtained by removing
the higher ("more difficult") differences before
the lower differences and never reintroducing

higher differences once they are removed. A dif-
ference Is considered higher than others, if few-
er moves are available to remove it. Of course,

S or T,('T)+i%® the most difficult differences to
remove, since no move changes a state to a non-
state. Let H1 ¢ G be the set of moves which,
when applicable, affects the position of the
state with respect to T1. Instead of making the
very strong assumption that moves in H1 bring all
states outside T1 into T,, we shall make the more
realistic assumption that these moves remove the
states from Ti when applied. This assumption
seems "backward" to many, in spite of the fact
that in most real problems, relevance of moves
does appear that way and was used that way even
in the original GPS. In our difference-finding
program, a state is characterized by giving the
values of certain attributes for the state. A
winning state is characterized by specifying
that some of the attributes should have specific
unique values. To find mechanically that a cer-
tain move is relevant to a certain difference T.,
we test whether the move changes the values of
those attributes which characterize T..

It is this "property-changing" characteriza-
tion for moves which gives relevance the backward
appearance. Of the various values to which the
attribute can change, only one characterizes the
win states. Hence, it is not to be expected that
merely changing the value of a property yields a
win value. On the other hand, if it already has
a win value, changing it certainly changes it to
a non-win value.

Another important characteristic we demand of
the moves in W, (called triangularity of the dif-
ference table in the previous theory) is that Hi
does not affect the differences higher than Ti,
i.e., is irrelevant to Tj for j > |I. Thus, once
a state is in T;, as long as we use moves in Hj
with j < i, T. will not be reintroduced.

This effort shows up nicely in the difference
transformation tables of GPS. If we arrange the
Ti's from top to bottom in decreasing order of i
and the H. from left to right in decreasing order,
and mark the (i,j) cell with a 1 if moves in Hj
are relevant to Ty then the upper right half of
the table will be blank. Tables of this nature
we Call triangular tables, and differences which
give rise to triangular tables we call good dif-
ferences .

We define the maximum difference between T

and s, M(s, T), to be i if s 4 T, and s t Tj for
all j greater than i.
Banerjl
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Implicit in the above definitions is an or-
dering of the T. (and the Hi) which corresponds
to the difference ordering of GPS. The most dif-
ficult difference is T,, while the easiest dif-
ference is T+ GPS's basic problem solving
strategy is to work on hard differences first
and easy differences last. GPS accomplishes
this (as discussed in Section 4) by using the
following to guide its search:

51 To reduce the maximum difference T-j,
use only operators in HA.

52 Suppose a subproblem were generated to
reduce difference Ti; Then do not use
the operators in Hj, i <j < n to
solve the subproblem.

Rule S| was in our previous theory. Note that
there may be many other operators besides H. which
are relevant to T* because we have placed no con-
ditions on Hj for j > i. Sl causes GPS to ignore
such Hj even though some of its operators may be
relevant to Tj_.

The purpose of S2 is to require subproblems

to be easier than the problem for which they are
created. In our previous theory this was accom-
plished by requiring the differences of a problem
to be harder than the differences of its subprob-
lems. This is no longer possible, because we can-
not compare subproblem differences to problem dif-
ferences because they will have different goals
and hence different differences. However, S2 can
be used, because all differences are reduced by
the same operators. Note that S2 is applied re-
cursively. That is, suppose FlI and F2 are the
sets of operators according to S2 that cannot be
used on subproblems SP1 and SP2, respectively.
If SP2 is a subproblem of SP1, then GPS will not
use any operator in FI u F2 to solve SP2, because,
the restrictions on SPl are passed down to all of
its subproblems.

3. An Example of Good Differences

The definitions above appear quite formidable
and somewhat unlike GPS. A simple example will
clarify things. For our example we have chosen
that old chestnut about the monkey and the ba-
nanas, a formulation of which is given in Figure
4. We have chosen this example because it has
(non-trivial) good differences, subproblems are
created in solving it, and it is simple.

