THE ROLE OF PREPROCESSING IN PROBLEM SOLVING SYSTEMS

"An Ounce of Reflection is Worth a Pound of Backtracking

Clive Dawson and Laurent Siklossy
Dept. of Computer Sciences
University of Texas
Austin, Texas 78712 USA

O» Abst ract will be left open. It must be closed to achieve
(CLOSED DOOR). To close the door, the ROBOT must
We describe REFLECT, a problem solver in go next to DOOR, which would destroy the already
simulated robot worlds. REFLECT has successfully achieved (NEXTTO ROBOT BOX). If, on the other
solved a variety of non-linear problems deseribed hand, we first achieve the second subtask, (CLOSED
as a conjunction of subtasks, including most of DOOR), we need do nothing since that property is
those found in the literature- First, during a true in the initial state. However, protecting
preprocessing phase, the system explores its this subtask prevents us from achieving (NEXTTO
capabilities in the environment it is presented ROBOT BOX).
with. Various intrinsie properties of the given In the next section, we review previous
operators are inferred, such as the approaches to the design of problem solvers that
unattainabillty of certain conjunctive tasks. attempt to solve non-linear tasks. All of these
Macro operators are built, again considering only approaches seem to be characterized by the fact
the given operators. REFLECT is then ready to that the problem solver concentrates its efforts
accept problems, and proceeds by conducting on certain subtasks in particular, thereby
backward heuristie search on a variation of a temporarily ignoring the other subtasks. Tt
regular state-space graph termed a Goal-Kernel appears that these problem solvers wear
graph. Attention is not focused on any one "blinders", and have no good global view of the
subtask in particular, so that a global view of problem to be solved. By contrast, REFLECT
the problem is always maintained. maintains an overall view of the problem, favoring
no subtask with its attention. At each step, the
1 Int reduction solution to any subtask can be advanced,
irrespective of which subtask was advanced on the
The literature on solving simulated robot previous step, depending on what seems to advance
problems, represented as a conjunction of subgoals the total solution the most. No achieved subgoal
G|, G, ooy G which must be simultaneously needs to be protected. REFLECT draws its power
satisfied in the final state, has become from the results of its preprocessing stage, which
extensive. A review can be found in serves to analyze the inherent capabilities of the
[Sikl6ssy-75] . One of the principal difficulties robot as specified in the operators.
in solving such problems has been called During one phase of preprocessing, the system
non-linearity, meaning that the problem cannot be deduces that certain sets of states are
solved by considering each subtask successively in unattainable, due to the simultaneous presence of
some order Gp/j,, Gy(2), *=*=+, %p(n) Where p isa incompatible assertions such as (OPEN DOOR) and
permutation of (l,«»*,n). As an extreme case, we (CLOSED DOOR) or (INROOM ROBOT RMA) and (INROOM
can consider a solvable problem consisting of only ROBOT RMB). During another phase, macro operators
two subgoals, Gj & Gy A solution to the problem are built. These are combinations of the given
may be unattainable if the subgoals arc considered operators which naturally fit together, and allow
successively in the order Gj G, or in the order C, one new macro-step to advance a solution by
GH, such that once a subgoal is achieved it is several original steps. We call these macro
protected (i.e. its attainment cannot be operators BIGOPs, not to be confused with MACROPs
destroyed during subsequent problem solving). In [Fikes et.al.-72]. BIGOPs are based solely on
One of the simplest examples, taken from the description of the original operators, whereas
[Sikl6ssy & Roach-73], will illustrate the MACROPS are based on generalizations of particular
difficulty. The world contains two rooms RVA and solved problems. Therefore, BIGOPs represent the
RvVB which communicate through DOOR. DOOR, intrinsic properties of the problem domain, and do
initially closed, can be opened or closed by the not depend on any judicious or accidental choice
ROBOT, initially in RMA. To open or close a door, of problems.
the ROBOT must be next to it. There is also a Preprocessing is performed once for a domain
BOX, initially in RMB, which the ROBOT can go next (set of operators), and the results remain valid
to. Hence we have an INITIAL STATE of: for any attempt at problem solving in that domain.
Preprocessing is akin to what a good human problem
[(INROOM ROBOT RMA)CLOSED DOOR)INROOM BOX RMB)]. solver would do when confronted with a new
environment. Before solving a problem, he would
We wish to achieve a FINAL STATE of: take time to reflect upon the situation, examine
the capabilities of his tools (operators), perhaps
[(NEXTTO ROBOT BOX)(CLOSED DOOR)]. performing some small exploratory experiments.
REFLECT's operators are represented using a
If we first achieve (NEXTTO ROBOT BOX), the DOOR strictly declarative formalism. The results of

PrcM e»m-Sol vIn*-3 : Dawson
165

preprocessing, however, are used in a way similar
to the strategic information found programmed into
procedural representations of knowledge

REFLECT, therefore, reduces the
differences between the declarative and procedural
approaches to problem solving by showing that
declarative style operators are not quite as
devoid of imperative content as many may think.

