SET VARIABLES

W.W. Bledsoe

The University of Texas, Austin

ABSTRACT: A procedure is described that gives
values to set variables in automatic theorem prov-
ing. The result is that a theorem is thereby re-
duced to first order logic, which is often much
easier to prove. This procedure handles a part of
higher order logic, a small but important part.

It is not as general as the methods of Huet,
Andrews, Pietrzykowski, and Haynes and Henschen,
but it seems to be much faster when it applies.

It is more in the spirit of J.L. Darlington's F-
Matching. This procedure is not domain specific:
results have been obtained In intermediate analy-
sis (the intermediate value theorem), topology,
logic, and program verification (finding internal
assertions). This method is a "maximal method"

in that a largest (or maximal) set is usually pro-
duced if there is one. A preliminary version has
been programmed for the computer and run to prove
several theorems.

1. Introduction

For many theorems the main difficulty in the

proof is in defining a particular set. Once that
is dome the proof often proceeds rather easily.

For example, in
Theorem. 3 A wx{x e A > x < 0),

If we let A={(x: ®x £ 0), then we are left with

the trivial subpoal:
(x<0+x<0).

Or, if we are proving the intermediate value
theorem,

Theaorem. If f 1is contlnuous for
a<x<hb, f(a)<0, and f(b) >0, then
f(x)=0 for some x between a and b. (See
Figure 1)

Using the least upper bound axiom,

LUB Axiom. Each non-empty bounded set A
of real numbers has a least upper bound.

And 1f we let
A={x: f(x) < 0A x € b},
then again the proof i3 rather straightforward

(but harder than the last example). The queation
of course, is how to select A?

*
This work was supported by National Scilence
Foundation Grant MCS 76-23760,

Th”?orpni

Provin®-1:
501

78712

f(x)

_____ A={x: f{x) < 0A x<h}

Figure 1

The Intermediate Value Theorem

There are several other theorems in analysis, such
as the Heine-Borel Theorem where the chief diffi-
culty lies in defining a particular set. Also a
similar situation comes up again and again in
other parts of mathematics, and in application
areas such as program verification and program
synthesis.

The problem of finding a value for a set var-
iable A, is of course equivalent to the problem
of giving a value to a one place predicate vari-
able P.

This is a part of higher order logic, and as
such can be attacked by the systems and ideas of
Huet [3], Pietrzykowski [10], Haynes and Henschen
[7], Andrews [11], etc. But these are very slow
for many simple proofs. For example, Huet's
beautiful system [3] is forced into double split-
ting on the rather easy theorem given in Example
4 below. (Even a human has trouble applying his
procedure to this example.)

In this paper we describe a procedure which
attempts to overcome this difficulty. It is less
general than those referred to above; it usually
applies only to a part of second order logic (but
an important part); and it seems to be must faster
when it applies. Ours is more in the spirit of J.
L. Darlington's "F-Matching", but different in
method and scope.

Our methods are not domain specific, not just
a collection of heuristics for finding sets in a
particular area like analysis. They can be used
to prove theorems (such as the intermediate value
theorem) in analysis where the set A is a set of
real numbers, as well as theorems in topology
where the set A is a family of sets, and theorems
from program correctness, or from other areas where
set variables are to be instantiated.

In Section 2 we give some preliminary examples
and in Section 3 we describe our rules for gener-
ating the desired set A. They consist of basic
rules which apply to simple formulas and combining
rules for combining the results from the basic
rules.

One of our goals in this work is to avoid in-
descrimlnant matches (or attempts at matches) be-
tween formulas such as (t e A) and P, (where

Bledsoe

P is first order), but rather to allow such a
match only when (t € A) and P are somehow
"connected". In this way the search is drastically
reduced. Our basic rules (see Figure 2) are a
partial attainment of this goal.

Our methods are "maximal" in that they usually
generate the largest set with the desired proper-
ties (if there is one). Of course some theorems
such as,

HAl (A is dense in R} A ((R-A)} is dense in R)]

has no maximal (nor minimal) solution for A. Al-
so in some cases there is more than one maximal
solution (see Example 5, Section 3), even infin-
itely many solutions. However, we believe there
is a wide class of interesting cases that have a
uniqgue maximal solution, or at most one or two
maximal solutions.

Our procedure utilizes the automatic prover
described in [1] as a "control" (see Section 4)
for generating the desired sets. But one can
follow this presentation without full knowledge of
that paper.

In actual practice the prover makes two passes
on a theorem: first to define the set A; second
to prove the resulting theorem, after the set A
has been instantiated. Thus the procedure is sound
i.e. there is no danger of it producing a false
solution since the solution is always verified.

In Section 5 we give excerpts from some major
examples which are described in more detail in [0].
In Section 6 we make several comments.

