SUBGOAL PROTECTION AND UNRAVELLING
DURING PLAN SYNTHLSIS

Chuck Rieger and Phil London
Computer cience Department
University of Maryland
College Park, Maryland 20742

Abstract: Subgoal annihilation occurs during plan
synthesis when the solution of a later subgoal. un-
does or interferes with a completed solution to a

preceding subgoal. Subgoal annihilation during
plan synthesis is discussed, and a uniform solution
to the general problem is presented. The two
phases of the theory are detection and correction
of annihilation errors. Detection is carried out
via a theory of spontaneous computation in which
so-called guardian clusters" watch over synthe-
sized goals. Correction is accomplished by a give
and take technique called "unravelling," wherein
conflicting parts of the plan back off temporarily

to allow other parts to complete. The theoretical
framework of the plan synthesizer is described, a
detailed computer example of detection and unravel-
ling is given, and other applications motivated by
this theory are suggested.

Keywords: problem solving, subgoal protection, sub-
goa annihilation, spontaneous computation,

unravelling, inference.
1. Introduction

One of the subtler issues of automatic problem
solvin and program synthesis is sub?oal
annihilation or infringement.” Subgoal annihilation
occurs when. during” the course of solving one

aspect of a larger problem, some other aspect of

ttie roblem whose solution has already been ob-
tained is interiered with, or undone completely.
Subgoal infringement is a milder form of subgoal
annihilation in" which the prior solution of “one
subgoal causes the solution of anottier later sub-
goal to become more difficult or tedious.

in this paper, we describe a
for detecting and_ resolving subgoal
The scheme is applicable to both = small-domain

uniform _ procedure
annihilations.
and

?_eneral problem solvers, and relies on an associa-
ive style of computing which we call "spontaneous
computation" for the detection phase, and a tech-
nique we call "unravelling" for the correction
phase.

~ We first provide a brief motivation of the sub-
ject and a review_of existing techniques for sub-
goal protection. Then we escribe the problem

solving framework from which we have approached the
problem, and present the paradigm for spontaneous

computation. Next, we describe the protection-
unravelling theory and illustrate it on a small
blocks-world example run on our system. Finally,
we discuss the implications and extent of our

scheme, pointing out some possible future develop-
ments and related applications of the theory.

2. Motivation and Background

In solving a complex problem, jt is
_Na¥s necessary to break the initial
irvio smaller problems such that, if eac
were to be solved, the initial problem would also
be solved. This approach is commonly called problem
reduction or means-ends analysis (see e.g. [ENI] or
[HI]) and has _been the paradigm for most problem
solving systems in Al.

Problem reduction is an
proach to problem solving,

nearly al-
roblem down
subproblem

intuitively adequate ap-
especially if the point

Is to propose models of human Froblem solving.
However, problem reduction suffers from an inherent
d|ff|cuItP/.. This is that the act of delegating re-
sponsibi |t){ for the solution of the initial prob-
lem to smaller subproblems must obwouslx give some

solve the

degree of autonomy to the processes whic
subproblems. (Otherwise, there would be no point in
reducing the initial problem.) At one extreme,
there is total autonomy, where each subgoal solver
has complete freedom to generate whatever type of
solution seems best for the subproblem isregard-
solut best for th bproblem, d gard
ing the fact the tthe subproblem parficipates in a

Problem-Solvingng-4:

be consistent. At

larger plan which must eventuall
solver takes ut-

the” other extreme, every subgoa

most care in interacting and cooperating with all
other subgoal solvers so that harmony of the
overall plan will be ensured.

. The first extreme suffers from too much
independence; the second extreme suffers from too
little independence. However, the first approach is
conceptually and computationally much cleaner than

the second, because ‘it makes possible a more modu-
lar representation of problem = solvin r
If there were some uniform method of noticing and
resolving conflicts among relatively autonomous
subgoal "~ solvers, then we could have the best of
both worlds: modularity in problem solving know-
ledge, yet harmony in ‘the synthesis of large plans.

Subgoal annihilation problems are extraordinari-
ly pervasive, both in expert domains, and in every-
ay human problem solvmg. Consider a simple exam-
ple from the blocks world:

GOAL: Achieve the state (AND ON A B) (ON B C))
starting from the state shown below under the
constraint that only one block at a time can

strategies.

be lifted.

If the problem solver
attempts to solve the
subgoals (ON A B) and
(UN"B C) in the order
given in the state-
ment _ of the oal,
B then it will back it-
self into a corner in
which it must undo
part of the plan for the first goal in order to

solve the second goal, as shown above.
. To illustrate an analogous annihilation problem
in everyday problem solving, consider the midnight
snack scenario: an Al researcher has just made a
delicious (but greasy) cold-cut sandwich, and
wishes to clean up before consuming it. "Clean "

up
~and (b) throw the
S if he solves these
he will not only have to
he might also lose his job at

might mean: (a) wash his hands,
greasy cu_ttln%s away. Obviously,
subgoals in this order,
wash his hands twice,
the Al labi

The central problem in both these examples, and

indeed in many instances of subgoal annihilation,
is ordering. In’"the absense of any prior knowled?e,
it is difficult to see how to have the problem

solver prefer any particular order for the solution

of subgoals. Hénce, it must undertake them in some
arbitrary order, simply to begin. The object of
an system of subgoal protection must theréfore be
(@") to” detect when following the simple syntactic

ordering leads to subgoal annihilations or
infringements, and (b) to recover from such
tions "'with the minimum degree of resynthesis.