2. Previous Research

easier if some
GD(n) exists such

The conjunctive problem s
permutation Gpn)> An(2) #***

that the problem can be solved left to right in
the order given by the permutation of the
subtasks. In [Fikes & Nilsson-71], some
permutations of the initial ordering of the
subtasks were attempted. In [Sikl6ssy &
I)reu8si-73], a hierarchy (hand input or computer
generated) re-ordered the subtasks so that after

remained sufficient liberty

J7%* A similar

[Sacerdoti-73]
difficult If

solving G i) there
to solve %asks Co(i+-i) f°r
hierarchy scheme was developed in

The problems become more
Interferences between subtasks are such that no
permutation as above exists. In [Sikl&ssy &
Roach-74], collaboration between a problem solver
[Sikl6ssy & Dreussi-73] and a disprover [Sikl6ssy
& Roach-73] (which attempts to show that the
problem has no solution) solves some of these
problems. In [Tate-75, Sacerdoti-75,
Waldinger-75], basically, independent solutions
are obtained for each subtask. These independent
solutions are then postprocessed, and an attempt
is made to mesh them together. In [Warren-74],
the problem is attempted left-to-right in the
order given. When the next subtask G* cannot be
achieved without destroying a previously achieved
subtask, and when no further way exists to achieve

this previous subtask, an attempt is made to
insert a solution for G* in the sequence of
operators that achieved G#, 0<i<k. Statements

similar to our incompatible assertions (Sec. 3.2)

are input by hand to limit, search space growth.
In [Sussman-73], a procedure is built
incrementally to solve a problem, and may include
various modifications and patches on previous

versions of the procedure. Non-linearity is also
discussed in [Hewitt-75], where the applicability
of backward search is noted.

The ubiquitous blocks world, made popular in
[Winograd-71], has been wused in most of these
problem solvers. It should be mentioned that for

simple stacking problems, such as those that have
been considered, a simple hierarchy in the sense
of [Sikléssy & Dreussi-73], exists: stack the

blocks from bottom to top] More complicated block
stacking problems, such as those solved by the
specialized system described in [Fahlman-74],
appear beyond the capabilities of any of the more
general problem solvers mentioned.

In the next section, we choose a blocks
problem to illustrate the behavior of REFLECT,
mentioning en route the capabilities not directly
touched on by the example.

Problem-Solving-3:
466

3. A* Detailed Example

In keeping with the tradition established by
[7,10,17,18,19,20], we will first describe how
REFLECT handles the 3-block problem. (See Sec. 4
for other sample problems.) The world consists of
a table and three blocks. The initial
configuration and the desired final state are as
follows:

Al fR1

The following four operators are
to REFLECT:

(BP*Binding Preconditions, PR«Preconditions, DS-
Delete Set, AS-Add Set)

initially given

OP: Pickup ($B)

BP: (TYPE BLOCK $B)

PR: (ONTABLE $B)(CLEAR $B)(HANDEMPTY)
DS: (ONTABLE $B)(CLEAR $B)(HANDEMPTY)
AS: (HOLDING $B)

OP: Putdown ($B)

BP: (TYPE BLOCK $B)

PR: (HOLDING $B)

DS: (HOLDING $§)

AS: (ONTABLE $B)(CLEAR $B)(HANDEMPTY)

OP: Stack ($B1,$B2)

BP: (TYPE BLOCK $B1)(TYPE BLOCK $B2)
PR: (HOLDING $B1)(CLEAR $B2)

DS: (HOLDING $)(CLEAR $B2)

AS: (HANDEMPTY)(ON $B1 $B2)(CLEAR $B1)

OP: Unstack ($B1,$B2)

BP: (TYPE BLOCK $B1)(TYPE BLOCK $B2)(ON $B1 $B2)
PR: (HANDEMPTY)(CLEAR $BI)

DS: (ON $B1 $)(HANDEMPTY)(CLEAR $B1)

AS: (HOLDING $BI)(CLEAR $B1)

(Binding Preconditions are used to determine
whether the operator is applicable by supplying
the necessary bindings for the variables. They
will never be set up as subgoals.)

The initial state of the world is
by the following set of predicates:

described

(TYPE BLOCK A) (CLEAR B) (ONTABLE A)
(TYPE BLOCK B) (CLEAR C) (ONTABLE B)
(TYPE BLOCK C) (HANDEMPTY) (ON C A)

Our first attempt at the problem will be
without the aid of BIGOPs, since this will serve
to better illustrate the behavior of the problem
solver itself. We will then reconsider the
problem to illustrate the use of BIGOPs.

3.1 Backward Searching and Goal Kernels

Before considering the preprocessing stage,

we will briefly jump ahead to the actual problem
solving. As previously stated, REFLECT employs
backward heuristic search on a goal-kernel graph.
Unlike a state-space graph, in which each node

Pawson

distinct state of the world, a
goal-kernel graph is composed of nodes which
correspond to sets of states. Each such set is
characterized by the fact that it contains all
states in which the goal associated with the node
is satisfied. A node labeled [[ON A B)ON B C)]l,
for example, corresponds to the set of all states
in which these two assertions hold. (ON A B) and
(ON B C) are called elements of the goal kernel.
This node will serve as a start node for the
problem solver. The aim is to find a node
(goal-kernel) whose every element is contained in
the initial state of the world.