One way to formalize the differences above is
by positing that there is a separate table of
connections for each goal which is either W or the
domain of an operator. Figure 5 illustrates Mon-
key and Bananas this way. The I's indicate which
operators are relevant to which differences. The
O's indicate irrelevance. A move is neither rel-
evant nor irrelevant - we use a question mark.
Note that the bottom row heading of each table is
just the goal and that each row is a subset of
the row above it. Although our theory does not
require these properties, they make things easier
to visualize as discussed at the beginning of
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A state is a 3 place vector whose com-
ponents are the monkey's position, the
box's position, and the contents of the
monkey's hand.

A win is a state in which the bananas
are in the monkey's hand.
(Walk, Climb, Push, Grab)
Walk The monkey walks to someplace in the
room.
Climb The monkey climbs onto the box, i.e.,
the monkey's position becomes ONBOX.
Climb is applicable only when the mon-
key's position equals the box's position.

Push The monkey pushes the box to some

in the room. Push is applicable only
when the monkey's position equals the
box's position.

Grab The monkey grabs the bananas. Grab is
applicable only when the monkey is on
the box, and the box is under the ba-

nanas.

Figure 4

A Formulation of the Monkey and Bananas Problem

Section 2.

The row headings are the T in the defini-
tions of Section 2, and the column headings are
the Hi. The definitions of the Tn and the Hi re-
quire that the tables of connection are triangular
in the sense that the main diagonal and all en-
tires above it are 0. In addition, the subdiagon-
al (the diagonal immediately below the main diag-
onal) contains all I's.

Walk is a total function on S, hence its do-
main is S. We do not need a table of connections
for such an operator, because a subproblem of get-
ting into its domain will never be created. We
included the table of connection for Walk in Fig-
ure 4, because the degenerate case of a defini-
tion often helps one understand the definition.

If a column of an operator is all 0's, then
that operator will never remove a state from the
goal set and will never transform a state outside
the goal set into the goal set. An all 0 row in-
dicates that no operator will add or remove a
state to the T” which labels the row.

The above is an example of "difference in-
formation" which satisfies our definition of good
in Section 2. The most important feature of the
tables in Figure 5 is that the triangularity con-
straint orders the rows (and the columns). This
row ordering is the difference ordering - diffi-
cult differences are at the top of a table, and
easy differences are at the bottom. Of course,
there may be several different row orderings
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Figure 5
The Table of Connections for
each goal in Monkey and Bananas

which gives rise to a triangular table, in which
case any one of them will satisfy our formal de-
finition of good.

Now we can describe how GPS solves Monkey and
Bananas using the difference information in Fig-
ure 5. Suppose that in the initial state SO the
monkey's hand is empty and the box is not under
the bananas. Then the largest difference, M(SO0,W),
is that the monkey's hand is empty, hence GPS
attempts to apply Grab. But so /i Sgrab, hence GPS
sets up the subprobiem of transforming SO into
Sgrab, b“' Grab cannot be used in solving the sub-
problem because of rule S2.

To solve the subprobiem, GPS attempts to re-
duce the difference that the box is not under the
bananas since this is M(so, SG,t>)+ Hence, GPS
attempts to apply Push which is not applicable,
and the subprobiem of transforming SQ into Spysh
is generated, but S2 restricts the solution of
this subprobiem to the operators Walk & Climb.
The remaining part of solving this problem is
quite straightforward and similar to the way the
usual GPS works.

4. Totally-Ordered Solutions

The above discussion raises the question,
"Can GPS solve all problems which have a solu-
tion?" The answer is no (which can be shown
quite easily), because'the differences, together
with rules Sl and S2, prevent GPS from looking at
sequences of operators that may be necessary to
find a solution. Hence, the question becomes,
"Can we somehow characterize the class of problems

which GPS can solve?" The purpose of this section
is to show that GPS can golve any problem that has
a totally=-ordered solution which Is our character-
Ization of the class of prohlems that GPS can
solve. Intuitively a totally-ordered solution is
one in which one never introduces a difference
more difficuelt than the current differences at any
peint in solving the problem. This applies te all
subproblems at all levels, We will indicate in
Theorem 1 that using rules S1 and 52 with good
differences produces the class of totally-ordered
solutions.

