A LEMMA DRIVEN AUTOMATIC THEOREM PROVER FOR RECURSIVE FUNCTION THEORY

Robert S.

J Strother

Computer
SRI

Menlo Park,

ABSTRACT

We describe work in progress on an automatic
theorem prover for recursive function theory that
we intend to apply in the analysis (including
verification and transformation) of useful computer
programs. The mathematical theory of our theorem
prover is extendible by the user and serves as a
logical basis of program specification (analogous
to, say, the predicate calculus). The theorem
prover permits no interaction once given a goal,
but many aspects of its behavior are influenced by
previously proved results. Thus, its performance
on difficult theorems can be radically improved by
having it first prove relevant lemmas. We describe
several ways that the theorem prover employs such
lemmas. Among the interesting theorems proved are
the correctness of a simple optimizing compiler for
expressions and the correctness of a "big number"
addition algorithm.

The research reported here has been supported
by the Office of Naval Research under Contract
NOOO14-75-C-0816, the National Science Foundation
under Grant DCR72-03737A01, and the Air Force
Office of Scientific Research under Contract
F44620-73-C-0068.

| INTRODUCTION

This paper presents work in progress on an
automatic theorem prover designed for use in the
analysis of computer programs. Like our earlier
LISP theorem prover [1], [2], [3], [4], the new
system proves theorems in a version of recursive
function theory; however, the new version, which is
considerably richer than the old, is axiomatically
extendible and can serve as a logical basis of
program specification (analogous to predicate

calculus). Of course, the new theory is tailored
to programming languages in the sense that it is
easy to model, say, arrays and other data objects

in it. But exactly how one attaches meaning to
programs (e.g. with the functional approach of
McCarthy and Burstall or with the inductive
assertion approach of Floyd and Hoare). is the
business of the program verification system, not
the mathematical theory or the theorem proving
system. (For example, we have recently formalized
in our theory a version of the Pernas-Robinson [5]

Theorem Proving-1:

511

Boyer

Moore

Science Laboratory
International
CA 94025

hierarchical program design methodology using the

Floyd approach to program correctness.)

The approach we have taken towards automating
proofs in the theory is to model our system on the
way we prove theorems: we simplify the conjecture
whenever possible, applying relevant axioms and
theorems; we split the problem into as many
independent subgoals as possible; we carefully
apply various heuristics, such as equality
substitutions, elimination of undesirable or
irrelevant terms, and generalization; and then we
formulate the cleanest possible induction for each
subgoal based on a thorough analysis of how the
functions behave. We also monitor our progress by
comparing subgoals with one another. For example,
we look for indications of looping and for
opportunities to subsume a subgoal with a more

general subgoal. Our basic approach to theorem
proving, then, is much in the style of Bledsoe (as
described, for example, in [6] and [7]).

We designed the new system to be entirely
automatic. However, unlike our earlier LISP
theorem prover, which was built to demonstrate
completely automatic induction proof techniques,
the new system can take advantage of previously

proved results to alter dramatically its behavior.
With proper "training" it can construct proofs of
quite complicated theorems. The basic idea is to

be able to do simple proofs automatically while
allowing the user to structure difficult proofs by
stating relevant lemmas to be proved beforehand.
The optimizing compiler proof, discussed below,
illustrates how the user can structure a

"difficult" theorem by suggesting several "simple"
lemmas.

Aubin [8] and Cartwright [9] have recently
produced related automatic theorem provers for

versions of recursive function theory. We highly

recommend their theses to anyone interested in
mechanizing recursive function theory.
This paper is organized as follows. We first

present a description of the theory with which the
theorem prover deals. We then describe in some
detail the system's automatic proof of the
correctness of a simple optimizing compiler for
expressions. Next we discuss some of the ways
lemmas are employed to guide the theorem prover.
That section discusses lemma driven simplification,
generalization, and an interesting use of lemmas to
Justify inductions. The discussion of induction
summarizes one of the system's proofs about "big

Royer



number" arithmetic. The paper has two appendices.
The first presents the definitions of recursive
functions referred to in the paper. The second
presents the system's output during a proof of a
simple theorem about a tree-flattening algorithm.
We include this proof both as an example of the
theorem prover's behavior end because the recursion
(8nd induction) in the tree-flattening algorithm is
similar to that used by the compiler. Because of
space limitations we cannot ennumerate the theorems
the system has proved. Such a list will be sent
upon request. We also welcome requests for the
source code of our system.

