CAN DOMAIN SPECIFIC KNOMEDGE BE GENERALIZED?

Alan Bundy

Department of Artificial

Intelligence

University of Edinburgh
Scotland

The MECHO project (see Cl]) consists of writ-
ing a computer program which can colve a wide var-
iety of simple mechanics problems stated
This program is being used as a vehicle for study-
ing methods for guiding search in a semantically
rich domain. Our methodology is to find general,
justifiable, inference rules which can be combined
to carry out the reasoning necessary to solve the
mechanics problems. As is well known, when rules
like these are run on a general inference machine
the result is often a combinatorial explosion.
Rules are combined in unexpected ways and the
search for a solution is developed along unreason-
able paths. These failures are used to debug the
rules by adding to them local, domain specific
control information. Finally these techniques are
generalized and incorporated in the inference
mechanism. We hope that this methodology will
lead us to the design of a computational logic for
natural reasoning.

In this paper one such transition from domain
specific to general inference technique will be
described. We will use this example to emphasize
the importance of this generalization stage. With-
out it one might be led to superficial and false
conclusions about the nature of natural reasoning.

Suppose we have available the following re-
lations: Vel(Object, v, time) - (v is the veloc-
ity of object during time);

At(Object, place, moment) - (object is at place at
moment); Final(period, moment) - (moment is the

final moment of time interval period). We may
have discovered the following domain specific in-
formation enabling us to guide the search for
problem solutions along successful lines,

(i) If the program is desperate to satisfy
Vel(Object, v, time), object and time being known,
but all inferences have ground to a halt, then a
new intermediate unknown v can be created and as-
serted to be the velocity of object at time,

(ii) If the program is asked to confirm that
At(object, placel, moment), but it already knows
that object is at some different place (place2) at
moment, then the attempt to prove

At(object, placel, moment) can be abandoned, be-
cause objects can only be in one place at a time,
(iii) If the final moment of period is found to be
momentl, but later processing fails, it is no use
backing up to recalculate Final(period, ?x), since
the same answer is bound to be given.

At first glance it might seem as if these ex-
amples argued for the intervention of rich domain
specific information at all control points and
that a programming language which facilitated such
intervention was required. But these conclusions

are not justified from the examples (i)-(iii) above.

In fact (i)-(iii) represent different facets of a
general phenomenon. To see this notice that Vel,
At and Final are all really functions: Vel is a

function from objects and times to velocities; At

Problem-Solving-5:
496

in English.

is a function from objects and moments to places
and Final is a function from periods to moments.
What separates functions from other relations is
that they are single valued, that is their value
is guaranteed to exist and to be unique¢ (i) is
an example of this existence property being used
and (ii) and (iii) different uses of the unique-
ness property. The generalizations of (i), (ii)
and (iii) are

(i)' If the program is desperate to find a func-
tion value given its arguments, and all inferences
have failed then a new entity can be created and
asserted to be that value. (Note that we do not
want the program to create a new entity whenever it
is legal to do so as this contributes to the com-
binatorial explosion. The notion of being des-
perate for the answer can be generalized (see [21).
(ii) * If the program is trying to confirm a func-
tion value, but it already has a contradictory
value stored then the confirmation attempt is to
be abandoned.

(iii)" If the program has calculated a function
value then it should not recalculate this on back

up.
Note that (i)'-(iii)" improve on the predicate
calculus representation of the existence and unique-
ness of function values, by giving procedural in-
formation about when this information is to be used.
They also improve on the local domain specific em-
bodiment of (i)-(iii) by representing a large
amount of such information in concise form, e.g.
the existence property can now be used on At and
Final and the uniqueness property can be used on
Vel. All that is necessary to share the benefits
of the control information embodied in (i)'-(iii)’
is to specify which relations have function values.
For functions of one argument the implement-
ation of (i)'-(iii)' can be assisted by maintain-
ing a single slot on the property list of the argu-
ment. However, something more complicated is
needed for functions of more than one argument.
Some relations may be functions in more than
one way, e.g. if Timesys(period, initmom, finmom)
means that initmom is the initial moment and finmom
is the final moment of period then Timesys is a
function in 3 ways:
(@) from period to Initmom
(b) from period to finmom
(c) from initmom and finmom to period

References

[1]l Bundy, A., Luger, G., Stone, M. and Welham, R.
1976. "MECHO: Year One", p94-103, Procs. of
the 2nd AISB Conf. ed. Brady, M., Edinburgh.

[2] Bundy, A. 1977. "Will it reach the top? Pre-
diction in the mechanics world", DAl Research
Report No. 31, Edinburgh.

Bundy