These methods do not satisfactorily handle
the induction axiom. This is discussed in Section
6 of [0]. Some completeness proofs for these
methods are given in Appendix Il of [0].

2. Some Preliminary Examples

We are concerned here only with cases of the

form

FAr@ or ((vaP@) +oO)"
where the variable A is to be found (i.e., given
a value). Since ((VAP(A)) > C) is equivalent
to 3A(P(A) > C), we will usually act as if our
theorem is already in the form 3 A P(A). Theorems
where A is a constant can usually be handled as
first order logic.

We will treat only the case where there is
but one such set variable A. However our methods
will often work for theorems with many such
variables.

Once the set A has been found, the theorem
becomes first order, and hopefully not too diffi-
cult. That will often be the case. However, it
is well known that automatic theorem proving for
first order logic is a most challenging and un-
resolved task.

It is our objective here to automatically de-
fine such variables.

Let us look at some examples before giving
the rules. These fragments help illuminate the
procedure. More substantial theorems will be
given later in Section 5.

* Provided that A does not occur in C.

Theorem Prov ingl:
502

Example 1. EAVx(xaA-*xEO).
Solution: A=([x: x < 0].

This i{s the simple theorem which states that
"there is & set A for which, for each x in A,
% 18 non-positive'. Clearly, one such & L the set
of al)l non=positive reals, and that is exactly
what is returned by our program. When this value
is substituted for A the theorem reduces to the
trivial subgoal (x < 0 > x £ 0), which our pro-
gram quickly verifies as trus.

Example 2. J GvA(Ae G+ 3B (B e FAAC B)).
Solution: G=[A: JB{(Be FAA ¢ B).

This exsmple is very much like the previous
one, except that G plays the role of A, A plays
the role of x, and I8« FAACEB) plays
the role of % < 0. MNotice that the variable &
is a "“family" variable rather than a "set" varia-
ble. Thus we have (techmically) proved a theorem
in third order leglc, although it is for all prac-
tical purposes a theorem in second order. It is
degirable, we believe, to keep formulas like
B BeFAA ¢ B) together during the process-
ing and this {5 what our preogram usually does.

Next we coneider a theorem of a little more
substance,

Example 3.
(Pla) » FA[Vx (xe A*PEDA Ty (yed)]).
onD EVEN

Solution: A={x: P(x)]}.

It is now time to note that A-§ 1is a per-
fectly good solution to Example 1. However,
Az® will not work for Example 3; here we must
include in A at least the peint a. We prefer
to put all we can in A, thus getting a maximal
golution.

In Example 3 there are two types of occure-
ences of A: the "EVEN" occurrence y € A, and

the "ODD" occurrence in (x € A = P(x)J°. ‘The ODD
occurrences are used to determine A (according
to the rules in Section 3), and the EVEN occurr-

ences are just checked after A hae been defined3.

Accordingly when the solution given is put in for
A we get

2Nl:)l:e. that (xeA+P(x}) 1is equivalent to
(xdAVvP(x)). If A does not occur in B (ex-
cept possibly as a skolem argument -- see foot-
note 4} then A fs in an EVEN position of AAB,
AvEB, (B>A), B, and A itself; and A is im an
ObD position of (A+B), (~A), and 8. Also an
EVEN position of an EVEN position is EVEK, ODD
of ODD is EVEN, ODD of EVEN 1s ODD, and EVEN of
obh ia ODD.

3'1'1113 is equivalent to putting the universal set
U for A for the EVEN occurrence and inter-
sacting it with the set {x: p(x)} gotten for
the ODD cccurrence.

Bledsoe

(®a) > [vx (pG) »peA Ty DD

in which the ODD part i{s now trivial and the EVEN
part is yet to be checked (but can be).
The next example will {lluminate that point.

Example 4.
(a<b<c+ dA(adArbeAncda))
oDD EVEN ODD
Solution: [x: x¥arxdcl.

The two ODD cccurrences give respectively
{x: x#a} and (x: x#c), and the EVEN occurr-
ence gives U (using the rules of Section 3)
which are combined (by the "combining tules" of
Section 3) into the given solution.

Notice that this i{s not the only esolution.
There are many others such a8 {x: a < x < b),
{x: a< x < b}, {b}, but none of these are maxi-
mal. Our method gives the maximal solution if
there is ome.

We could have developed a minimal theory,
getting the smallest sets, by using the EVEN
occurrences of A instead of the ODD, but we
have a slight preference for maximal. Intermed-
iate sets would be difficult to produce automatic-
ally. Only when we work against the extremes do
we reduce the complexity of the problem.

3. Set Buoilding Rules

3.1. Basic Rules

Qur rules for generating maximal =ets are of
two kinds: (i) basic rules and (ii) combining
rules. The bagic ruleg give solutions to certain
(xeA), (xdA),

Bi.