Not all_subgoal annihilations stem from ordering
problems. The_ other ma{or source of annihilations
Is inappropriate strategy selection. This occurs
when, having several alternative strategies for
some subgoal, the solver selects one (perhaps even
the best, based on the local evidence surrounding
the subgoal) which turns out to be inimical to some

viola-

other subgoal in the larger plan. For example, if
our Al researcher wishes 1o insert a stake in his

garden for I
its top as a bird feeder,
the "pound it in with a sledgehammer strafegy
might severely splinter the top of the stake, mak-
ing it impossible or difficult to nail anythln to
the stake. In this case, selecting some other stra-
tegy would be called for. We will comment on this

the purpose of nailing a cookie tin to
selecting and applying

type _of subgoal violation later, but concentrate
principally on annihilations stemming from bad
orderings.
Past Work

Much attention has been paid recentl to the

subgoal annihilation problem. This attenlion seem-

ingly stems from Sussman's HACRER system [S2], In
fact, the predisposition to the blocks world by re-
searchers In this area nx be somewhat Sussman's
doing; he was able to cife some conceptually simple
but theoretically troublesome blocks world
problems. The very nature of HACKER as a system
which roduces plans under the assumption of abso-

and then

lute subgoai independence,) A
inevitably

proceeds to de-
bug them for the errors they

have be-

Rieger

487

cause of subgoal interaction, points out the need
for subgoal inferaction schemes.

Several inte,resting? subgoal interaction schemes
have been devised. In Sacerdoti's NO All system
[SI], subgoals are solved independently and in
arallel. © At _each step in the planning process,
he plan is incrementally made more detailed.
After each such step, procedural experts examine

the plan to remove any potential interaction errors
or redundant operations.. A powerful idea here s
the use of a two-dimensional (non-linear) represen-
tation for plans, also a central feature of our
Commonsense Algorithm system.

Waldinger [WI] and Tate [TlI] :
modification of partial plans to alleviate detected
rotection violations. Their schemes involve de-
ectln? that the current goal violates a previously
rotected goal and that the violation can be re-
ieved by specifying that the solution to the cur-
rent goal occur before the violated goal.

Because of space constraints, we must omit a de-

both advocate the

tailed discussion of the relative merits of the
various problem solving strategies dealing with
subgoal annihilation problems. uch discussions,
formulated from various points of view can be
found, for example, in [S1] or [WI], What should
be pointed out, however, is that there is general
agreement that some form _ of dynamic subgoal in-
teraction scheme is required for solving even bare-

ly complex problems. We expect that the scheme we
are proposing will provide us the latitude to ex-
plore the subtler issues of violation detection in
complex domains and the relation of strategy selec-
tion errors to subgoal violation.

3. Theoretical Framework

There are two aspects of our subgoal rote
theory that relate to ongoing work within our
Commonsense Algorithms (CSA) Project at Maryland.
These ~are (1) the plan synthesizer and its repre-
sentation for plans and cause-effect knowled%, and
(2) our paradlgm of spontaneous computation. We de-
scribe each o For

protection

these briefly in this section.

more_ complete discussions, the reader is referred
to [R1J, 1R2J, and [R3J.
3.1. CSA Problem Solver Representation

The basis of the problem solver's representation

both for the strategies it will use in constructin
plans, and for the Tinal plans themselves, is a se
of 16 links. Each link connects two or more events

and represents one of the primitive[causality-
related event-event relations in the CSA theory. We
will not discuss all the links in this paper, but
instead concentrate on one of the constructions of
most interest to our problem solver.

This construction is
the gated causal link with
explicit enablements. It
is represented g r a
as shown to the right. The
central vertical link with
the bulb is the ¢
relation. Its "syntax"
mands that the event on
its tail be an action-like

event and that the event

on its head be either a

state or s t a

event. The events f € A
into the bulb from the

right are called the gat- .

ing states, in that they represent a collection of
states which must be true in order for the action
to effect the state or statechange on the causal
link s head. Semantically, these "are the condi-
tions that govern not the action itself, but the

influence the "action will have on its surroundings.

|s such, the interpretation is that the gates must

A

all be true simultaneously, and for the duration
that "causality must flow" from the action to the
caused state = or statechange. In this sense, gates
will constitute subgoals to "be solved before “per-

forming the action.

The wavy links are enablement links. These indij-
cate explicit enabling conditions that must be in
effect to initiate and sustain the action itself.
The syntax of the enablement link demands that its

tail be a state and its head be an action-like
Bvelt. Lnablements ang gates are distinct in
theory, because the enablements are prerequisite to
the action itself, whereas the gates are prerequi-
site to the causal influence of the action on its
environment. Enahlements will also contribute sub-
goals to be solved before performing the actien.

To 1liustrate, Lo express oune simple strategy
for picking up a small phﬁsical cbject by graspinR
it, we write & pattern such as:

{§STRATLGY (

(NAIIE ®CRASP-LT)

VARIABLES hand object

EVEATS (1 § (FREL hand))
FANY {UR&SP hand))

3 5 (SURKVUNDS hand object
{4 § {GRASPLIG hand ubieet)
{(LINRe (C-CAUSE (2 4} (3))
(US=-ENASLE (1 2}))
{ACCOIPLISHES &)
{APPRUPRIAT L=WHEN
E'FI.—‘.ATURE %SIZE obiect *,{ HAADFUL)
FEATURE (CLASS object *) PUYS=uBJ)))}
We express this in the LIbP rorm shown to the lert
of the diagram, and enter it into the database of
problem solver strategies each of which we call an
abstract algorithm".” Each such strategy is a sche-
ma that can be as simple as this one, or as complex

e
|

as we desire. More complex patterns typically in-
clude additional levels of specification on" the
more than one lev-

gates and enaolenients, Providin

el of solution within the straiegy itself._RougtI?]Iy
e

speaking, the larger the strategy pattern s,
more stereotyped a solution it re_?_resents, in that
it provides a” more thoroug{h sPem ication of the
next several levels of the plan at once. Smaller
patterns contribute onlg the central causal idea
and the gates and enablements, leaving the strate-
gies for ~solving all subgoals up to the
synthesizer.
3.2. Operation of the CSA Synthesizer

In the CSA system, the act of inserting a new
strategy pattern in the synthesizer s database of

strategies inherently also Suggests to the system
where ~ to store the "pattern and when to_ retrieve it
as a relevant strategl% for some goal. This organ-
ization occurs via the APPROPRIATEWHEN feature in
the strategy's input description.