A node is expanded by applying operators in
reverse. We reason this way: In order to arrive
at some state in which (ON A B) and (ON B C) hold,

corresponds to a

we must have applied an operator such as
Stack(A,B) or Stack(B,C). The application of
irrelevant operators is automatically prevented,
since they would not move us to a different
goal-kernel. The goal-kernels for the new nodes

can be generated by removing the assertions in the
operator's ADD set, and adding the assertions in
the operator's PRECONDITION set. We obtain the
following graph:

NODE1: [(ON A B)(ON B C)]
/ \
Stack(A,B)—// \\—Stack(B,C)
[ON B C) [(ON A B)
(HOLDING A) (HOLDING B)
(CLEAR B)] (CLEAR C)]

The whole idea should be a little more, clear
now. What we are saying is that given ANY state
in which (ON B C), (HOLDING A), and (CLEAR B) are
true, it Is always possible to apply the operator
Stack(A,B) to achieve our final state in which (ON
A B) and (ON B C) are true. Similarly, given ANY
state in which (ON A B), (HOLDING B) and (CLEAR C)
hold, we will always be able to apply Stack(B,C)
to achieve our final state.

But wait! Is there even one state in which
(ON A B), (HOLDING B) and (CLEAR C) can be
simultaneously true? The answer is clearly no,
and this is precisely what REFLECT has already
deduced during preprocessing (Sec. 3.2). In this
case, (HOLDING B) and (ON A B) form the offending
pair of incompatible assertions (l.A.'s). When
the node expander notices this, it refuses to
consider Stack(B,C) as a possible operator. The
result of the expansion, then, is a single new
node, NODE2, which makes our next choice very
easy.

3.2 How I. A.'s are used in A. |I.

We now back up to consider how preprocessing
is able to examine the operators and deduce pairs
of incompatible assertions (I.A.'S). (Our
discussion will, for the moment, not touch on
larger sets of 1.A.'s, such as triplets or
quadruplets.) Given the four operators for the

blocks world, REFLECT considers the five
changeable predicates which appear: HANDEMPTY,
HOLDING, ONTABLE, ON, and CLEAR. (TYPE is static

and therefore not considered.) Taking them one

Prohlpn-Solv !nr:-3:
467

what could be
and make both

pair at a time, REFLECT conducts
termed "mini-experiments" to try
predicates true at the same time.

Some experiments are very easy. In
particular, REFLECT assumes instant success if the
two predicates appear together on the ADD set of
some operator. Examples of this are (ONTABLE $X)
and (CLEAP $X), (HANDEMPTY) and (ON $X $Y), as
well as (HANDEMPTY) and (CLEAR $X). Other
experiments are seen to fail rather easily. For
example, (HANDEMPTY) and (HOLDING $X) can never be
true simultaneously, since for every ADD set in
which one appears, the other is found in the
corresponding DELETE set.

These experiments are actually abstract
problem solving sessions similar in structure to
the example we are now considering. The main
difference is that we do not have an initial world
state, nor do we have bindings for the variables.
Handling the variables can be tricky. The
two-variable predicate (ON $X $Y), for example, is
actually considered twice; first to deduce
properties for variable $X and second to deduce
them for variable $Y. Predicates are even paired
with themselves. This allows us to deduce, for
example, that (HOLDING A) and (HOLDING B) cannot
be simultaneously true. We have developed a
special notation to represent this, similar in
spirit to the various prefix characters used by
PLANNER, CONNIVER, and QAA Given that $X
represents a variable, #X denotes a variable which
can accept any binding except the current binding
of $X.

As REFLECT conducts the mini-experiments, it
imposes a bound on the "depth" of the graph
generated. If the bound is ever exceeded, the
system abandons that particular pair and goes on
to the next. In this way, the "obvious" 1.A.'s
are found quickly. These can then be used on
subsequent passes to prove further pairs of
incompatibilities. For example, in an experiment
with Pl and P2, the system may achieve PI; the
achievement of P2, however, is found to require
P3, which has previously been proven to be
incompatible with PI. If a similar situation is
found when trying the problem in reverse, then Pl
and P2 have been proved incompatible. When a pass
produces no new results, the depth bound is
increased, and REFLECT tries again. This process
continues until all experiments have concluded or
until some maximum depth is reached.

It is, of course, possible to construct a
world in which it will take an arbitrarily large
amount of processing to deduce all possible pairs

of I.A.'s. If an I[.A. pair is not detected, the
search space may become larger due to less
effective pruning, but this does not affect the

attainability of the solution.

It is also possible to "sabotage" the

deduction procedure by introducing what we term a
"Garden of Eden" initial state. Consider a
situation where REFLECT has just completed

preprocessing, having proved that (HOLDING A) and
(HOLDING B) can never be simultaneously true. It
now smugly asks for its first problem, together
with the initial state of the world. Sure enough,
for some mysterious reason the initial state just
as smugly asserts (HOLDING A) and (HOLDING B)'!

Dawson

This is an example of a "Garden of Eden" state,
namely one which could not have been arrived at by

any sequence of operators. In many cases, these
states follow their historical counterpart and
don't survive very long, (Note that any

application of Putdown($B) will delete all HOLDING
assertions, not just (HOLDING $B).)