B2.

B2".

B3,
B4.

B5.

B6.

B7.

BQ

BE

SUBFORMULA SOLUTION
(xe A>P(x)) {z: P(z2)}
(E(x) e A¥P(x)) {z: va(z=f(s) +
F(8)))
(f{x,¥) e A+P(x,y)) {z: vrvs (z=£(r,s)
* P(r,s))}]
(teA+P) {z: z=¢ »P)
{t £ A) {z: z¥t)
P {(does not contain U {(universal set)
A) {IGNORED iIn case of
conjunctions)
(ted) U
E (tehA is even U
in E)
1f 81-B4 yleld {z: dsP(2)}
{z: P(z)]), and
5 1s a wvariable
in P(2}
ELSE u
Figure 2
BASIC RULES

The rules of Figure 2 operate under the

restrictions listed in Table I below:

subformulas of the form: 0. The Rules B1-BE apply to subformulas in EVEN
(xe A > p(x)), and the combining rules consoli- positions of the thecrem. A 1is a set vari-
date these basic solutions into cone general able to be instantiated. It is the only met
solution, depending on the placement of these sub- variable (indeed the only higher order vari-
formulas in the theorem. For iInstance, in Example gble) in the theorem. A occurs only in the
4 above, the subfornulas (aéA), (b e &), and form (t € A), or as a skolem function argu-
(c § A) were connected by "A", so the corres- ment .
ponding solutions {x: x#a), U, and (x: x¥ ¢}
were intersected to obtain the gemeral solution 1. InBl x is a skolem function” of A, A does
{x: xdanxéc). not occur otherwise in P(x), x does not occuy
Figure 2 gives our first set of basic rules. elsewvhere in the theorem, and no other varia-
More are added later. In Figure 2 the subformulas ble occurs in X (i.e., X 15 a skolem function
shown are expected to be in an EVEN® position of of no other variable but A).
the theorem being proved, and the theorem itself 2. In B2, B2', x and y are skolem functions
4 of A, A does not occur otherwise in P(x)
is to be in skelemized form . or P(x,y), x and y do not occur elsevhere
Also 1t should be noted that these rules can- in the theorem, and no other variable oceurs
not handle an expression In A wuntil it is reduced in x, y. £(x), or f£(x,y).
to the form (x ¢ A). (This includes the cases '
xd A and (x e A > C).) This reduction may re- 3. InB3, A does not occur in t or P.
quire the use of hypotheses, definitions, and
Lermnas . 4. In B4, A does not occur im t
"See App. 1 of |1] for a complete description of 5. In B5, A does not occur in P.
skolemization, or footnote 12 of [2].
6. In B6, A doea not occur im t.
Theorem Provtnp:-I: Bledsoe

503

7. In B7, every occurrence of an expression of
the form (t e A) iIn E, is in an EVEN
position of E, A does not occur in t. A
cannot occur in E except in one of these
subformulas (t e A).

8. InBQ, s is & variable in P(z), but does

not occur elsevhere in the theorem.

9. In BE, the subformulas have the form of Bl-B7
or BQ, but the restrictions 1-8 are not aet-
isfied.

Table I

In Rules Bl and B2, "x" is required to be a

skolem" function of A, and not appear in the
rest of the theorem. That is to say the sub-
formula wx(x € A + p(x}) occurs in an EVEN
pesition of the theorem within the acope of A.
See Section 7 of [0] for a further discussion of
this and some means of ecasing these restrictions
on x. Similarly for x and y in B2'.

Note that when the term "t" is not quanti-
fied within rthe scope of the guantification of A,
as in JAa(t e A>P(t)) then by Rule B3, we
do not derive the solution {z: P(z)} as was done
in Rule Bl, because it is not the maximal
solution. Rather the maximal solution is
{z: z=t »+ P(t)} as given by Rule B3. Rule B4
acta similarly.

Rules B5-B7 give the universal set U as a
solution for expressiomns of the form (t ¢ A)
and for EVEN combinations of these. Since
(UHAO) =A0 » the effect i{s to ignore expressions

that give the solution U vhenever they are con-
jJoined (commected by "A") to other expressioms.

These rules and those in Sections 3.2-3.6 are
supported to some degree by the proofs in Appendix
11 of (0]. Our objective is to find maximal sets
for a few basic forms, and to give combining rules
that retain that maximality.

3.2. Combining Rules for Conjunctions

We will first give in Figure 3, three com-
bining rules for conjunctions before giving
others. These three rules with the basic rules
of Figure 2 have been sufficient to prove a mum-
ber of interesting theorems. Even our extended
list of combining rules ia by no means complete;
we are now in the process of trying te validate
and extend both the basic and combining rules.