The APPROPRIATEWHEN conditions specify the cir-
cumstances under which it might be most appropriate-
to prefer this strategy over the possibly numerous
other strategies available to the system for the
sarae general goal. For example, the “APPROPRIATE-

~conditions for the "send it by mail" strategy
are different from the appropriateness conditions
for the hand carry it" stragegy, even though both
strategies accomplish the same goal of causing a
change in location of a small object.

The system uses the APPROPRIATEWHEN ¢ diti
to decide where in one of the system's discrimina-
tion networks to situate the strategy. There is
discrimination network for each ‘goal predicate
(e.g. LOC) in the system. It is the purpose of a
network, whenever a” goal involving the net's predi-

conditions

cate appears . durin? plan synthesis, to select the
most appropriate strategy ’in that particular
instance. or this reason, we call these networks

"causal selection networks"
scribed in more detail in

The selection process is sensitive to the fea-
tures of all known strategies which best differen-
tiate those strategies according to their contex-
tual relevance. he nodes of 'a CSN therefore are
intended to probe as much as necessary of the con-
text of the goal whose solution is sought and its
environment to make a "most appropriate"” selection
in that environment. In using a central CSN struc-
ture for this selection process, rather than
adopting a more distributed scheme in which strate-
gies compete (e.gl. as _do PLANNER theorems [SW1] or

a

(CSN's). CSN's are de-
R17.

production rules TDK1]), we are reflecting our very
strong theoretic bias that intelligent, coor-
dinated selection from among alternafe strategies
is one of the central issues of Al.

Our system therefore consists of a

potentially
large number of CSN's,

each of which contains (at

Prob1em-Solvin*-U: Rierger
488

its terminal nodes) a set of strategies. Each components have been planted in the tree.
strategy is expressed via cause-effect patterns si- To illustrate, suppose we wish to create an SC
milar to the one illustrated above. which reacts associallveiy whenever BLOCKI comes to
In this environment, the plan synthesizer's be located at location A while BLOCK2 is located at
overall behavior is as follows. The initial goal location B, ££ whenever any block greater than 10
(there may be several concurrent goals, but we will cm in height comes to be located at location C.
consider the simplest case where there is just one) Then we would define this SC to our system as
causes the relevant CSN to be ~called wup and follows:

applied. The CSN poses queries to the database- (*PLANT ' (OK (AND LOG BLOCK1 A))
deductive component in order to select the most ap- ULOCK2 B%))
propriate strategy, within the limits of its avail- (AND LOC C

able strategies and available information about the 1 (HEIGHT -X -Y))
context of the problem. Once selected, the synthe- (GREATERP -Y 10)))
sizer «creates as its subgoals any gating and <some body> <some trigger tree>)

enabling states (as specified by the gates and
enablements of the selected strategy) which cannot

be expected to be true at plan execution time. In .
this manner, the synthesizer recursively attacks COmputable). Tze tﬁOdyt s argy E.\/Alh—jable LISFf’ the
the initial goal until no details remain or until a ©€XPression, an e lrigger tree is the name o e

This illustrates all three types of trigger compo-
nents (associative, non-associative. and

specified level of detail (depth bound) is trigger tree (e.g. "TTi) in which we want the as-
achieved. The paradigm is that of problem sociative components of this pattern planted. The
reduction, where the Treduction operators are integers (all I's in this case) in the pattern are
(possibly quite complex) CSA .strategy patterns, and Uused by the database-deductive component, and
where alternate strategy selection occurs fepresent the energy budget (measured in database
"intelligently" via the CSN's. fetches) which can be expended in attempting to de-

. . . monstrate that the associated component of the pat-

~The most common source of subgoal violation in tern is true after an initial triggering by some
this environment seems to be (contextually) bad other component. Atoms prefixed with hyphen signs
orderings on the gating and enablement states in denote variables. Variables are global to the ‘en-

one or more subgoal strategies. Although it seems tire trigger pattern, in that two variables with
to be feasible to learn and record good orderings, the same name must be consistently bound to the
initially, the synthesizer cannot be assumed to same constant in a stimulus pattern (as in PLANNER
know anything about potential ordering problems. By and CONNIVER [MS 1]

definition, therefore, in the absence of explicit
ordering information, the synttiesizer always at-
tacks the gating and enablement conditions in the
order they appear in the internal representation.

Associative access to all SC's which "nibble" at
a stimulus pattern is caused by a call having
either of the following forms:

Similarly, for compound initial goals (represented ESACTIVATE<tr|geer tree> <stimulus>)

by anofner of our links), the components are at- or <trigger tree> “<stimulus>)

tacked in the order specified. (i.e. trigger trees can be wused semantically as
We will return to the overall synthesizer stra- functions also). In either case, <stimulus> is a

tegy later. We now turn to a description of the fully constant nested n-tuple.

spontaneous computation component of the Application of a trigger tree in this manner re-

synthesizer, and describe how it relates to the sults in a queue of SC bodies which are ready to

synthesizer strategy just outlined. run. In the process of activation and the determ-

) ination of which nibblers are actually ready to
3-3. Spontaneous Computation run, there is considerable Interaction with the

database-deductive component in determining which
The spontaneous computation (8C) component of patterns are fully satisfied (beyond the superfi-
the CSA system provides us with a dfemon—like, asso- cial associative trigggering). Some other theoreti-
ciative access mechanism. It is of use and inter- L i ; ; ; ;
est in other phases of our project (especially as a n1R3Pf|Ir&é“8rﬁ% 8F this interaction are discussed
model of certain cate)gories of inferfence in lan-
guage comprehension). However, we focus here only tions ~of contextuall
H p y related SC s to part|0|pate
on the aspects which relate to the synthesizer. in a larger construct we call a "channel ' It s
The CSA SC component is a generalized implemen- the channel construct that gives us a final pattern
tation of the notion of pattern-directed invocation directed invocation facility akin to PLANNER and
in that it provides for more complex invocation CONNIVER, except that channels provide for more