Te exhibit this result we have to give de-
finitions of what a problem is and what a solution
is. Given a domain as defined im Sectiom 2, a
problem is defined by 2 state & « 5, a subget F of
G {the et of moves), and a goal T » X. A solu-
tion of a problem defined by the triple <s, F, T>
1s a sequence of moves (f1,...,fy), each f;

(1 =15 k) being an element of ¥, and such that
sf,...fy is defined for all 1 (1 £ 1 < k) and
sfy...fy ¢ T.

At this point we fnvoke the partition Hg(T),
Hy(T), ..., Hpery(T) and recall that each fi in the
above solution ig an element of some H,(T}. This
ylelds a sequence jp, 17,....Jy of intiigers such
that for each i, fy - Hji('r). Among them will now
occur an integer which is greater than all the in-
tegers before it and nc less than any element af-
ter it, i.,e., the “leftmost peak" below, where we
have plotted j; against 1.

Problem-Sol ving;-2: Banerj |
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Figure 6

We will initfally show that the solution can
be interpreted to mean that, at this point, the
first effort was made to remove the highest dif-
ference buetween the goal and the initial state =,
The moves before this peak are attempts to make
it possible to apply the move used at the peak.
This seguence (from the start to the peak 1.) will
be called the solutfon to the subproblem, and the
sequence between it and the end will be called
the solution to the pseudoproblem. The rest af
the definitions follow from these considerations.

The triple “ff],...fii_l}, fil' (fii+],_,_
fk)> is called the parae of the soluticn fl,...fk.

1t is obvious that given a domain and a selution
of any problem <s, F, T», the parse cxists and 1s
unlque.

Given the parse as above, we define two problems.
The first, which is defined only in the case that
L= 1, is
1
n(T}
“om, FeUBpY, LR

peJ, w

and will be called the subproblem of <s, ¥, T>
corresponding to the solution (f1""fk)' The
second, which is defined only when 1] < k, is

esf,...fy , F, T>
1
and will be called the pscudo-problem of «s, F, T»

corresponding to the solution.

Once again, it Is obvious that f1""fi 1
ig a solution of the subproblem correspondin% to
the original sclutien.

Thus, one can say that any solution can be
interpreted, 1.c., parsed, to be one in which one
seeks to apply moves in B, (T) with "the highest
m," making such a move applicable by using moves
ocnly in H (T} with p < m. However, such an inter-
pretation’could be given with any crdered parti-
tion, having nothing to do with a difference or-
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dering, The reader will recall that in our orig-
inal definition of a domain the partitionm on F
was so done as to be in keeping with the differ-
ences.,

To bring our discuseicon back to the differ-
ence orderings rather than with the partitions on
the moves, we ilutreduce another definition. Given
a problem <s, F, T> and a solution (fy,...,f,) and
a parse, the solution fs called totally ordered,
if

ti) M(sfy...fq, T) 2 M(sfy... £, TO
for all i (1l =1 < k), and

tii) each subproblem and pseudoproblem has its
corresponding solution totally ordered.

Totally ordered solutions are of importance
In that they characterize the kind of solution
that can be found by the technigue used by GPS. So
far we have not formally defined this technique.
The statement of the following theorem formalizes
the techrnique as well as characterizes solutions
that can be found by it. However, the statement
of the theorem needs the following definition,

Given a problem <s, F, T» in a domain and a
solution £.,...,f for it, the problem—set for
this salution consists of the problem and the mem-
bers of the problem set for the sclutioms to the
sub- and pseudo-problem of the original problem,
if they exist.

We are now ready to state the major theorem
of this paper.

Theorem 1: Givenr a solutlon (fl, f ""fk) of
a problem <85, F, T> In a domain, the solution is
totally ordered, if and only if for each %
(1 <4 <k}, f; 1s the second element of the par-
se of the solution of some problem <s', F', T'> in
the problem set, and fi ¢ Hy(T'} implies
M(s', T') = m.

Intuitively, this theorem says that, if the
seluticn (fl""fk) were found by a search process
guided by rules 51 and $2, then it is totally or-
dered. Ip addition, such a search process is ca-
pable of finding any totally ordered solution.