{1) 1f Al is the (cmly)3 maximal solution
for P(A),

(11) and Az is the (only) maximal solution
for Q(A),

e

If P(A) or Q(A) has more than one maximal
solution (see Example 5 and Figure 5 below),

this rule still applies to at least one of the
solutions A- of P(A) and one of the solutions

A, of Q(A)t

Theorem Provingl:
504

(iii) and both hl

basic rules of Figure 1, or from combining
rules €1-C3, (or if
(1£1)': P{A) and Q{A) have the
intormediate property (see below)})

and A2 are obtained from the

Ccl. then (Alf\Az) iz a maximal solution of
{(P(A) A Q{A)), 1Lf 1t has a solution,

c2. and (Alrlkz) is a maximal solution of

@ > P AQlA)),
provided that "A"

if it has a solution,
does mot oceur in H,
c3. and (AlfThz) is a maximal solution of

((R vV E@A))AQ))
provided that ‘A"

if it has a solution,
does mot occur in R.

Figure 3
Three Combining Rules for Conjunctioms

Definition. We say that a formula P has the
gubset property (superset property) if for each
B and €, 4f B 1a a solution of P and ¢
is a subset {(superset) of B then C 15 a
solutfion of P.

Definition. We say that a formula P has the
intermediate property if for each B,C, and D,

if B and D are solutions of P and B¢ C<¢ D,
then € 15 a solution of P.

It ie easlly seen that if P has the aubsect
property or the superaet property them P has
the Intermediate property, because # is a
solution of a formula with the subset property (if
it has any solution), and U 1is a solution of a
formula with the superset property (if it has any
selution).

It is easily shown that the subformulas in
Rules Bl1-B5, and BQ, have the subset property,
and those of Rules B5-B7 have the superset prop-
erty: and that the conjunction of twe formulas
with the intermediate property also has the in-
termediate property. Therefore the combining
tules of Figure 3 are valid by conmdition (111)’
ag well as by (111}, by Theorems 12-13 of Appehdix
11 of [0].

3.3. Combining Rules for Disjunctions

Often there can be more than one maximal

solution or even infinitely manys.
the theorem

For example

Alvx(xeA > P(x))VVY (yeA + Q)]

has two maximal solutions [2z: P(z)} and
{z: Q(z)) each with the subset property. {(But
{z: P(z) v Q(z)) 1ise not a solution!)

When there ig& more than one maximal solution
we will indicate the "maximal solution” as a
family & of sets. For exsample, the family of
candidate solutions for

E'Sm: Section 3.5.

Bledsoe

Example 5.
Pla)* FA(Vx (xeA+P(x))A T vy (ved)]

VIve(xeA+QG)A By (yed)]),
is: F={{z: P(2)), {z: Q(2)]).

Then we wust verify that some member of ¥
does indeed satlsfy the thesrem. In this example
only {z: P(z)) satiafies.

This brings us to Combining Rules C4-C6 in
Figure 4.

3.4. Further Basic and Combining Rules

Each of the subformulas in the basic rules
of Figure 2, except Rule BE, have the intermediate
property. This allowed us to use the rather simple
combining rules of Figure 3 for conjunctions. In
Figure & of [0] we give rules for some cases which
de not have the intermedlate property, and use
these to prove some theorems from program verifi-
cation, where Internal assertions are not provided
by the user but are found by the prover. (See
Example 14 below)

If (1), (1), (1i1)’ of Figure 3,

Ch. then ¥c {Al,AZ] i1s the maximal solutios
of (P(A) v Q(A)).

Also if

{iv) P{A) has a maximal aolutiom 3'1 s

(v) and Q{A) has a maximal soclurion .9'2 .

(vi) where 31 and 8'2 are gotten from C4 =

C5, or are gottem from Bl-BQ where the
output there is treated as a singletonm

(),

c5. then (.flU’z) is a maximal solution of
(P(A) vV Q{a),

Cc6. and ("1 0052)7 includes & maximal

golution of (P(A)Y A Q(A)).

Figure 4
Two Combining Rules for Disjunctions

3.5. Infinitely Many Maximal Solutioms

We saw in Section 3.3 an example which has
two maximal solutioms. Others have more, even

infinitely many. For example
Example 5A.
TAVXYY (xeAAye A +» P{x,y))
701 ﬂn’z) 15 the family of sets (Dl n]:l2)
with DT. e !1 and DZ € !2.

Theorem Proving:-1
505

If P(x,y)
easy. For example if P(x,y) =p(x)Aqly),
the maximal solution is {z: p(z) Aq{z)].

However if Px,y)={0< x/2 < ¥ < 2x),
the maximal sclutions consist of the infinite
family of all the squares of the form

can be "separated", the solution is
then

then

{(x,¥): a<x<2aAr agy < 2a)

for a > 0. (See Flgure 5) MNotice that these
maximal solutione may overlap.