REFLECT produces the following incompatible
assertions for this version of the blocks world:

[(HANDEMPTY) (HOLDING S$X)] [(ONTABLE $X)(ON $5X 5Y)]
[(HOLDING $X) (HOLDING #X)] [(ON $X $Y)(ON §X #Y)]
[(HOLDING $X) (ON $X 5Y)] [{ON $X SY) (CLEAR 5Y)]
[{HOLDING S5K) (ONTABLE $X)] [{ON $X 5Y) (ON #X S§Y)j
[{HOLDING $X}(CLEAR $X)] [{ON $X 5Y)(ON $Y $X)]

3.3 Ancestors, troublemakers, and other details

We return now to the 3-block
the next step is to expand

problem, where
NODE2, whose goal

kernel is [(HOLDING A) (CLEAR B) (ON B C)].
REFLECT first focuses on the subgoal (HOLDING A).
NODE3 is produced by reverse application of the
operator Pickup(A). The goal kernel [(ONTABLE A)

(CLEAR B) (ON B C)] is
obtained by replacing (HOLDING A) with the
preconditions of Pickup(A). When REFLECT
considers the subgoal (ON B C), the assertion
(HOLDING B) required by Stack(B C) is found to be
incompatible with (HOLDING A), which is already in

(CLEAR A) (HANDEMPTY)

the goal kernel. The final subgoal in NODE2,
(CLEAR B), is already true in the initial state of
the world, so it is not considered. (1t Is not

always possible to ignore true assertions in this
manner, as we shall see.) The graph now looks like
this:

NODELl: [{ON A BY{ON B ()]
Stack(A,B)——]
NODE2: [{ROQLDING A){CLEAR B)(ON B C}]
Pickup{A}—==|
NODE3: [{ONTABLE A)(CLEAR A){ON B [)
(HANDEMPTY) (CLEAR B}]

The expansion of NODE3 will illustrate
various interesting rules used by REFLECT. We
will describe this expansion by presenting a trace
of REFLECT's activity.

EXPANDING NODE3...
TASK: (CLEAR A)
OPERATOR: Putdown(A)
REJECT-ANCESTOR: NODE2 [a]
OPERATOR: Unstack(C,A)
REJECT-DELETE: (HANDEMPTY) [b]

REJECT-I.A.: (CLEAR C)(ON B C)
TASK: (ON B C)

OPERATOR: Stack(B,C)

NEW NODE: NODE4 [(HOLDING B)(CLEAR C)

(ONTABLE A)(CLEAR A)]

TASK: (HANDEMPTY)

OPERATOR: Putdown(A)

REJECT-ANCESTOR: NODE2

OPERATOR: Putdown(B)

REJECT-1.A.: (HOLDING B)(ON B C)
OPERATOR: Putdown(C)

REJECT-1.A.: (HOLDING C)(ON B C)

ProMem-SoW?nK-3 :

On line [a], we notice how REFLECT has avoided a
loop by Invoking the ancestor rule* This rule
states that if the goal kernel under consideration
is a superset of one of its ancestors, we should
discard It, since any operator applicable in the
new goal kernel would have been equally applicable
in the ancestor.

On line [b], REFLECT is trying to achieve
(CLEAR A) using the operator Unstack(C,A). It
rejects this, however, because even though

Unstack(C,A) makes (CLEAR A) true, another element
of the goal kernel, (HANDEMPTY), is made false!
The applicable rule, known as the deletion rule,
states that no operator can ever be applied whose
DELETE set contains a member of the current goal
kernel. This little failure has had an important
consequence, however. Because of it, (HANDEMPTY)
Is branded as "troublesome". This label is given
to assertions which hold in the initial state of
the world, but which may have to be temporarily

violated since they are interfering with the
achievement of another subgoal. A troublesome
assertion will always be considered during

expansion because, in our backward searching, this
point might correspond to the time when the
assertion (after having been temporarily false)
needs to be reachieved. Even after Unstack(C,A)
is rejected, REFLECT checks for I.A.'s, since this

could point to other “"troublesome" assertions.
The system now considers the next subgoal, (ON B
C), and does succeed in producing a new node,
using the operator Stack(B,C). Finally,
(HANDEMPTY) (already true but labeled
"troublesome"), is considered but produces no new
nodes.

Expansion of NODEA also produces a single new
node when REFLECT applies Pickup(B) to achieve
(HOLDING B). All other applicable operators lead
to I.A.'s. When NODE5 is expanded, REFLECT
generates two new nodes, as shown below:

|
NODE3: [(ONTABLE A) (CLEAR A)Y(ON B ()
HANDEMPTY) {CLEAR B
Stack(B,C)-—--} ()]
: NODE4 : [(HOLDING B) (CLEAR C) (ONTABLE A)

Picknp(B)_____: (CLEAR A)]

NODE5: [(ONTABLE B) {CLEAR B) (HANDEMPTY)
I (CLEAR C) (ORTABLE &) (CLEAR A)]

PR
Putdown(A)=-/ \=-Putdown(C)
/ \

NODEG :
[(HOLDING A)

NODE7: [(CLEAR A)
(HOLDING C}

(ONTABLE B} {ONTABLE B)
(CLEAR B) (CLEAR B)
{CLEAR C)] (ONTABLE A)]

REFLECT finally has a choice to make! Since
only one of NODE6's subgoals is not satisfied in
the inital state, whereas two of NODE7's are not,
the heuristic evaluation function reports that
NODEG6's goal kernel is "closer" to the initial
state of the world than NODE7's is. The system
therefore chooses NODE6 to expand next. The only

Dawson

applicable operator,
ancestor rule, however.