Trigger trees can then be reé;arded as popula-

patterns and for a more sophisticated hierarchical generality in the hierarchical control over popula-
organization of invocation patterns. A CSA SC in- tions of bC's. Since we use channels only trivially
vocation (trigger) pattern is a collection of in the plan synthesizer at present, we do not dis-
nested n-tuples composed via AND, OR, and ANY rela- cuss them further here. Interested readers are re-
tions to virtually any complexity. Each nested n- ferred to [3].

tuple is identified as (1) an associative component

of the trigger pattern, (z) a non-associative com- We now return to the main topic = of the paper,

first describing the subgoal annihilation detection

ponent of the trigger pattern, or (J) a "computa- strategy

ble", an S-expression which must evaluate non-NIL. .

Associative components are those that have the po- ; ; ;

tential for triggering the execution of the spon- 4 Subgoal Violation Detection

taneous computation. Non-associative components are As the synthesizer attacks and solves each sub-

patterns that must be true (i.e. in the database or g3 in the manner described earlier, it protects

iieducible) in order for an SC to run. but which {5t subgoal by planting one or more violation pat-

themselves have no potential for initially trigger- terns in a central synthesizer-related trigger

ing the computation. We denote associative compo- trgg. A violation pattern, conceptually, is any

nents by the symbol "+, non-associative components pattern which would be directly inimical to the

by _the symbol -", and computables by any other pattern representing the subgoal which is being

LISP predicate. protected. For this reason, we call protection
In a system with this type of invocation patterns “"guardian clusters." It is the respons-

pattern, an important issue is now to organize the 1bility of a guardian cluster, for the duration of

associative parts of triggers so that, given some its existence, to ensure the continuation of the

stimulus, all "nibblers , i.e. trigger patterns state it protects, spontaneously firing when inimi-

which contain a component that matches the cal patterns materialize.

stimulus, can be accessed all at once. For this
purpose, we employ a construction called a "trigger A)
tree", and use the metaphor of "planting" a trigger ’

To illustrate, to protect the state (LOC BLOCKI
we would plant a relatively simple pattern such

pattern in a trigger tree. The Internal structure

of trigger trees are irrelevant to this discussion, (AND (+ 1 (LOC BLOC,K| -X))

and are described in [R3]. We need only the term (NOT-EUAL -X))

here, and that is because each trigger tree will j.e. a guardian that would react if the location of

correspond to a population of SC's, namely the col-
lection of SC's whose trigger patterns' associative

ProMem-SolvtnfrU: Rie*er
489

BLOCKl is ever predicated to be anywhere but loca- including a relatively exhaustive definition of the
tion A, the protected state. state "clean hands", namely, an enumeration of all

The planting of a guardian cluster occurs im- closely-related inimical ‘states (DIRTY, GREASY,
mediatePy upongthe Sutcesstul solution of the state g}ec')aéolittferdnatilfv?/vlé/’wg??etombrteh:ksea||p2g2|seemsconggg't1t
the cluster is designed to protect. (i.e. all gat- ; Ao pts
ing and _enablin states). Gating = and enablin down into further primitives, and arrange to
states which are tound tg exist already, and whic %Igleg er on the more primitive symbols rather than

therefore require no synthesjs, are also protected {474 igl\wNei-trth)esz\t/el ?R?SS inIPerg?]yceeV(at?\tét thgonpnoei(r:ltts ig

as though'they had befen solved by the synt esizer. grasping of something greasy to the resulting grea-

The point of guarding each subgoal as it is siness of the grasper, the gras |n|%; state asserted
solved Is to ensure thal at the end 'of all the gate during the solution of one of the subgoals would
and enablement solutions, all subgoals will still not trigger the guardian cluster. However, with
be in effect so that (a) the action of the CSA such an inference, the guardian cluster is hit.
schema can be performed (actually, added to the Thus, details aside, we Pet a glimpse of how infer-

output action stream) in the presence of all its ence can interact with 2N svnthesis.
enablements, and (b)) performa?]ce of the action will : with p y '

achieve the_intended result in the presence of all . . .

its gates. Therefore, guardian SC s are destroyed To summarize, there are two issues relating to
(actually, masked) after the synthesizer finally s$pontaneous subgoal guardians: (1) how to express
enerates ' the action. Semantically, since the ac- the fguard|an cluster, and (2) how much responsibil-
ion has been performed, the protected states are ity {o delegate to the guardian vs., how 'much to
no longer needed for the time being. place on a more general inference facility.

There are some interesting theoretical questions ;
abouTwhat, exactly, constitl?tes a guardiar(1q cluster 5. Unravelling

of SC's for any given state. In its 'simplest form, The protection paradigm described above sug-

we conceptualize the guard to trigger on "the gested itself relatively soon after the development
negation" of the gtuarded state. However, things are. &f the SC component = of the CSA system. We then

seldom so simple that pIantin%ej'ust the syntactic puzzled for a while about what should actually hap-

negation of the pattern will adequate. ?en at subgoal violation time. Our criteria” were

We do not yet have what we would call a general wofold: 1), that violations be detected at the
theory of guardian cluster generation. However, we earliest possible phase of synthesis, and (2) that
expect the semantics of the predicate in the pro- as much as possible of the plan up to the violation
tected state can provide the synthesizer with point be salvaged.

direction in constructing the guardian cluster. For The first criterion seems to be solved by the SC

example, for those predicates which are uni-valued, {etection paradigm. The general motivation for
but which have a continuous range (such as LUC), we eogarly detection is that, dufing the earlier phases,
plant a pattern of the form shown earlier, namely: there is more fundamental knowledge about the how s
Protect LOG X Y)——> (AND (+ 1 (LOG X Z)) and why's of the plan's construction. This makes

&NOT_CqUAL ZY)) possible” both more accurate diagnosis of violations

for predicates which are either true or false, we and more accurate analysis of the implications of

lant a pattern involving the predicate which is Plan rearrangement. The second criterion of maximum

he opposite of the protected state's predicate, Pplan salvage has more practical motivations, but

e.g. to protect the state (FREE <hand>), we plant: also coincides with our intuition that human_ prob-

Protect (FREE -il)——> (+ 1 (GRASPING -il){) lem solving involves considerable salvaging and
stitching together of plans.