Clearly one could not try all of these
solutions, in order, as could be done in Example
5. However, as we shall see ghortly, our rules
can be very effective indeed gven when there are

infinitely many solutions.

" /

Figure 5
Infinitely many maximal solutions of
A Avxvy (xeA A yed ¥+ B(x,y))

Example 5B.
(1) Favidyvzlzea> plz,y)) A gL,y .
This iz equivalent to (successively):

Ias3 gvLvzel(zea+p{z,g(l)))
A g, g))i}

Sg Jalvz(zeA+rvLp(z,g{)))
A YL q(L,g(L)}]

(2) FgIaivez(zea>»P{z,g)) A Q).

Now if B is a solution for Q{g) then

is a maximal solution (2). At first

{z: P(z,g5))
blush this would seem of little value, since find-
ing such a 8 is itself a search problem in

second order logic, (and since indeed the complete
maximal solution of (2) is the possibly infinite
family of all such {=z: P(z,go)]). However, in

many applications the family of maximal solutioms
15 reduced to a family of one by matches during

Bledsoe

the proof on other parts of the theorem. This is
exactly what happens in the use of the Least Upper
Bound Axiom, LUB, to prove theorems like Example
11 of Section 5.

4. Control

4.1. The Prover as a Control

As mentioned above, the set building rules of
Section 3 are uased to propose a value for a set
variable A and then IMPLY, our automatic prover
|1} ia used to prove the resulting theorem.

It turns out that the prover is also a con-
venient vehicle for controlling the use of the set
building rules. In doing se it proceeds in its
normal way to prove the theorem, applying a list
of production rules: to manipulate the theorem,
ta propose subgoals, to manipulate the data base,

to match, etc.8 The set bullding rules are added
to these production rules.
For example, in proving the theorem,

Example 6. 3 A(P(a) A afb>Vx(xc A+ P(x))
Adylyea)rAbda),

It firet skolemizes and sets up the goal
) (P(a) A~ a#b > (xA c A> ?(xAJ)
Aoy c AY A b dAY,
and then splits it into subgoals (1), (2), (3).
(1 (P(a) A adb > (x, € A>Px,))).

Rule Bl is applied to this subgoal to yield
the solution {z: P(z)) for A. This value of
A is not substituted for A In the resminder of
the theorem, but rather is placed in the data
base, tc be combined with other values gotten
later.

(2) (P(a) A a#b >y e A).

This subgoal is ignored by Rule B6. (Actually
it vielda the universal set U, which will be in-
tersected with other sets and therefore 'ignored”.)

(3 (P(a) »~ afb >b d 4).

Rule B4 is applied to this subgoal to yleld
the solution fz: z¥b] for A. This too is
placed in the data base, and combined with the
earlier sclution, yielding

The reader is referred to [1] for details and
examples. For our purposes here the prover des-
cribed in [1] has been augmented by a data base
for handling our set variables and interval types
(see Section 4.2). These data base manipulations
are in the spirit of those mentioned in [9] and
applied in [5,6] and [8].

{*) [z: P(z) A z¥Db)

a8 the current solution for A.

Since (3) ie the last subgoal, the finsgl
solution {*) 1s substituted for A in the origi-
nal theorem, getting the new goal:

() (#¢a) » a¥b > (P(xo)f\xol‘b+?(xo))
AP AYED) A~(P(b) A bEDB)).

Now this, which is a first order theorem, is
proved as a series of subgoals.

Our fntention here is to emphagize the part
of the process that bullds the set A uaing the
set bullding rules, and to deemphasize the proof
af the resulting firgt order theorem.

4.2. Interval Types

Before describing other exampleg in Section
5 we will depcribe another part of our data base
which is called "Interval types” in |4] and which
plays a crucial pert in proofe of theorems in real

analysis. This is best {llustrated with an ex-
ample.
Example 7. (P(1) » Fx(0 < x <2 A P(x)))-

The skolemized goal is
) (B(1) > (B < x<2n P(x))).
The prover handles the firat aubgoal
(1) EFLy»0cx2?)

not by giving some particular value to x, such
as 0 or 2 or 1, but rather by storing the
entry {x: 0 2] {in the data base, indicating that
the variable x is now restricted to the inter-
val ¢ < x< 2. The prover then goes to the
second eubgoal

2) (P(1) » P(x))

with x pstill a variasble. When this goal is
solved, with 1/x, then it must verify that this
subgtitution iz comsistent with its data base
entry, i.e. that 0< 1< 2.

