
ThingLab — An Object-Oriented System for 
Building Simulations Using Constraints 

Alan Borning 
Learning Research Group 

Xerox Palo Alto Research Center 
Palo Al to, Cal i forn ia 94304 

Introduction 

ThingLab is a system that provides an environment fo r 
bui ld ing simulations. Wi th in this environment, a simulation 
is organized as a collection of objects that interact wi th one 
another by sending and receiving messages. Each object has a 
table of named properties, which describe both the internal 
state of the object and its protocol fo r sending and receiving 
messages. An object may have one or more parents, thus 
providing for inheritance of properties. The interactions of 
the objects in a simulation are specified in terms of 
constraints. The operation of merging is used to specify 
connectivity and to combine properties inherited f rom several 
parents. 

The domain of the system is the micro-wor ld of simple 
physics experiments. A user can construct simulations of 
parts that interact in mathematically well-defined ways; 
examples of things that can be simulated are electrical 
circuits, bridges and truss networks, digital logic circuits, and 
mechanical linkages. The system has no bu i l t - in knowledge 
of electricity or bridges, but rather provides tools that make it 
easy for a user to construct objects that contain such 
knowledge. We plan to explore ThingLab as a vehicle for 
teaching some of the concepts of physics. 

Previous Work 

One of the principal influences on the design of ThingLab 
has been Sketchpad [Sutherland 1963]. Many of Sketchpad's 
interactive graphics techniques have been adopted, but its 
domain of constrained geometric objects has been extended to 
include more complex simulations such as electrical circuits. 
The Sketchpad notions of constraints and of recursive 
merging have been used extensively. 

The other main influence on the design has been Smalltalk 
[Learning Research Group 1976. Goldberg A Kay 197(>]. S m a l l t a l k is a 
simulat ion language in which knowledge is organized around 
the conceptual objects involved in the program, rather than 
around a set of procedures that act on data. Objects 
communicate with each other by sending and receiving 
messages. Classes describe the common properties of sets of 
objects, whi le instances represent indiv idual objects. Ideas 
f r om other object-oriented languages, in particular Simula 
[Dahl . Myhrhaug. & Nygaard 1970], K R L [Bobrow & Winograd 1977], 
and the various Actor formalisms [Hewui 1976], have also been 
very useful. 

The Smalltalk not ion of an object has been modi f ied and 
extended in a number of ways. In ThingLab, objects are 
constructed interactively by edit ing and making descendants 
of prototypes. An abstraction hierarchy is used that allows 
arbi t rar i ly many levels of both parents and descendants, w i th 
the problem of objects with several parents being handled by 
the technique of merging. There is no dist inct ion between 
classes and instances. In Smalltalk, the description of the way 
an object receives a message is stored only in procedural 
f o r m ; in other words, it is the list of statements that are 
evaluated to receive the message and generate a reply. In 
ThingLab. however, an action such as show or print is 
implemented as an object in its own right. This allows the 
way in which an object shows or prints itself to be described 

in a declarative manner, and also allows an object wi th several 
parents to construct an appropriate action by merging the 
corresponding actions f r o m its parents. 

ThingLab Objects 

Each object has a table of properties indexed by names. Each 
property is in turn another object. The properties of an 
object describe both its internal state and its protocol fo r 
sending and receiving messages. An object may have one or 
more parents, each of which is also another object 

An object receives a message in the fo l lowing way. The object 
fetches the f i rst token, which must be a property name, and 
looks it up in its table of properties. If the name is not 
found, the object asks its parents to look up the name. The 
parents may in turn ask their parents to look up the name, 
and so on. If the object has several parents, and more than 
one parent returns a property, a new property is constructed 
by merging the inherited properties (see below). A f ter the 
property corresponding to the name has been found or 
constructed, the property is evaluated in the context of the 
object which received the original message, and the result of 
the evaluation is applied to the remainder of the message. 

This scheme requires that property names be used in a 
consistent way. For example, each property named show 
should be a descendant of Picture, and each descendant of 
Picture should know how to merge itself wi th another such 
descendant If the same property name is used coincidentally 
by two parents for quite di f ferent things, the two properties 
can't merge, and the user wi l l be asked what to do. 