Pickup(A), is rejected by the
REFLECT moves immediately

in a plan:
Putdown-Putdown,

Pickup-Pickup,
Putdown-Stack,

being adjacent
Pickup-Unstack,

to NODE7, which was the correct choice. When Stack-Putdown, Stack-Stack, Unstack-Pickup, and
applying the operator Unstack(C,A), the goal Unstack-Unstack. These conflicts are all caused
kernel [(HANDEMPTY) (CLEAR C) (ONTABLE B) (CLEAR by the I.A. pair [(HOLDING $X) (HANDEMPTY)]. The
B) (ONTABLE A)] is produced. Problem solving remaining eight operator pairs are candidates for
halts, since all elements of this goal kernel are BIGOPs. The method of construction is simple.
true in the initial state. The final graph for Let Pk, Dk, and A* denote the Precondition set,
this solution of the 3 blocks problem is: Delete set, and Add set of operator 0Pk«
Operators OPi and OP., may be combined into a BIGOP
NODE] where
Stack({A,B)-—-|
NODE2 Py =Py + (P, - AiJ
Pickup(A)----{ Dy = Dy + (D] = Ay)
NODE3 A= 1"1’3)*;_1
Stack(B,C)===|
NODE4 (+ and - are set union and difference).
Pickup (B)=--—| Even though the above operation is
NODES theoretically possible on all the remaining
Putdown(A)===/ \-——Putdown(C) operator pairs, REFLECT uses some additional
NCDESG NODE? criteria in deciding whether the combination
[---Unstack(C,4) should exist or not. It is important that the
NODEB="GOAL" variables correspond properly. In a Pickup&Stack
. . . . operation, for example, it is clear that the block
The final plan is obtained by simply which is picked up is the same block which will be
travelling bac_k up to the root: Unst_ack(C,A), stacked. In a Stack&Unstack operation, it is not
Putdown(C), Pickup(B), Stack(B,C), Pickup(A), so clear. The blocks may be different or they may
Stack(A,B). be one and the same. Finally, in a
Putdown&Unstack, it is clear that they have to be
3.4 BIGOPs different blocks. REFLECT requires that at least
one variable in both operators correspond at all
We shall now consider the 3-block problem times. This has proved to be a good measure of
again. This time, we will make use of the results the "naturalness" of combining two operators, and
of another preprocessing phase: the construction helps eliminate combinations of operators which
of BIGOPs. The generation of these combined are semantically unrelated. This criterion
operators is accomplished by analyzing the eliminates Putdown-Pickup, Putdown-Unstack,
inherent structure of the original operators Stack-Pickup and Stack-Unstack. Finally, REFLECT
provided to the system. The basic aim is to checks for combinations which would essentially be
construct new operators which are made up of two no-ops, and manages to discard Pickup-Putdown. We
or more primitive operators. This allows one arc are left with:
in the goal kernel graph to take the place of
several arcs, and results in as much as an order OP: Pickup&Stack($BI,$B2)
of magnitude decrease in the size of the search BP: (TYPE BLOCK $B1)(TYPE BLOCK $B2)
space. After the problem is solved, the solution PR: (ONTABLE $B1)(CLEAR $B1)(HANDEMPTY)
is expanded back in terms of the original (CLEAR $B2)
operators. Since BIGOPs can be thought of as DS: (ONTABLE $B1)(CLEAR $B2)
generalized operators, the expansion process often AS: (ON $B1 $B2)
is able to leave out certain unnecessary steps.
For example, assume that we have preprocessed the OP: Unstack&Stack($BI,$B2,$B3)
operators in the STRIPS world of [Fikes BP: (TYPE BLOCK $B1)(TYPE BLOCK $B2)
Nilsson-71] to obtain a BIGOP called "CLIMBOFF & (TYPE BLOCK $B3)(ON $B1 $B2)
GOTO & OPEN & GOTHRUDOOR" which gives the robot PR: (HANDEMPTY)(CLEAR $B1)(CLEAR $B3)
the ability to go into another room. The presence DS: (ON $B1 $B2)(CLEAR $B3)
of each primitive operator is designed to achieve AS: (ON $B1 $B3)(CLEAR $B2)
one of the preconditions which will ultimately be
needed in order to go through a door. At OP: Unstack&Putdown($BI,$B2)
expansion time, however, it may be found that one BP: (TYPE BLOCK $B1)(TYPE BLOCK $B2)(ON $B1 $B2)
or more of the conditions are already true. For PR: (CLEAR $B1)(HANDEMPTY)
example, the ROBOT may already be on the floor, or DS: (ON $B1 $B2)
the door may already be open. In this case, final AS: (CLEAR $B2)(ONTABLE $B1)
expansion would leave out the corresponding
operators, since they would be essentially no-ops. Let us now take another look at the 3-block
Given the four initial operators in our problem given the presence of these BIGOPs.
version of the blocks world, REFLECT begins by REFLECT is able to solve the problem with no wrong
considering which pairs of operators can be moves in less than one-third the time (1.7 8. Vs.
applied successively. Of the sixteen possible 59 s., interpreted LISP on a CDC6600) and
ordered pairs, it discovers that conflicting produces the following graph:
preconditions prevent eight of them from ever
Probl em-Solving 3 : Dawson

469

NODE1:[(ON A B)(ON B C)]

|

NODE2:[(ONTABLE A)(CLEAR A)

[(HANDEMPTY)(CLEAR B

| (ON B C)]

|

NODE3:[(ONTABLE B)(CLEAR C

[(ONTABLE A)(CLEAR A
(HANDEMPTY)(CLEAR B

Pickup&Stack(A,B)

Pickup&Stack(B,C)

Z

Unstack&Putdown(C,A)-|)]

GOAL: [(HANDEMPTY)(CLEAR C)
(ONTABLE B)(ONTABLE A)
(CLEAR B)]
4. Other sample problems

The figures at the end of this paper together
with Table 1 show some typical Ilinear and
non-linear problems solved by REFLECT. Many have
been chosen from the literature. The order in
which the subtasks of a problem are given to
REFLECT is irrelevant, while it may be crucial to
other systems. Although we provide comparative
execution times when available, comparisons on
this basis are tenuous at best. As workers in
this area know well, slight changes in the
axiomatization of operators can cause large
differences in the behavior of these systems.