Such & data base mechanism 1s used in the
proof of the intermediate value theorem ip Example
11 beiow, and other like proofs in real analysis.
This concept which was used in [2], has literally
made the undoable doable. Otherwise one 18 in-
volved in the use of the axioms for the real num-
berse and for inequalities which tend to choke

automatic provers not uaing special mechanisms
14la +hin

Theorm Proving-1:Bledsoe

506

5. Some Major Examples

Section 5 of [0] summarizes the proofs of
severnl examples. We 1is1 here somec of those

]
exanmples and the derived solution for each.

If a set B contains anopen neighbor-

is open.lo

Example 8.
hood of each of its points then B

Or symbolically

(vx(xe B> 3D (Open DAxeDADIB))
+ Open RB).
The following lemma iz used:
L: The union of a family of open sets is Open.
Il.e.,
3 _ 10
(I G (GCOPENAD = (Union G)) »OpenD}).
The object iz to find this faemily G.
Solution: {Z: Open Z A Z Z B}.
Example 9.11 If F iz a family of open sets cover-
ing the regular topological space X, then there
exists a family G of open sets which covers X
and for which G S < F.

The object 18 to find this family G.
The fellowing definitions are used:

Regular: wAvx(Open A/ x e A

> 3B @penBA e BAB A
oC F. F C OPEN A Cover F
Cover F: ¥Yx JA(Ac FAxed

Thus our theorem becomes

(Regular A OC F + 3 G{C G A T ¢ = F)),

4

9See Section 6 for a discussion of what was actu-

ally proved by the computer on these examples.
loan open neighborhood of a point x 1s just an
open set containfng =. We will use the capital-
ized OPEN to represent the family, all Open sets,
{(Union G) i=s defined te be the set of points
contained in some member of G.

nﬂe will denote by A the “clesure" of a set
A, and by U _the_family of closures of members
of G, i.e. G={A: A e G). Furthermore
(H CSF) means that B 1is a refinement of F,
i.e., each member of H I8 a subset of a mem-
ber of _F, or (YvA(Ae H> 3B(B e FAALBE)).
Thua (GC = F) means vA{AeG >

E2B(Bs FARCB)).

Theorem Provinp:-I:
507

() (Regular A OC F, » (OCGAEEEFO)),

0
in sgkolemized form.

(L) Solution:

{(Z: 0pen Z A FB(B e FGAEE 8] for G.
The next (rather simple) example is given to

show the effect of lemmas on the maximal solution.

Let R represent the real numbers and Q the

rationals.

2 A (A i5 dense in R)
2 {(R=A) 1s dense in R).

Example 10.

This of course hag no maximal solutiom for A.
However, 1f we employ the lemma

L: YB(Q CB »B i dense in R)

A WD C Q> (R-D) is dense in R)
then we do get a maximal solution. (See [O])
fz: z ¢ Q}=Q.

S0 a theorem with no maximal solution was
given one by the use of the lemtma. In other
theorems, the maximal solution 13 often changed
{decreased) by the use of lemmas. Indeed that is
the case in Example 11 below where a non-maximal
{but adequate) solution

(z: z<bA £{z) <0}
i3 given instead of the actual maximal solution

{2: Tx(xcbAflx)S0Az=x))

Example 11. <{Intermediate Value Theorem)
If § 1is continuous for a<x<b, agh,
f(a) < 0, and f(b) >0, then f{x})=0 for

gome X% between & and b. (See Figure 1)}
The proof of this requires the least
upper bound axiom, LUB:

LUB. Each non-empty bounded set A has a least
upper bound.

The object here is to find the set A re-
quired by the least upper bound axiom. The defi-
nition of the set needed here {s not at all cb-
vious (even for humans)}. We believe that the use
of a natural deduction prover, such ag ours, as &
control, is the key to this kind of problem,
whereby the prover explores its various subgoals
in a natural way and uses the basic set-building
Rules B1-BQ az they become applicable. Only com~
bining Rules C1-C3 are applicable in this exemple
po the basie¢ solutions are intersected to obtain
the general solution

{z: z< b A £(2) < 0)

for A. (See [0] for detaile.)

Bledsoe

The theorem and axiom (in symbols) are:

Th- vy(a<y<b+Contfy)rh a<bn f(a) <O
AEM 20+ T x(E(x)=0).

LIB. va(Juvt{teart<uwyn Ir(red
> B ljvx{xe A>x< k)
Avy(Vve(ze Arzgy) > 2 <yl

Instead of the definition of continuity the
following two lemmas are used:

11. (Contfx +» va{a < f(x)
>»Pe(tcxAve(t<s<x>ac< fi8))))

L2. {(Contfx +vwa(f(x) <a
rArx<ctave(x<s <t £is) <a))).

The "interval typing" described in Section
4.2 played a crucial role in this example. Sen [0].

¥F ([x} e F+ (y} e F)
*»vYA(xe A>rye A).