; Since the source of conflicts we are rimaril
Guardian Clusters vs. Inference considering is bad orderings, the repajr of @ Cori.
It is difficult at this time to assess the range flict will amount to reordering parts of the plan
of problems involved in planting good guardian in a way that avoids the conflict. The simplest and
clusters. However, one requirement is assured: we most obvious strategy would be simply to start over
must rely heavily on a good inference system which tfith a new order, possibly resynthesizing many gate
generates ~a moderately rich set of inféerences from and = enablement 'suboals. his is not a good
each event arising during synthesis, i.e. meaning approach, because it is inherently combinatofial,
parzpfyates, Imlicaliofs, anf eh rorlh, O BT SR0Shenied T dlpllates BT 1 U0 e v
. . ter 1 , re- esirable o have a give-and-take arrangemen
'y'”r? on Irf]ferr?_nce**tko hit this violation target In GRdrein conflicts can be ‘resoived by havin% one
@ shotgun fashion. subgoal back off for a moment to allow the other
subgoal to complete, then having the retreated sub-

** We feel that studying the processes of subgoal goal simply rejoin without having to resyntheslze.

annihilation detection will shed some light on "the Uur theory oi correction follows these ideals.
interesting question of how problem solving and we call the technique that implements this give-
inference "interact. ~As an example of problem gng-take strategy "unravelling". = The unravelling
solver - inference interaction, reconsider the mid- gcenario oes ~as follows = (see figure below).

night snack example. There, the two goals are (1) S(ppose gating state A has been achieved as a

have clean hands, and (2) get the greasy leftovers suggoal, and"has been protected. Suppose that dur-

(GL) into the trash can. Now, the eéssence of the jng“the synthesis of another brother subgoal B
e

model concept that represents the greasy leftovers .g. a_ brother gate), A's guardian cluster is
is SC-like itself; namely, it represents "an _obgec_t, triggered, indicating that some state lust achieved
one of whose features is® whenever this object is iy “the pa'rtially completed synthesis oi B has vio-
touched i.e. =~ whenever an assertion matchin lated state A. The plan which leads up to A then
(GRASPING -H GL) is made), the grasping object will nhravels one level by reverting to the context

become greasy. This is an inference which "plays the \hich existed immediately priof to the attainment
role of 'an "active" component in the object'S de- of A i'e., the unravelling mechanism undoes the

finition (similar to ‘an "imp" in Winograd's ter- gction which causes A. It then removes A, alleviat-

minology). ing the immediate violation, and notes that it will
ii our synthesizer were to synthesize and ro- have to reconstruct this last step in the plan
tect the plan for clean hands first, one state that leading up to A
would be ‘directly asserted at some point during the As A is unravelled, the gates on A's causal link
throwmg away"_ subgoal ghe, second one) would be and the enablements of A's’ causing action, once
(GRASPING IANI)° GL), where GL is the model concept protected themselves during the eaflier part of the
ior the leftovers. This graspin state, bemg a synthesis, are re-protected by reawakening their
component of the trigger pattern for this active guardian clusters. Rese gates and their clusters
feature of GL, would cause the inference (GREASY 3re then melded into the current context (i.e. that
HAND) to be generated. That in turn would set off in_ which B is being synthesized). Then B is al-

the "guardian cluster for the clean hands state,
assuming of course that this cluster were suffi-
ciently rich, to include (GREASY HAND) as a
component. This could be arranged, for instance, by

lowed to proceed. When B completes, A rejoins (n.b.
A does not resyntheslze, but rather simply closes
in "around" the plan for B, which now haS concep-
tually been spliced in) by reissuing the action

Problem-Solving-4:RIEGER
490

which achieves state A. A's gates and enablements
are then once aé;am unprotected, and itself s
again protected. At that point, both A and B will
coexist, permitting the syntliesizer to get on with
the next ate or enablement, or, in case all have
been completed, issue the action the level
awaiting such a completion.

_The semantics of this unravelling-rejoining are
this: Ordinarily,, brother subgoals” do not have to
know of each other s existence. However, when one
does something which is inimical to the other, they
must at. that point become aware of each other. By
unravelline the first one a single level, we alle™-
viate the immediate problem, but at that point also
force pieces of the two goals (actually, the plans
leading up to them) to coexist in the same context.
This is because, the process of unravelling A casts
A s gates and enablements into the population of
currently guarded states.

Unravelling is tree to occur wherever and
whenever it is needed to permit the current subgoal
to proceed. This means that one unravelling can set
off other unravellings, e. that subgoa ht
inside of A's

at

B mi
pTan

cause more than one unrave Iing /
after being allowed to proceed past the first con-
flict, that the melding; of A's prior context (i.e.
its gating and enabling states) into the existin
context could in turn trigger an unravelling o
art of B's plan, and so forth. All problems arise
ecause of now having to force two brothers (or, in
the limit, distant cousins) which previously knew
nothing of each other to live in the same
environment.

This give and take paradilgm. is, we feel the
best possible conflict resolution paradigm. At one

end of the spectrum, unravelling amounts to one
simple backoff, while at the other end of the
spectrum, it can amount to multiple backoffs which
in the limit amount to a complete reversal of all

subgoals (i.e. each later one comes to be spliced
in before former ones). The important point (and
the feature that we feel gives this a{)proach
elegance) is that onIY the unravellings tha have
to be done are actually done. There is no wholesale
reorderln% of subgoals, and (conceptually) little
overhead for conflict-free plans.