To allow one object to serve as a property of another, each 
object has associated wi th it a piece of code which is 
evaluated to receive a message for another object. For most 
objects, such as real numbers or points, this code just returns 
the object itself. For example, the resistance property of a 
resistor should be a descendant of RealNumber. When a 
resistor receives the message resistance, it looks up that 
property in its message dictionary. The resistance property is 
then evaluated in the context of the resistor, and simply 
returns itself. On the other hand, when a resistor receives the 
message show, its show property is looked up and evaluated in 
the context of the resistor. The code associated with the show 
property f inds the set of point arrays and lines that constitute 
the resistor's image, and displays them on the screen. 

Normal ly the ThingLab user w i l l not describe an object by 
wr i t ing code, but rather wi l l construct it incrementally by 
f i rs t making a descendant of a prototype, and then adding 
and edit ing properties. To start things of f , there are a 
number of prototypical objects defined in the bare system. 
There are prototypes for mathematical objects such as real 
numbers, points, lines, and sets. Also, there are prototypes fo r 
objects that implement actions such as showing, pr in t ing , 
merging, editing, and making descendants. For example, the 
object Printer is a prototype fo r objects that can produce a 
printed representation of another object. The object Thing is 
the parent of all other objects. It has defaults fo r properties 
such as show, print, merge, edit, and new, ensuring that every 
object wi l l have some way of showing itself, of p r in t ing itself, 
and so on. 

Constraints 

A constraint restricts the behavior of a set of objects, i.e., it 
restricts their responses to messages. A constraint is itself an 
object, wi th two of its properties being the expressions error 
and tolerance. When the absolute value of the error is less 
than the tolerance, the constraint is satisfied. A constraint is 
applied by making it a property of some other object For 
example, to construct a prototypical object Horizontal Line, 

P r o b l e m - S o l v i i n g - 5 : B o r n i n g 
497 



the user would make a descendant of Line, and add as a 
property a constraint that the y values of the endpoints be 
equal. The error expression fo r this constraint would simply 
be point J y - point! y, and the tolerance would be 1 (raster 
point) . Descendants of Horizontal Line inherit this constraint 
in the usual way. 

Constraint satisfaction begins when the user adds a new 
constraint or edits an existing one. The system f inds the set 
of constraints that might no longer be satisfied, sends 
messages to these constraints requesting methods fo r 
satisfying them, and chooses and sets up methods. The results 
of this planning are saved, since the same methods can often 
be used many times to satisfy a given set of constraints. 

If possible, a one-pass method is used. Such a method orders 
the constraints and the objects to which they apply, so that 
each object in turn can be updated to satisfy its constraints, 
wi thout the use of backtracking or successive 
approximations. For constraints involv ing condit ionals, the 
method of assumed states is used with a simple depth- f i rs t 
tree search of the space of possible truth values of the 
conditions. Finally, the relaxation method is employed in 
satisfying circular constraints on real numbers. 

The methods described above work nicely when the 
constraints can be satisfied in one pass. For example, when 
the user is moving a part of a line drawing wi th some 
constraints on it, the system can redraw the picture quickly 
enough to provide rapid feedback. However, relaxation and 
the method of assumed states as implemented are too slow for 
use with large problems. There are several steps which could 
be taken to improve the situation. One step would be to bui ld 
into the system a much more powerful set of constraint 
satisfaction methods, such as symbolic manipulat ion routines 
and dependency-directed backtracking fsec for example staiiman 
& Sussman 1976]. Also, better use should be made of the 
modulari ty of the object-oriented representation. Consider a 
simulat ion of a complex circuit containing a linear ampl i f ier . 
As far as the rest of the circuit is concerned, the ampl i f ier 
should simply be an object with some input and output nodes, 
i.e., it should be a black box. Internally, the ampl i f ier wi l l 
have descriptions of all its parts and their constraints. 
However, when its input is wi th in the linear region, the 
ampl i f ier should use a simple constraint to f i nd its output. 
Only when the input is not in this region should it make use 
of the detailed descriptions of its parts. 