5. Conclusions and Further Work

REFLECT has successfully solved
typified by the samples given. These problems
have often been solved only with difficulty by
other problem solvers. The success of REFLECT can
be attributed to a combination of preprocessing
results and the goal-kernel backwards search,
which has proved adequate for handling tasks up to
several dozen steps long. However, the
preprocessing heuristics currently in use are not
sufficiently powerful to prevent a combinatorial

problems

explosion when REFLECT attempts tasks which are
several hundred steps long (within the
capabilities of LAWALY [12]). We can attribute
this to several reasons. First, REFLECT has
essentially put aside the linearity principle in

order to maintain a global view during problem

solving. If particular worlds are not strongly
enough constrained to provide a good set of
I.A.'s, then the lack of effective pruning becomes
evident quickly. Linearity s, obviously, an
extremely powerful heuristic when used
appropriately. Rather than using other heuristics
to overcome the problems of linearity, as almost
all previous systems have done, it is our aim to
develop heuristics that tell us when to take
advantage of linearity. Along these lines, a
hierarchy scheme implemented for backward search

seems promising.

Another area which is being implemented is
the extension of 1.A. pairs to triplets,
quadruplets, etc. An analysis of goal-kernels

generated by the present system shows that [|.A.
triplets arise in substantial numbers, but go
undetected. This means that the system is working
on tasks which are doomed to failure. Detection
of new |.A.'s during preprocessing could be

carried as far as desired; there is presumably a

Problem-Solving-3:
470

which it
problem

point of diminishing returns, beyond
would be more profitable to start the
solving itself.

Finally, an area that needs a lot of work is
the use of preprocessing techniques to generate
good heuristic evaluation functions. REFLECT
currently generates a very crude evaluation
function during preprocessing by counting the
average number of preconditions needed to achieve
a given assertion. This could wuse substantial
improvement.

6. Acknowledgements

We would like to acknowledge the influence
provided by many long and fruitful discussions on
this subject with Daniel Chester, Joseph Dreussi,
and John Roach.

7. References

1, S. Fahiman. "A Placning System for Robot
Conat ruction Tasks," Artifiecial Intelligence,
5, 1974.

2. Re E. Flkes. '"Monitored Execution of Robot
Plans produced by STRIPS." International
Federation for Information Processing Congress
71, Ljubljana, 1971.

3, R. E, Fikes, P, E, Hart and N, J. Nilsson.
"Learning and Executing Generalized Robot
Plane." Artificial Intelligence, 3, 1972.

4. R. E, Fikes, P. F, Hart and K. J. Nilsson.
"New Directiona in Robot Problem Solving," In:
D, Michie and B, HMeltzer (Eds.) Machine
Intelligence 7, Edinburgh University Press,
Fdinburgh, 1972.

5. R. E. Fikes and W. J, Nilsson. "STRIPS: A
New Approach to the Applicaticn of Theorem
Froving to Problem—selving." Artificial
Intelligence, 2, 189-208, 1971,

6. C. Green. "Application of Theorem~proving to
Problem Solving." In: D. E. Walker and
L, M, Norton (Eds.,) Proc. Intemational Joint
Conference of Artificial Intelligence, 1969.

7. G. Hewitt, "How to Use What You Know.™ Fourth
Intemational Joint Conference on Artificial
Intelligence. Tbilisi, 1975.

8, B, Raphael, "The Frame Problem in
Problem~solving Systems,” In: W, V. Findler
and B, Meltzer {Edg.) Artificial Intelligence
and Heuristic Programming, American Elsevier,
New York, 1971,

9. E. Sacerdoti. "Planning in a Hierarchy of
Abst raction Spaces,” Third Intemational Joint
Conference on Artificial Intelligence, Palo
Alto, 1973.

10. E. D, Sacerdoti. "“The Non-Linear Nature of
Plane." Fourth Intemational Joint Conference
on Artificial Intelligence, Thilisi, 1975.

11. L. Siklfesy. "Some Issues in Problem-Solwing
in Modelled Weorlds. Third Intematiopal
Congress of Cybermeticas and Systems, Werld
Organization of General Systems and
Cybernetica, Bucharest, 1975 (printed 1977).

12. L. Siklbesey and J. Dreussi. "An Efficient
Robot Planner which Generates 1ts own
Procedures.” Third International Joint
Conference on Artificial Intelligence, Palc
Alto, Califomia, 1973,

Dawson

13, L. 54klbssy and J, Dreussi. "Simulation of
Executing Robots in Uncertain Environments."
Proc. 1974 National Computer Conference,
Chicago, 1974,

l4s L. Siklbssy and J. Roach. "Proving the
Impessible 1s Impoasible is Possible:
Dispmofs based on Hereditary Partltions.”
Third Intermnational Joint Conference on
Artificiel Intellipence, Pale Alte, 1973,

15, L. Siklbssy and J. Roach. "Collaborztive
Problem-solving between Optimistic and
Pessimistic Problem Solvers." Interatiopal
Federation for Infommation Procesging Congress
74, Stockholm, 1974,

16, L. Siklbssy and J. Roach. "Model Verlfication
and Improvement using DISPROVER.™ Artificial

Intelligence, 6, 1975,

PROBLFEM 1. (From [Warren-74].)
Goal: (ON A B)(ON B C)(ON C D}(CN D E)

B = B

PROBLEM 2. ({(From [Siklbssy & Roach~73).)