REJOIR A
+ DENOTES: UNPROTECTED
*¢+ DENOTES: PROTECTED
NUMBERS IN NODES DENOTE SEQUENCE OF ACTIONS
b.I. Context Requirements
When an unravelling occurs, previously protected

states come to be unmasked and reprotectéd. The de-
mand on the context mechanism therefore is that it
be able to revert to the context immediately prior
to the first masking of those subgoals. As the re-
protection occurs and the prior context is exhumed,
items from that context are melded into the ex-

isting context. This process can itself trigger
other” subgoal violations pendin in the current
context. Ithough any given example can grow to be

quite complex in its unravelling behavior, unravel-

6. Example

We now illustrate the theory via a simple blocks

world example which conveys some of the subtleties
of the unravelling proceSs. Starting with an ini-
tial configuration as shown in Figure 1%a), we pick
up the. action as it stands in Figure 1(b), solving
the goal (uN A B). The synthesizer has been able
to construct a standard s¥n_he3|s_ without any ro-
tection violations u his point and to

is abou

to
attack the. subgoal (EREE-HAND) — state S

First let us remark that
there are two : links
(shown to the right) in
this graph that have not
been " previously mentioned
in this paper.” They are
the "state-coupling link,
and the "gated one-shot
bygroduct" ink. #See [R1],
[H! and [RG1] for a com-
lete coverage of the CSA s)
inks.) The state-coupling
link connects two states
and implies that the state at its head can be con-
sidered to be true because of the truth of the
state at its tail. The gated byproduct link is
identical in syntax and semantics to” the gated cau-
sality link. However, the intent of the ~causality
link dlstln%mshes it from tne Dyproduct link, in
that the stale caused by the action on a byproduct
link is not the state’ intended by the performance
of the action, but merely a byproduct. Thus, the
fate of a Dyproduct "state is irrelevant to plan

synthesis and it need not be protected. But a. bY-
product state can cause a violation as decisively
as any other state. Therefore, byproduct states
must "be treated as other achieved states with re-
spect to violation detection.

In attempting to solve the goal gON A , the
synthesizer has set L'JJ) subgoals QRA PING A), (LOC
B). ~ (GRASPING A) has been
S3, S4, and S5 were already
nf|Sq_urat|on) by performing
P A). imilarly, thé second sub-
oal; S6, has been solved by per-
formmg action A3. ~had’ no
subcoals). To this point, the
() synthesizer has proposed an ac-
tion sequence (A2,A3).

The last subgoal _to be solved
(CLEARTOP B?, S7. The action
only achieve this goal
the ‘subgoals S9, S10, "and
Sl have been solved. S9 is true
(;Jbecause S6 is true and this fact
explicitly denoted by a state
ling lin (1DUI_|t . the
synthesizer). S10 is true’ in the
initial configuration and nothing
lias negated 1t. Now the synthe-
sizer attempts to solve S,
__The currently protected states S2,
b, S9, and SiO are marked with '+' in Figure 1(b).
Since SlI is a violation of the Brotected state S2,
let us describe the steps taken by the synthesizer
to complete this plan.
— The action (AZS) which causes the violated,
S2) is unravelled. S
quence (A3). The context in
were rotected is exhumed and melded
current context Bleldlng_ a set of
S3,5A,55,56,59,510. An item (S2.A2
an "unravel stack".
— A test for secondary violations is made (i.e. a
test to determine whether any of the currently ac-
tive states (S6,59,S10) violafe any _of the Tnewly
reprotected states 3,S4,S5)). This is done in
the order of the most recently 'solved state first
(i.e. SIO, then S9, then S6). The violation of S9
violating S3 is detected, S3 is unravelled, and its
entry is pushed onto the unravel stack. The unravel
stack now looks like: (S3.NIL),(S2.A2). The action
entry for S3 is NIL because there is no action to
be “unravelled for S3. This NIL entry will S|gn|f¥3
that the synthesizer must construct a plan tor S
at the time S3 is rejoined. (The reason for this
new synthesis is that S3 is no longer true — that
is why it was violated!)
No more secondary violations are detected and
can now be protected. Since all the subgoals

B

B), and (CLEARTOI
. subgoals

initial co
(GRAS

solved * (its
true In the
the action

FREE-HAND).

state
This leaves a new action se-
S2 s subgoals
in with the
rotected states
is pushed onto

which

Sl

Problem-Solvr-4: Bieger
491

GOAL: {ON A B)

oM ¢ B}

{OM B TABLE

OM A TABLE
CLEARTOR £
CLEARTOF A
SURROUNDS HAND A)
FREE-HAND)

|

THITEAL WaHLD PLAN 50 FAX
(a) Figure 1. (b)
for S7 are now solved, these subgoals' uardian

clusters can be hidden (by popping contexts), leav-
ing only states S4,S5,Sb ‘protected. The action A4
is apfended to the
A3,A4). A test must now be raade to see If S7 or
ti\e byproduct state S8 cause a violation of any of
the currently protected states. .

— It is detected that S8 violates S3. S5 is unra-

velled ielding
(S3.NIL),(S2.A2).

remains (A3.A4
are S4,So,S/.

— Since subgoals of S7 caused violations, The to
entr on the unravel stack, (S3.NIL), is popped. &%

) No secondarY violations need be
considered since secondary viola X S

only by the reactivation of hidden guardian c377ca
clusters. S5 has no subgoals and, thus, no guard-
ian clusters are reactivated. The action sequence

action sequence, yielding

unravel stack: (S5.N1L),

tions are caused

currently protected states

generate
process does
Figure 2 displays
the action

(LOC HAND B)
returns to the

the unravel
first entry

violates

— The entry for

a new
not

St

at

S6 is popped off the unravel stack
and the synthesizer is again called recursively to
solution for (LOC HAND B). This

cause any further violations.

the new plan; A8 is threaded onto

sequence, yielding (A3,A4,A6,A7,A8)

is again protected and the synthesizer
level that was solving S5.