We shall not include the proof, because it is
a long "walk alang the definitions" given above
and needs some more inessential pedentry like
transfinite induction (on a finite space at that!).

]
5. Conelusion

We now have a working pregram [Goldatein
(1977) ] which, using Invariant attributees of the
problem [Oyen(1975)], would construct a set of
properties T; and partitions H; as given in Sec-
tion 2. These would yileld what we have previously
¢called triangular connection tables.

It wiil be notilced thdt, as previously warn-
ed, Theorem 1 of Section 4 does not aesure us of
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a solution whenever a triangular difference table
exists; one has to be blessed with a totally or-
dered solution - totally ordered by the ordering
mechanically or otherwise chosen in the connection
table. We have had various problems in which more
than one triangular connection table exist, and
yet one can prove that some of the connection ta-
bles would not yield a solution. This problem has
appeared in other, seemingly closely related,
garbs in planning programs for Robots, leading to
the work on Non Linear Plans [Sacerdoti(1975)]. The
analogous problem in our formalization would be
the detection of the nonexistence of totally or-
dered solutions. One approach, that of the detec-
tion of "factorable subproblems" [Goldstein 1977)]
will be reported on at a future date.
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A GENERAL BACKTRACK ALGORITHM THAT
ELIMINATES MOST REDUNDANT TESTS

John Gaschnig
Dept. of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

We define a faster algorithm functionally equivalent

to the classical backtrack algorithm for assignment
problems, of which the Eight Queens puzzle is an
elementary example (Fillmore & Williamson 1974, Knuth
1975]. Experimental measurements (figure 1) reveal
reduction by a factor of 2.5 for the 8-queens puzzle

(factor of 8.7 for 16 queens) in T, the number of pair-tests
performed before finding a solution (i.e., first solution). A
pair-test in this case determines whether a queen on
square (ij, jj) attacks a queen on square (12, j2° " CpY"
seconds, net speedup is by a factor of 2.0 and 6.0 for 8-
and 16-queens, respectively. 16-queens was solved in 0.14
seconds on a PDP KL/10. The speedup can be attributed
to the elimination of almost all redundant tests otherwise
recomputed in many parts of the search tree, as indicated
in figure 2, which shows the mean number of times, D, an
arbitrary pair-test is executed. If D = 1 then all tests are
distinct (no recomputatiOn). Note that each data point in
the figures represents the mean over 30 or 70 problem
instances that differ as follows: instead of instantiating
queen 3, say, on square (3,1), then on (3,2),..., then (3,8),
these 8 squares are ordered randomly. A problem instance
is defined by choosing a "legal squares ordering" for each
queen. Random ordering generally gives a smaller value of
T, on the average, than the "natural" 1,2,3,..,N ordering (for
20-queens, a factor of 5 00 smaller!).

The algorithm exploits an advantageous time-space
tradeoff and is defined below in general form by recursive
SAIL procedure BKMARK [Swinehart & Sproull 1971]. The
classical backtrack algorithm is defined the same, minus the
underlined portions (except that "NEW[VAR]" in line 7 is
replaced by "1"). The algorithm applies to any problem
having NVARS variables (8, for 8-queens), each variable Xj
having NVALSH] a priori possible values (8 squares for
each queen (- one row of board), except 4 for queen 1 for
symmetry reasons). An assignment vector
ASSIGN[1:NVARS] of values to variables is a solution iff
PAIRTESTO, ASSIGN]Ii], j, ASSIGNIj]) is true for all
0 < i <j < NVARS (iff no queen can take any other queen).
Below, ASSIGN contains indices to the actual values. Top

level invocation for 8-queens takes the form
old
104"
new
10007
T
1007
10 Bt —+
o' 5 y 10 15
Fig. 1. T = no, of pailr tests to solve

N-queens puzzle

old -- classical algorithm, new -- BKMARK

Problem-Sol v

inr;-2:

tmp <- BKMARKO, 8, A, B, C, D) with array dimensions
D[1:NVARS] and C[1:NVARS, I:k], where k is the maximum
of the BJi] values (-8 for 8-queens). Initial values of A are
irrelevant; C and D values are initially 1. BKMARK returns
1, with solution in ASSIGN, or returns 0 if no solution
exists. Define PAIRTEST for 8-queens and trace the
execution (new vs. old versions) to see how it works.
(Suggestion: define an array VALUES with same dimensions
as MARK, so that an element of VALUES encodes a board
location.) For brevity, the symbol stands for "comment".