Merging 

Suppose that a new object C is to be constructed by merging 
the objects A and B. The way in which an object merges wi th 
another is described by its merge property. Al though 
idiosyncratic interpretations of merging are possible, at 
present nearly all objects use the merge property inherited 
f rom the pr imordia l object Thing. Using this property, C 
would be constructed as fol lows. A can merge wi th B only if 
they both have the same code. The properties of C are 
formed recursively by merging the l ike-named properties 
f r o m A and B. If a property name is found in only one of 
the or iginal objects, then the corresponding property is simply 
copied. The set of parents of C is the union of the sets of 
parents of A and B. C has all the constraints that apply to 
either A or B. A few pr imi t ive objects have some addit ional 
interpretations of merging. For example, if A is a set, then B 
must also be a set, and the contents of the new set C is the 
union of the contents of A and B. 

Merging is also used to specify connectivity. Fol lowing the 
methods used in Sketchpad, connectivity is represented by 
merged parts. For example, in an electrical circuit s imulat ion, 
the terminals of components are descendants of Node, just as 
the endpoints of a l ine are descendants of Point. To connect 

one component to another, a node f r om one of the 
components is merged wi th a node f r o m the other to f o r m a 
new node. This new node is then substituted for the old ones. 

The properties of the new node are formed by merging the 
l ike-named properties f r om the two or ig inal nodes. Two 
properties of nodes are currents/n, the set of currents f low ing 
into the node, and voltage, the voltage at the node. The set of 
currents has a constraint that the sum of the currents be 0 
(K i rchhof f ' s current law). The currentsln property of the 
new node is formed by merging the currents/n properties 
f r om the or iginal nodes, and contains all the currents f r om 
both of the or iginal sets. The sum of its elements must st i l l 
be 0. Simi lar ly, the new voltage property has all the 
constraints applying to either of the or iginal voltages. For 
example, if one of the components being connected was a 
resistor, the voltage at the resulting node would st i l l be 
constrained by Ohm's law. 

Current Status 

The system is being wri t ten in Smal l talk-72. A version is 
running that implements all the features described here. So 
far, however, it has been tried only on small examples, and is 
st i l l being actively expanded and modi f ied . 

Acknowledgements 
Many people, both in LRG and elsewhere, have provided 
valuable advice on this project. In particular, I'd l ike to 
thank Danny Bobrow, Adele Goldberg, Dan Ingalls, Ted 
Kaehler. Alan Kay. Dave Robson, David Shaw. Rich Steiger. 
Steve Weyer, and Terry Winograd. Xerox Palo A l t o Research 
Center has provided support and excellent faci l i t ies. This 
project is being done as a Ph.D. thesis in computer science at 
Stanford University. 

References 

Bobrow, Daniel G., and Winograd. Terry, "An Overview of 
K R L , A Knowledge Representation Language". Cognitive 
Science, V. 1, No. 1, 1977. 

Dahl , Ole-Johan, Myhrhaug, Bjr irn, and Nygaard, Kr isten, 
Common Base Language, Norwegian Comput ing Center 
Publication S-22, Oslo, Norway, October 1970. 

Goldberg, Adele. and Kay. Alan (eds.). Smalltalk-72 
Instruction Manual, Xerox Palo A l to Research Center, 
SSL 76-6, 1976. 

Hewitt , Carl , Viewing Control Structures as Patterns of 
Passing Messages, M I T AI Lab Memo 410, Dec 1976. 

Learning Research Group, Personal Dynamic Media, Xerox 
Palo A l to Research Center. SSL 76 -1 , 1976. Appears in 
part in Alan Kay and Adele Goldberg. "Personal Dynamic 
Media". IEEE Computer, March 1977, pp. 31-41 . 

Slallman, Richard M., and Sussman, Gerald J., Forward 
Reasoning and Dependency-Directed Backtracking In a 
System for Computer-Aided Circuit Analysis, M I T AI Lab 
Memo 380, Sept 1976. 

Sutherland, Ivan E., Sketchpad: A Man-Machine Graphical 
Communication Svstem, Ph.D. thesis, MIT , Cambridge, 
Mass., 1963. 

P r o M e n r S o l v i n e g - 5 : B o r n l n g 
498 