— S5 reprotected, leaving the set of states
S4,S5,8Sb,S7 protected. The synthesizer exits from
this recursive call, returning to the level that
was working on S7 (remember?). It was at this lev-
el that S8 violated S3.

. Final Action Sequence:
EMUVE-TU B)

GHASP C)

JUYE~TY FREE=SPACE)
PUT~DUWN C}

WVE-TO A)

GRASP A)

gillJVIi—TiJ B}

PUT-DUWH A)

i

Figure 2.

== At this level, there are stl%l twy entries on
istack; (SJ.NIL}Y,

s
recursively
slot, and chen tests for viclatlons detectin 53
The new actiovn, ab %, 1s
threaded, and 53 is rerrntected. If the synthesiz-
¢r were to return 1
ravel 56, wo would run into a major problem; 56 and
would alternately violate one another indefi-

52.A2), Apain, the

opped off, the synthesizer is

to take care of its NIL acclon
(Figure 2

{s pvint and attempt to un=

If the action slot is time to start rejoining nitel . : '
. 19, tely. Thls is becausc unravelling S6 at_ this
iosn th?ggdegngan\{gl tﬁgacakctei)garyselsuennocte NaIrI]_ trgﬁeac\sli%r_l Pmmi v:ﬁlites the (:]Lcl:lgen Rule of Ugrave}lingé
" : AT a an unrave e state cannat & Tejolne
lated state is reprotected. In this case, the ac- untilyihe state which violated it has been used as

tion slot is NIL, so that there is no action to be
) the s¥nthe3|zer is called recur-
sively to generate a solu 1 to Of
course, there is the possibility of a new protec-
tion violation, which

threaded. Thus,

this case. The

lan generated by the synthesizer

ion to the goal S5.

merely
is exactly ~what happens in

as a solution to (FREE-HAND), S5, Involves stafe theP

S12 and actions A

is threaded onto the
but when a test is made to determine if
lzgn violations, the contradiction between (LUC HAND

E-SPACEE and
was protec

when we thought

and the wunravelled

ed, a violation occurs.

— Als din tthis ca?ﬁ, when a violated goal is state-
coupled .to another, .
unravelling. It should be recalled that the reason I¢Rrotected, and ti
for the coupling is to denote the fact that,_ for
example, S9 is true onlg because Sb is true. Thus,
if we were to unravel S6

action sequence, then

action sequence
2 causes

a subgoal,
(The complexities of the algorithm described here
serve the purpose of preservin§ the integri=-
t{ of the Golden Rule.) Thus 1
of an un

that

to th
3,A4,AB), tectedf

returns.

1.,

until it thas been unprotected.

f a the subgoals

1
ravelled state (e.g. Si] have been solwved,

state must be rejoined., Therefore, the

action sequence, 3, 54, and S9 arue unpro-

54 s
The

and A7 'as seen in Figure 2. A6 unhravel stack entry for 2 is removed, Al is added
g% pruotected, and the syntheelzer

action aequence isg now

is detected. Since S6 QAJéA&.Ab,A?,AS,AZ)- The protected poals are

54,

special care must be taken in
tion

by splicing A3 out of the

threaded

onto

gsequence Is
tected goals are 5
== The synthegizer has returned to the level of §1,

—- The last unravel entry (S6.A8) is popped. AH 1s
the action sequence, 56 is

e synthesizer returns. The ac-
agﬁig,u,n,as.az.aa). The pro-
* 1 -

{UN A B). All of this goal’s subgoala are solved
it S9 WO%#j noﬁ qave 'be?n btrUE so 1lrs acktlon, Al cangbe threadgd onto the action
A It was. e solution Is 10 Dreaxk gegyence, and truth of (UN AB) can be
the causal link betweenttrge unsr%velleddactlont (tA3) asserted.
state and construct a
the acﬁ%n %and the coupled The Einal result of this synthesis 1is the com=

causal link between [) {

SV). . This transformation is depicted below.
tate Sb is left without a causing action as its
ntry is pushed
(S6./N1L).(S3.NIL),(

state (
S

e

to he unravel stack: SPACE)

plete plan re
sequence

CABVE ~

gntation of Figure 2 and an action
TO B), (GRASP C), (MOVE-TO FREE-
(PUT=DBOWN C)

(MOVE-TO A), (GRASP A),

SZ.AOS). Th(ta protected states are (MOVE-TO B), and (PUT-Buwn A}.
(]E;) 7. Advanced Subgoal lnfringement Problems
— We are beginning to consider Bome of the more
GO ED ST e I S TR S oot O T SR s HE
— The synthesis for S5 now continues with A7 being proklema, that of "fuzzy violation" or

threaded " onto the action sequence: gA3,A4,A6, A7). Tinfringement",
The uardian for, PACE)
and Sb can be rejoined.

(LOC HAND FREE-

PrnMem-Sol vinA-**:
k<>2

Rle*er

requires the introduction of costa
is hidden 1into what 1s otherwise a discrete, sxmbolic Eattern
matching annihilation detection facilicy. o il-

lustrate our everyday

subgoal Infringement in
i Trousers

domain, consider the Battle of the
scenario: ;iost of us know that it is easier to put
long pants on before shoes! Strictly speaking,
nutting the shoes on first does not violate the
gating condition for pulling the pants on: "path is
unobstructed However, it certainly increases the
cost of the subsequent operation. Somehow, the.
synthesizer must have access to nominal efforts re-
quired for strategies, be able to halt synthesis
whenever the nominal effort for some strategy seems
to have been seriously exceeded, then identify and
unravel the culprit. We consider subgoal infringe-
ment to be an open topic.

b. Other Applications

The associative detection aspect of
is applicable to certain forms of plan optimization
as well as subgoal violation detection. One in-
teresting form concerns a process we call "object,
adoption This is the process wherein the synthe-
sizer commits itself to particular objects, times,
locations, etc. in the instantiation of a plan in
the concrete terms required for actual execution.