Example 12.

Thias example which was suggested by Peter

1z
Andrews is just the theorem

(z) = (¥} >»x =y

wvhere (o=|) has been characterized by
¥D{ue D> [e D), ({with the proper typing on
D).

Solution: {z: z=([y} >y e &) for F,

using Rule B3

The next two exmmples use some additiomal
Rules from Reference [0)]. These are found in
Figures 6 and 7 of [0].

In the following example we use Rules Bl and
BC1 of [0] to obtaln the preliminary solution,
which {s then simplified (by the author) te the
wolution.

3&[Vx(xeﬁ+x20)
AvE(xe An Xx¥0»x-2¢ A)].

Example 13.

Pre.li.mina.ry Solution:
[z: 2> 0A [¥o(neow > 2-In
vIN@MeaAVYVDmenAng
> z-2n > 0A z-2N=0))])}.

v
=2 o
~r

Solution:

{zi 2> 0A FW(z=2'N}) = the set of
non-negaltive aven integers.

121’1' ivate communication.

Example 14. & P VAWK [P(0,Xx) A (P(A,0)~ A = x.
A (PAK) A K # 0~ P(A+y,K-1))]

This theorem arises from the field of prograr
verification, in a case where the internal assertioc
P 18 not given but must be found by the prover.
The theorem represents the verification conditiom
for a simple program which multiplies Iintegers x
and y. (See Figure 6)

Ad— Aty
K #— K-1

Input assertion: x> 0, y > 0, integers.
Qutput assertion: A=x'y.

Internal arsertion at ¢: P(4,K), to be
determined.

Figure 6
Flow Chart for a Simple Multiply Program

In Example 14 we replace the two-place predicate
P by a set B of ordered pairs, and skolemize
to obtain

[(0,xp) € B A ((A;,0) ¢ B> Ap=x5'yp)
Pl ((AB,KB) e B A xﬁato
= (Agty Km1) € BY).
Then Rules B6, BZ' and BC2' are used to obtain,
Solution: {z: vavt (z= (s,0) » s=x0-y°)
AValneu A 2nd term st (s +yg, t-1)"(2)) 4 0)
+1

AV 8 Ostisty,t-1)" (2) = (s),0)
. yo).]}.

- =
51 XU

This seolution is then simplified {by the
author) to

[(AK): Keounas (xo-l()-yol
which corresponds to the predicate P, where

P = = -] .
(A,K) = Ke oA (xo K) Yo

Theorem Proving-1: Rledsoe

508

which is the usual interval assertion given by
humans for the program dipicted in Figure 6. See
[0] for more details.

6. Comments

Delaying

In our procedure we have employed a concept
of delaying, whereby we delay the final determin-
ation of a set A until all parts of the theorem
have been processed. Early subgoals place
restrictions of the form ({z: P(z)} on A, but

leave A itself as a variable to be further con-
sidered later. Later subgoals may further re-
strict A, or may force A to take a particular
value A0 (e.g., by matching). In this last

eventuality the program must check that Ao s

consistent with the earlier restriction

(z: P(z)}. This kind of delaying has the marked
advantage of not closing off the determination of
A by assuming early values for it; but rather
keeping it "as general as possible", putting on
restrictions only as they are forced. Thus we see
that the notions of "maximality" and "delaying"
are somewhat analogous.

This concept of delaying is an important one
in other parts of automatic theorem proving.
Huet's constrained Resolution 13] is an example of
it where he delays the higher order unifications
until resolution matches have been made. The most
general unifier [16] is another example, in that
it lets resolution (or whatever prover that uses
it) delay as long as possible the assignment of
constant values to variables.

Also our use of delaying for set variables
is entirely analogous to the concept of interval
types [2,5,6] explained in Section 4.2, when a
variable x is restricted to an interval
[a < x < b] to satisfy an earlier subgoal, but
left a variable to be instantiated or further
restricted later. This technique has greatly sim-
plified our proofs in analysis, and we expect
other such "delaying" methods to be developed.

Relation to the Work of Others

Darlington's program [12,14] has proved
Example 8 and other examples using his F-matching.
Our procedure has a similarity to F-matching and
was partially inspired by talks with Darlington.
But it is different especially in its use of the
maximallty concept which is an outgrowth of the
ideas in [15, Sec. 10], and in other ways.

This work is of course related to Behmann's
decision procedure for monadic first and second

order logic [13]'®. A cursory look at [13] indi-
cates that our solutions are often the same as
Behmann's. His methods might be extended to also
handle a number of non-monadic cases (as ours do).
So it seems that an extensive study of papers on
monadic logic is very much in order.

3J.A. Robinson first pointed this out to me.