recursive integer procedure bkmark{integer var, nvars;
integer array assign, nvals, mark, newk
begin integer i, val; boolean tesifig;
for val « | ctep 1 until nvais[var] do
if mark[var val] gaq new[var] than
bagin testflg « true;
tor i « new[var] clap | while i < var and tesiflg do
testfig « partest{i, assign[i], var, valk
mark[varval] « i - 1; ! 8 of successful tests;
if testflg then 1if passed ail tesis..;
begin assign[var] « val;
if var = nvars then return{l) ! done, so unwind;
slce if bkmark{var+], nvars, assign, nvals, mark, new)
= | then relurn{1)
and
end;
new|var] « var - 1; ! reset state of this var.;
for | « var + [ !..and others;
it new(i] > new[var] then new]i] + new[var]
raturn{Q} { backtrack and conlinua search;
and;
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GENERALITY AND COMPUTATIONAL COST

Azriel Rosenfeld
Computer Science Center
University of Maryland

College Park, Maryland 20742
U.S.A.

The purpose of this note is pedagogi-
cal. It discusses how one can reduce the
computational cost of applying a set of
operators (or predicates) by breaking
them up into combinations of commonly
occurring, simpler ones. This can be
thought of as a process of generalization,
in the sense that the common, simple oper-
ators are more "general" than the
original, more complex ones. We are thus
suggesting that even when one has a priori
knowledge of a specialized nature (i.e.,
that the complex operators are applic-

able) , it may still be desirable to use
generalized operators in order to reduce
computational cost.

To illustrate this idea, suppose

that we want to apply a set of predicates
P-,,...,P  to an input |, and suppose that

the cost of applying predicate Pi is (pro-
portional to) the cardinality ]Si| of its

set of support 5; £ I. Thus the total

cost of applying the P's is
n

|Si" For example, applying P. might
i=1

involve a template-matching process,
where Pi is true iff. a perfect match to

the template is found in I. Here |

could be an image, or a string (where the
"template" is the right-hand side of a
rule in a grammar), or a graph (where the

"template" is a subgraph). In what
follows, we will use the image/template
metaphor.

Suppose now that there exists a set
of subtemplates Qj, ,Qm such that, for
1 =i =x~n, P, is a concatenation of n. of

1

X
the Qj's. The cost of applying the Qj"s
. m . f
ke I is IﬁaliTﬁ|, where T, is Q,'s set of

If we store the match positions
then to test for P.,

support. s
in a new array |,

we need only apply a template of cardin-
ality n; to I'. Thus testing for all the
Pi's costs [T_ny, cost of
the two-step matching process is

ziTj| + In;.

and the total

PrcM*m-So1vinp:-2:
458

Under what circumstances is the two-
step cost less than the brute-force cost

):1Si| of applying the P, 's directly? We

claim that this depends on the degree to
which the Q's "generalize" the P's —
i.e., on how few Q's are needed to con-
struct all the P's. For concreteness,
suppose that all the Q.'s have the same

support size |T,| = r, and that each P.
consists of the same number n, =s of
Qj's. Thus each P. has support size

|8;| = rs, and the costs of the brute-
force and two-step approaches are nrs and
mr+ns, respectively. If there are few
Q's, they must be used repeatedly, and we
have m << ns (m=ns would mean that each
Q is used only once); thus mr+ns will be
much smaller than nrs. The fewer Q's we

need, the greater a saving mr+ns is over
nrs. Thus the more we can generalize the
P's, the lower the computational cost.

This template example is certainly
not a universal one. It would be desir-
able to extend this type of analysis to
other situations. (On the advantages of
hierarchical matching in the graph/sub-
graph case see Barrow et al. (1972).)
However, our example does illustrate the
idea that it may be advantageous to use
generalized rather than specialized
knowledge (see Zucker et al. (1975)), be-
cause this can lead to savings in compu-
tational cost.
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