One instance of object adoption that provides an
interesting example of SC-based plan optimization
is that of free area selection. Consider the blocks
problem illustrated below. A computer-wise mundane
solution is to place B on the table, place A on B,
attempt to place B on by clearing B's top,
generating a subgoal violation, and proceeding as
described above. The plan eventually gets built,
Dut contains a superfluous intermediate location
for B, namely the table. Clearly, the simpler solu-
tion would have been to place B directly on C in
the first operation of clearing A's top, then plac-
ing A on B.

I MIID [ON A PION B €1} i

our design

The problem here could have been avoided had the
synthesizer been willing to leave B's location
"floating" after clearing A's top in the first step
(i.e., to defer the obiect adoptlon) In our
system, this can be accomplished by describing some
features of B's location, together with a default

recommendation, via a CSA descriptor:
(*D* X ((CLASS X AREA)
(XYSIZe X <the xy-size of
(REC (PART-OF X TABLE)))

and by delegating responsibility to

the block>))

this descriptor

ror eventually ensuring that it binds itself to
some concrete object (a location in this case) be-
fore the end of the synthesis. This responsibility

is phrased by associating with
wnich will react to patterns (ON B -X), since the
descriptor is willing to commit itself to any -X

Now, each time the synthesizer is about to un-
dertake the synthesis or a subgoal, it first shouts
at this population of "concretization" SC's, in es-
sence asking whether there are any floating refer-
ences which would make short shrift of the subgoal,

the descriptor an SC

i.e. obviate a standard synthesis. In this
example, the synthesizer eventually shouts (ON B C)
before undertaking it as a subgoal. This shout ex-
cites our floating concretization SC, it responds
affirmatively, committing itself at that point to C
(since the tops of blocks are legitimate areas
also), and, voiia!, the synthesizer is spared the
synthesis !

There are some other interesting forms of sub-
goal optimization in this fashion. A future report
will treat them in more detail.

9. Discussion and Conclusions

We have presented a general theory of detection
and correction for subgoal annihilation problems
which stem from bad orderings. The theory is, we
feel, efficient, uniform, and general. It is effi-
cient in the sense that it does only the minimum
amount of work necessary to ameliorate
annihilations, and does not incur resvnthesis. it

is uniform in

the sense that it is a theory of con-

trol that will function with any suitably formatted
problem solving representation (in our case, CSA
cause-effect schemata). It is general in the sense

that

it does
specific knowledge,
having to know

not rely on any sort of domain-
with the possible exception of

the semantics of the system s predi-

cates when planting appropriate guardian clusters.

There are many complex
lation that
any performance system such as ours is
en has a myopic view of what it is
to be a need for
responsibility it is to
detection-unravalling process

seems

terns

relaxation,
tervene
looping
problem),

other
strategy
have steered clear of
research,
in mid-stream seems
reconsideration of the.
to partial

our
gies

pose
step

on our

it temporarily.

issues of subgoal annihi-
remain to be explored. One problem with
that it oft-
doing. There
(SC s) whose
watch the overall
for recurring pat-
of activity. Since our scheme is a form of
such an overseer would presumably in-
when it perceived the unravelling to be
(i.e. trying to solve an insoluble ordering
and so forth.

"meta" watchers

interesting problems have to do with bad
selection, as opposed to bad ordering. We
this topic in this phase of
primarily because switching strate-
to call for more radical
total plan, possibly leading
or complete resynthesis. We do not pro-
leave this problem at rest, only to side-
In short, we will be working

synthesizer for quite some time to come.

Acknowledgments

We wish to
.laryland

thank the other members of the

CSA group (Milt Grinberg, Mache Creeger,

John Boose, and Georgy Fekete) ior their participa-
tion in numerous discussions and for their
suggestions. We wish also to thank NASA for the
support of this research under Grant NSG-7253.
{hil]l Davis, K. and J. King, An Overview of
Production Systems, Stanford AIM 271, 197b.

[Eiit] Ernst, G.. and Newell, A., GPS: A case Study
in Generality and Problem Solving, Academic
Press, 1969

[«i51] McDermott, Drew V. and G.J. Sussman, The
CONN1VER Reference Manual. MIT Al Memo
259a, Jan. 1974.

[al] Nilsson, Nils J., Problem Solving Methods in
Artificial Intelligence” McGraw-Hill, 197TT

[R1] Kieger, C, An Organization of Knowledge for
Problem Solving and Language Comprehension,
Artificial intelligence, vol. 7, no. 2,
1976.

fr] Rieger, C, The Representation and Selection
of Commonsense Knowledge for Natural
Language Comprehension, Proc. Georgetown
University Linguistics Roundtable, 976.

[4.3] Rieger, ©C., Spontaneous Computation in
Cognitive Models, to appear in Cognitive
Science.

[k]] Rieger, C, and Grinberg, M. The
Declarative Representation and Procedural
Simulation of Causality in Physical
l\{lgchanisms, Proc. UCAI-77, MIT, August

77.

{51] Sacerdoti, Earl, The Nonlinear Nature of
Plans, Proc. 41JCAIl, Tbilisi, USSR, Sept.
1975.

[521 Sussman, Gerald J., A_ Computer Model of
?gl)(;;lgl Acquisition. MIT AI-TR 297, Aug.

|sWil] Sussman, Gerald Jay and Terry Wlnograd
Micro-Planner Referénce Manual.”~ MIT Al” Memo
203, July, 1970.

[Til Tate, A., Interacting Goals and their Use,
Proc. 41JCAIl. Tbilisi, USSR, Sept. 1975.
iWl) Waldinger, Richard, Achieving Several Goals

?éry;ltaneously, SRl Tech. Note 107, July,

WE] Winograd, Terry, Frame Representations and

the Procedural-Declarative

Problms-Solving:

Controversy, in

Representation and Understanding, .G.

?8brow and A. CoTTTns, ed. Academic Press,
75.

Rieger