17. G. J. Sussman.
Acquisition,
1973,

18. A, Tate.

A Computational Model of $kill
MIT AI-TR=-297, Cambridge, Mass.,

"Interacting Goals asnd Their Use.”
Axtificial Intelligence, Tbilisi, 1975.

19, R. Waldinger. Achieving Several Goals
Simultaneously. Artificial Intelligence
Center, Technical Note 107, Stanford Ressarch
Inst., Menlo Park, 1975.

20. De H. D. Warren. WARPLAN: A Sygtem for
Generating Plans. Memc 76, Dept. of
Computational Logic, U. of Edinbuigh, 1974.

2l. T. Winograd. Procedures aa a Representation
for Data ic a Computer Program for
Understanding Natural Language. Project MAC
TR-84, MIT, Cambridge, Mass., 197].

PROBLEM 6.
Goal: (NEXTTO BOX1 BOX2) (NEXTTO BOXZ BOX3) (NEXTTO
BOX3 BOX4) (NEXTTO BOX4 LSWIT) (NEXTTO BOXS LSWIT)

] a4 a
o
&)

Goal: (DOGRCLOSED DOOR) (ON ROBOT BOX) PROBLEM 7. (From IWarren~74l.)
Gogl: {INRCOM ROBOT RM2) (NEXTTC ROBOT BOX3)
4 RM1 RM2 A/n AM2
a & A B l
faY]
PROBLEM 3. (From [Siklbssy & Dreussi-73].) o @l o m
Goal: (NEXTTO BOX1 BOX2) (NEXTTO BOX2 BOXY) i
(NEXTTO BOX3 BOX1} PROBLEM 8. (Frum {Sacerdoti-75].)
Note This problem is impossible given the Goal: (ON A B)(OK B C){ON ¢ D)
axiomatization.
PROBLEM 4.
Goal: (INROOM ROX] ROOMA) (INRODM BOX2 ROOMA) l .
(INROOM BOX3 ROOMC) (INROOM ROBOT ROOMB) L3 L)
(NEXTTO BOX1 LITESW) (NEXTTO ROX1 BOXZ) PROBLEM 9. ({From [Sacerdoti-73),)
(DOORCLOSED DOORAB)} (DOORCLOSED DOORBC) Geal: (NEXTTO BOXL BOX2) (INROQM ROBOT RUNI)
A B c ' |
A @ © A
i 2 A
1] R
Au L L
PROBLEM 5. (From [Waldinger-75].) m[‘ !
Coal: (ON A BY(ON B) Q
A] 1]
(8| 22 ° g b
Bl [c] c
TABLE 1
Problem 1 2 3 [5 [7 a]
Stepe in solutien 10 ?7¢ 0 34 6¢ 10 4 8 11
Nodes generated 8 5 1 41 3 7 3 7 128
Nodes expanded 5 3 1 22 3 5 2 4 ¢ 5
Time (seconds)? 7.93P 1.29 0,444 | B6.87 1.56 9,99 1,14 4,85 4,478

[a] Interpreted LISP, CDC6600 (includes garbage collection).

[b] WARPLAN time: 52 sec. (PROLOG, IBM 360/67).

[c] LAWALY [12] failed to solve this problem.

[d] Time needed to determine impossibility.
a disproof in 7 sec.)

(LAWALY found no solution after 47 sec.

DISPROVER [14] found

[e] [19] can solve as (ON B C) (ON A B) but not in opposite order.

[f] NOAH [10] time: 41 sec. (Compiled QLISP, DEC-10).
[g] ABSTRIPS [9] generated 60 nodes, using 328 sec.

Problen-Solving-3:
/.71

(Compiled LISP, DEC-10). STRIPS [5] time: >1640 sec.

Dawson

A [y B LHMA Ll LK 1
DloT HRIDUTED PRUBLEM SULYIN

Reid G, Smith
Heupistie Programming Project,
Department of Computer Sclence
Stanford Unlversity, Stanford, California. 94305,

Distributad proceasing offers the potentlel
for high apeed, rellable computation, together
with & means to handle a glica iona that ave &
natural apatial distribuE on, In this paper,
distributed proeeasing is defined as proceaasin
that ia characterized by physical decomposition o
the procesaor into relatively ndapendent

rocessor nodes. Recent advances in SI
echnologt expected Loﬁreault in aingle silicgn
wafers with at least 10° zetive elements bg 1981
[Noyce, 1876), indicate that it is reasonable to
contemplate deaigns which incorporate large
networks of single chip processar nodes.