I THE NeW THEORY

The theory we now use admits arbitrary
recursive definitions. (Our earlier LISP theorem
prover is limited to primitive recursion.) We
regard definitional equations as axioms which are
used only to expand function calls. (One might use
recursive functions as a logical basis for
induction arguments. However, we derive our
Induction principles solely from proven lemmas in a
way described below. Of course, we use the
recursive structure of the functions in our
theorems to suggest which principle of induction Is
most appropriate.)

The domain of objects is partitioned into an
infinity of disjoint "type classes." The user is
free to define axiomatically the properties of any
class. Because the free variables in a conjecture
are understood to range over all objects (even
objects not yet distinguished by the axiomatization
of their containing classes), theorems remain
theorems even when a new class is axiomatized. Of
course, variables in a theorem may be constrained
with axiomatically or recursively defined
predicates. Unlike the languages of Aubin [8] and
Cartwright [9], our language is not typed; we do
not have typed variables in our theorems or type
constraints on the input or output of our
functions.

The initial objects are TRUE and FALSE, the
sole members of their respective classes. The
initial functions are IF and EQUAL. (IF x y z) is
z if x is FALSE and y otherwise. (EQUAL x vy) is
TRUE if x is y and FALSE otherwise.

Arithmetic over the non-negative integers, the
literal atoms, lists, push-down stacks, characters,
and strings of characters &re examples of classes
that have been added axiomatically. There is a
(meta-) facility called ADD.SHELL for automatically
axiomatizing new classes of objects with properties
virtually identical to Burstall's structures [10]
and close to the style of Clark and Tarnlund [11].

The theory also contains a version of the
principle of induction called the Generalized
Principle of Induction (Noetherian induction) in
Burstall [10]. The principle allows one to induct
over any well-founded partial ordering.

Theorem

I AN EXAMPLE

Let us now consider the system's proof of the
correctness of a very simple optimizing compiler
for expressions. Although this proof fails to
exercise many of the new heuristics in the system,
it does illustrate the use of lemmas and the
system's general competence at handling
significantly larger problems than our earlier LISP
theorem prover could. A detailed presentation of
the proof (complete with the set of all axioms
used, the system's very readable commentary on the
proof, end a discussion of several bugs discovered
in earlier attempts to write the compiler) is
available in [12].

Suppose we have axiomatically introduced as
distinct classes the non-negative integers, atomic
symbols, list structures, end push-down stacks.
For simplicity, suppose we want to optimize and
compile numerically valued expressions composed of
integers, variables, and binary function symbols.
We will represent such expressions as S-expressions
(e.g. "(3 ¢ x) * y" is represented as (TIMES (PLUS
3 x) y)). The recursive predicate FORVP recognizes
such forms. (All of the functions mentioned in
this section are formally defined in Appendix A.)

The main theorem we wish to prove is that
executing the (optimized end) compiled code for a
form in the context of some stack and environment
is equivalent just to pushing onto the stack the
value of the unoptimized form in the environment.
That is:

CORRECTNESS.OF.OPTIMIZING.COMPILER:
(FORMP x) -> (EXEC (COMPILE x) pds envrn)

(PUSH (EVAL x envrn) pds).

The compiler, COMPILE, works in two passes.
It first uses OPTIMIZE to perform constant folding
(e.g., (TIMES (PLUS 3 4) y) is optimized to (TIMES
7 y) if (APPLY 'PLUS 3 4 were to have the value
7). After optimizing, the compiler calls OODEGEN
to generate a list of instructions to be executed
(in REVERSE order). (CODEGEN form insj generates a
list of instructions for form, treating ins as the
list of instructions previously "laid down". If
form is a number or variable, CODEGEN lays down a
PUSHI or PUSHV instruction (by consing it onto
ins). (PUSHI n) causes the "hardware" to push n
onto its stack. (PUSHV x) causes it to push the
value of the variable x in the current environment.
If the form is not a number or variable, then
CODEGEN assumes it is an S-expression such as (fn
argl arg2). It first lays down the code for argl,
then the code for arg2, and then the instruction
fn, which means to the hardware "pop two things,
apply fn to them, and push the result."”

