
CAN DOMAIN SPECIFIC KNOWLEDGE BE GENERALIZED?

Alan Bundy
Department o f A r t i f i c i a l I n t e l l i g e n c e

Un ive rs i t y of Edinburgh
Scotland

The MECHO p r o j e c t (see Cl]) cons is ts of w r i t ­
ing a computer program which can colve a wide va r ­
i e t y o f simple mechanics problems s ta ted in Eng l i sh .
This program is being used as a veh ic le f o r s tudy­
ing methods f o r gu id ing search in a semant ica l ly
r i c h domain. Our methodology is to f i n d genera l ,
j u s t i f i a b l e , in ference ru les which can be combined
to ca r ry out the reasoning necessary to solve the
mechanics problems. As is we l l known, when ru les
l i k e these are run on a general in ference machine
the r e s u l t is o f ten a combinator ia l exp los ion .
Rules are combined in unexpected ways and the
search f o r a s o l u t i o n is developed along unreason­
able paths . These f a i l u r e s are used to debug the
ru les by adding to them l o c a l , domain s p e c i f i c
c o n t r o l i n fo rma t i on . F i n a l l y these techniques are
genera l ized and incorporated in the in ference
mechanism. We hope t h a t t h i s methodology w i l l
lead us to the design of a computat ional l og i c f o r
na tu ra l reasoning.

In t h i s paper one such t r a n s i t i o n from domain
s p e c i f i c to general in ference technique w i l l be
descr ibed. We w i l l use t h i s example to emphasize
the importance of t h i s genera l i za t i on stage. W i th ­
out i t one might be led to s u p e r f i c i a l and fa l se
conclusions about the nature of na tu ra l reasoning.

Suppose we have ava i l ab le the fo l l ow ing r e ­
l a t i o n s : Ve l (Ob jec t , v, t ime) - (v is the ve loc ­
i t y o f ob jec t dur ing t i m e) ;
A t (Ob jec t , p l ace , moment) - (object is at place at
moment); F i n a l (p e r i o d , moment) - (moment is the
f i n a l moment of t ime i n t e r v a l p e r i o d) . We may
have discovered the f o l l ow ing domain s p e c i f i c i n ­
format ion enabl ing us to guide the search fo r
problem so lu t i ons along successful l i n e s ,
(i) I f the program i s desperate to s a t i s f y
Ve l (Ob jec t , v, t i m e) , ob jec t and t ime being known,
but a l l in ferences have ground to a h a l t , then a
new in termedia te unknown v can be created and as­
ser ted to be the v e l o c i t y o f ob jec t a t t ime ,
(i i) I f the program i s asked to conf i rm t h a t
A t (o b j e c t , p l a c e l , moment), but i t a l ready knows
t ha t ob jec t is at some d i f f e r e n t place (place2) at
moment, then the attempt to prove
A t (o b j e c t , p l a c e l , moment) can be abandoned, be­
cause ob jec ts can on ly be in one place at a t ime ,
(i i i) I f the f i n a l moment o f pe r iod is found to be
momentl, but l a t e r processing f a i l s , i t i s no use
backing up to r eca l cu la te F i n a l (p e r i o d , ?x) , since
the same answer is bound to be g iven .

A t f i r s t glance i t might seem as i f these ex­
amples argued f o r the i n t e r v e n t i o n of r i c h domain
s p e c i f i c in fo rmat ion a t a l l c o n t r o l po in t s and
t h a t a programming language which f a c i l i t a t e d such
i n t e r v e n t i o n was requ i red . But these conclusions
are not j u s t i f i e d from the examples (i) - (i i i) above.
In f a c t (i) - (i i i) represent d i f f e r e n t facets o f a
general phenomenon. To see t h i s no t i ce t h a t V e l ,
At and F i na l are a l l r e a l l y f unc t i ons : Vel is a
f unc t i on from ob jec ts and t imes to v e l o c i t i e s ; At

is a f unc t i on from ob jec ts and moments to places
and F i n a l is a f unc t i on from per iods to moments.
What separates func t ions from other r e l a t i o n s is
t ha t they are s ing le va lued, tha t i s t h e i r value
is guaranteed to e x i s t and to be unique♦ (i) is
an example of t h i s existence proper ty being used
and (i i) and (i i i) d i f f e r e n t uses of the unique­
ness p roper t y . The genera l i za t ions o f (i) , (i i)
and (i i i) are
(i) ' I f the program is desperate to f i n d a func­
t i o n value given i t s arguments, and a l l in ferences
have f a i l e d then a new e n t i t y can be created and
asserted to be t ha t va lue . (Note tha t we do not
want the program to create a new e n t i t y whenever it
is l ega l to do so as t h i s con t r ibu tes to the com­
b i n a t o r i a l exp los ion . The no t ion of being des­
perate f o r the answer can be genera l ized (see [21).
(i i) * I f the program is t r y i n g to conf i rm a func­
t i o n va lue , but i t a lready has a con t rad i c to ry
value s tored then the conf i rmat ion attempt is to
be abandoned.
(i i i) ' I f the program has ca lcu la ted a f unc t i on
value then i t should not reca lcu la te t h i s on back
up.

Note t h a t (i) ' - (i i i) ' improve on the p red ica te
ca lcu lus representa t ion of the existence and unique­
ness of func t ion va lues , by g i v i ng procedural i n ­
format ion about when t h i s in fo rmat ion is to be used.
They also improve on the l o c a l domain s p e c i f i c em­
bodiment of (i) - (i i i) by represent ing a large
amount of such in fo rmat ion in concise form, e .g .
the existence proper ty can now be used on At and
F ina l and the uniqueness proper ty can be used on
V e l . A l l t h a t i s necessary to share the bene f i t s
o f the con t ro l i n fo rmat ion embodied in (i) ' - (i i i) '
i s to spec i fy which r e l a t i o n s have func t i on va lues .

For func t ions of one argument the implement­
a t i on of (i) ' - (i i i) ' can be ass is ted by ma in ta in ­
ing a s ing le s l o t on the proper ty l i s t of the argu­
ment. However, something more complicated is
needed f o r func t ions of more than one argument.

Some r e l a t i o n s may be func t ions in more than
one way, e . g . i f T imesys(per iod, ini tmom, finmom)
means t h a t initmom is the i n i t i a l moment and finmom
is the f i n a l moment of per iod then Timesys is a
func t i on in 3 ways:
(a) from per iod to Initmom
(b) from per iod to finmom
(c) from initmom and finmom to pe r iod

References
[1]l Bundy, A . , Luger, G., Stone, M. and Welham, R.

1976. "MECHO: Year One", p94-103, Procs. of
the 2nd AISB Conf. ed. Brady, M., Edinburgh.

[2] Bundy, A. 1977. " W i l l i t reach the top? Pre­
d i c t i o n in the mechanics w o r l d " , DAI Research
Report No. 3 1 , Edinburgh.

P r o b l e m - S o l v i n g - 5 : Bundy
496