In this Eaper we exgmine the control of

Eroblem aplving in auch an environment, where most
nforpation 1s local to a node, and relatively
little information 1s ahared Ey the complete
network, Individual nodes correapohd to "experta"
which oooperate to comelete a top level task
(analogous to the "beings" of [Lenat, 1975]). The
distributed Yrocessor i3 thus to be composed of a
network of "loosely-coupled", asynchronous nodes,
with distributed executive contrel, a flexible
interconnection mechanlasm, and a minimum of

centralized, ahared rescurces. This puts the
emphasis on "coarse grain® parallelism, in which
individual nodes are prinaril{ involved with
eomputation (large kernel taska), pausing only

occasionally to communicate with other nodes,

The CONTRACT NET represents a formalism in
which to express the control of problem solvinﬁ in
a distributad processor architecture, Individual
tasks are deslt with as ggg%:;g&i. A node that
generates a task broadeasts s existence to the
other nodes in the net as a
and acts as the “ or
oft t?gtl contract. | Ezeh then rzceived {Eom
potentia ﬁgngceg;g~ , which are simply other
nodes in the net, l% gfggd is made to oOne node
which assumes reaponsib y for the execution of
that contract, ?ygﬁgngfgggg may be let in turn as
warranted by tas aize or a requirement for
aﬁecial expertise or data not in the poassasion of
the contractor. When a contract haa been executed,
a report is transmitted to the contract manager.

Contracts may be announced vig general
broadcast ligited broadcast, or point-to-point
communications mechanisms, depanding on
information about relevant contpactora available
to the contract manager. If, for example, a
manager has knowledge about Lhe locatlon of
particular data, then Iita contract annduncement
will be directed to the node{s) believed to
poasesa that data, 3¢ that the complete netlwork is
not needlesasly involved.

21
e quration

-Contracting effectively cistributes control
throughout the network, thus allowing for
flexi 111h{ and reliability. Decisiona aboul what
to do nex are made as mn Presult of relatively
local eonsiderations, between paira of Erocesaors
although the nature of the announcemen ~bid-award
sequance majntains an adequste global context;
that 4is, the declsion to bdid on a particular
contract is made on the basis of local knowledge

* This work 1s supported by the Advanced Ressarch
Projects Agency undar contract DAHC 15-T3-C-0U435,
Computer facilities are Erovided by the SUMEX-AIM
facliity under National Inatitutes of Health grant
RR-00TB5. The author ias supported by the Research
and Development Branch of the Department of
National Defsnce of Canade. E. A, Felgenbaum, B.
G. Buchanan, G. Wiederhold, K. G. Knutsen, and E.
J. Gilbert provided a number of useful
auigeahions. F. K. Buelow waa a valuable apurce of
L8] technology datue.

Problem

Solving-3:
472

(the task beins procesased in the node
contemglating a bid), and global knowledge (other
curren contract announcements}. The ormaliam
#lso incorporates two way links between nodes that
share reaponalbllit for taska {managers and
contractora). The allure of a contractor is
therefore not fatal, since 2 manager can re-
announce a contract and recover from the fallure,

A node in the CONTRACT NET i1a composed of a

' , communl-

cations interlTace, and loca memorg. e contract
processor {s respopsible for the applicstions-
related computation of the node. The management
processor is reseonaible for network
communications, contract management, bldding, and
the managemen€ of the node itself. Individual
nodea &re not designated a priorl as contract
managera or contractors. Any node can take on
glther role, and durigg the course of problem
solvingl alParticular node normally takes on both

mult

rcles & anesualy for different contracts.

A contract 1s represented as a record
structure with the following flelds: -~ the
name of the contract, = the name of another

rocessor node associated with the contract
Eﬁlﬂﬂll{ - a description of the "{mportance" of

e contract, T - a deacription of the task to
be erformeé, T = a desgeription of the
results obtained, an BCONTR - & pointer to
the llst of aubcontracts tha ave been generated

from the contract.

Contracts are divided into two classes in a
node: those for which the node acts as contractor
and those for which it acts as manager. The node

field of a contract is filled accordingly - with
the name of the contract manager in ‘the first
case, and with the name of the contractor _in the
second case. Subcontracts waiting for service are
held at the node that generated them, with an
empty node field.

The priority description is used by a
management processor to establish a partial order
over contracts to be announced, and by potential
contractors_to_order contracts for the “purpose of

bidding. Similar descriptions are also ‘used_to
order contractors for the purpose of awards. The
concept of priority thus must be generalized over
simple integer “descriptions to include such
(layered) escriptions of potentially arbitrary
complexity, which include both applications-
related and architecture-related information.

. A task description also contains two types
of information: the local context in which’ the
task is to be executed, and the applications
software required to execute it. This_information
is passed when a contract is awarded. Depending on
the task, the required global context may be

assed with the award, or further contracts may be
et to obtain it. Software passed to a node for
execution of a particular contract is retained for
future use, and its presence has a favorable
effect on the future bids of that node

A SAIL simulation
test the formalism.

has been constructed to
It accepts simple applications

programs. and maps them onto a simulated
disfributed processor with a variable number of
nodes. The simulation _is beln? used to determine
the costs associated with the formalism, in terms

of both processor and communications overhead, and

the decrease in computation time that can be
expected for various applications. Distributed
heuristic search is presently being examined in
this way, and alternatives in distributed

deduction "will be examined in the near future.

References

D. B. Lenat. "Beings: Knowledge
Experts," [JCAIU "Proceedings,
September 1975, pp. 126-133.

As Interacting
Thbilisi, USSR

R. N. NOKICB’ "From Relays to MPU's,Y Computer,
Vol. 9, No. 12, December 1976, pp.26-29.

Smith