Theorem

Provin*-I:
509

The procedures of [3,4,7,10,11] are more gen-
eral than ours, and their research provides a
necessary base for this type research; we only feel
that our work can be more effective on a limited,
but important part, of higher order logic.

Completeness

All of our rules are sound because no matter
what value we get for the set variable A, we
always verify it with another pass through the
prover. The only question, then, is one of
completeness.

See Section 7.5 and Appendix Il of [0] for a
discussion of, and some proofs on, completeness of
these rules.

Implementation

An augumented version of the prover described
in |1], which operates in Machine-only Mode (i.e.,
not man-machine), has been used to prove some ex-
ample theorems. But not all of Examples 1-15 of
this paper were actually proved. Examples 1-4,
6-12, were proved outright. Some others could
have been proved by minor changes in the program
which we are in the process of making; and some
require more extensive changes.

Acknowledgment

This work has benefited from conversations
with Mike Ballantyne, Mabry Tyson, Peter Bruell,
Allan Robinson, Ernie Sibert, Peter Andrews, and
Gerard Huet. Also, Peter Bruell has helped de-
velop and implement the computer program.

References

0. WMW. Bledsoe. A Maximal Method for Set

Variables in Automatic Theorem Proving. Univ.
of Texas Math. Dept. Memo ATP-33, Feb. 1977.
1. WMW. Bledsoe and Mabry Tyson. The UT Inter-

active Theorem Prover. The Univ. of Texas at
Austin, Math. Dept. Memo ATP-17, May 1975.

2. WW. Bledsoe, Robert S. Boyer and William H.
Henneman. Computer Proofs of Limit Theorems.
A.l. Jour., 3(1972), 27-60.

A Com-
Ph.D.
Jennings

3. G.P. Huet. Constrained Resolution:
plete Method for Higher Order Logic.
thesis, Case Western Reserve Univ.,
Computer Center Report 1117.

4. G.P. Huet. A Unification Algorithm for Typed
A-Calculus. Theoretical Computer Science,
1(1975), 27-57.

5. D.l. Good, R.L. London and WW. Bledsoe. An
Interactive Verification System. Proc. of
the 1975 International Conf. on Reliable Soft-
ware, Los Angeles, Ca., April 1975, 482-492,
and |[EEE Trans, on Software Engineering.
1(1975), 59-67.

Bledsoe

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

W.W. Bledsoe and Mabry Tyson. Typing and
Proof by Cases in Program Verification. Univ.
of Texas Math. Dept. Memo ATP-15, May 1975.
To appear in Machine Intelligence 8, Donald
Michie and EW. Elcock (Eds.), Reidel Pub-
lishing Co., 1977.

G.A. Haynes and L.J. Henschen. A Refutation
Procedure for Omega-order Logic. Northwestern
Univ., Aug. 1976. Informal memo.

A. Michael Ballantyne and W.W. Bledsoe.
Automatic Proofs of Theorems in Analysis
Using non-standard Techniques. The Univ. of
Texas Math. Dept. Memo ATP-23, July 1975.
To appear in JACM.

W.W. Bledsoe. Non-resolution Theorem Prov-
ing. Univ. of Texas Math. Dept. Memo ATP-29,
Sept. 1975. To appear in the A.l. Jour.

T. Pietrzykowski. A Complete Mechanization
of second Order Type Theory. JACM (1973),
333-364.

Peter B. Andrews. Resolution in Type Theory.
Jour, of Symbolic Logic, 36(1971), 414-432.

J.L. Darlington. Deductive Plan Formation
in Higher Order Logic. Machine Intelligence
7, pp. 129-137.

Heinrich Behmann. Beitrage Zin Algebra Der
Logik: Insbesondere Zum Entscheidongsproblem
Mathematische Annalen, 86(1922), 163-229.

J.L. Darlington. Talk at Oberwalfach Con-
ference on Automatic Theorem Proving.
Oberwolfach, Germany, Jan. 1976.

W.W. Bledsoe. Some ldeas on Automatic
Theorem Proving. Univ. of Texas Math. Dept.
Memo ATP-9, May 14, 1973.

J.A. Robinson. A Machine-oriented Logic
Based on the Resolution Principle. JACM,
12(1965), 23-41.

R.S. Boyer and J S. Moore. Proving Theorems
about LISP Functions. JACM, 22(1975),
129-144.

J.L. Darlington. Automatic Theorem Proving

with Equality Substitution and Mathemati-
cal Induction. Machine Intelligence 3,
Edinburgh Univ. Press (1968), 113-127.

C. Chang and R.C. Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press.
1973. Section 11.10.

WMW. Bledsoe. Splitting and Reduction
Heuristics in Automatic Theorem Proving.
A.l. Jour. (2), (1971), 55-77.

Theorn Proving-l:Bledsoe

510