The reader is encouraged to inspect the
definition of CODEGEN in Appendix A. Note, in
particular, that the compilation of arg2 takes
place with ins being the sequence produced by a
recursive call of CODEGEN on argl.

As an example of CODEGEN, its (reversed)
output for the form (TIMES 3 (PLUS x y)) is:

Provinr-1: Boyer



((PUSH]1 3)
{PUSHV x)}
{PUSHYV ¥}
PLUS
TIMES).

The semantics of expressions (in an
environment, envrn, specifying the velues cof
variablea) is defined by EVAL, The value of 2
number is itself., The value of 2 variable, %, is
{GETVALUE x envrn), where GETVALUE is an
unspecified function. The velue of (fn argl arge)
is the result of APPLYing fn to the values of argl
and arg?, where APPLY im 2 numerically valued
function that ia otherwlse unapecified.

Finally, EXEC i% a formalization of a
machine'a instruction fetch and execute cycle.
EXEC takea three apgumenta: &n instruction
sequence, & push-down stack, and an environment.
Like EVAL, EXEC user GETVALUE anmd APPLY.
{Regerdleas of the semantics of GETVALUE snd APPLY,
the optimizing compiler muat cause EXEC to compute
the same value for forms as EVAL would.) EXEC
returns the push-down satack efter the laat
instruction heas been executed.

In order to prove the main theorem, we (the
users of the theorem prover) structure the proof as
follows: First, show that CPTIMIZE doea not change
the value (& la EVAL) of the form optimized.
Independently show that when CODEGEN is given any
form whatacever it generates code that, when
executed, pushes the value of the form on the
stack. To use these two lemmas to prove the maln
theorem we must only then emtabliah that CPTIMIZE
doea indeed give CODEGEN a form to work on.
Formally, the three "simple" lemmas are:

CORRECTNESS.OF . OPTIMIZE:
(FORMP x} -> (EVAL {(OPTIMIZE x) envrn)

{EVAL x envrn},

which says that OPTIMIZE preserves the value of #
form.

CORRECTNESS. OF . CODEGEN :
{FORMP x} ~> (EXEC (REVERSE {CODEGEN x ins)})
pds envrn}
(PUSH (EVAL x envrn)
(EXEC {REVERSE ins)
pds envrnl}),

which saye that CODEGEN produces correct code when
given a form.

FORMP.OPTIMIZE:
(FORMP %} -> (FORMP (OPTIMIZE x}),

which says OPTIMIZE produces a form if given one,

The theocrem prover proves the two lepmas about
OPTIMIZE without any help. However, in watching it
try to prove the CORRECTNESS,OF.CODEGEN we saw that
it needed to know that when EXEC executes the
sequence {APPEND x y), then y is exescuted with the
push-down atack produced by the execution of x. We
aelled this the SEQUENTIAL.EXECUTION lemma:

Thporom

Proving-1I:

513

(EXEC (APPEND x y) pda envrn}

(EXEC y (EXEC x pds envrn) envrn).

The system proves this
on the structure of x.

lemma easily, by induction

Once "cognizant" of this lemma, the theorem
prover can prove the correctness of CODEGEN. This
proof requires a rather subtle induction argument
due to the fact that the compilation of the second
argument position of a form takes place after the
first argument has been compiled. The careful
reader will note that the use of INS in CODEGEN
(see Appendix A) is analogous to the use of Y in
MC.FLATTEN (also in Appendix A): in both cases the
functions recurse and pass down in the indicated
argument position the value of another recursive
call. Rather than present the details of the proof
of CORRECTNESS.OF.CODEGEN we refer the reader to
Appendix B where we present the system's proof of a
simple theorem about MC.FLATTEN requiring e similar
induction argument.

Once the system has proved
CORRECTNESS.OF.OPTIMIZE, CORRECTNESS.OF.CODEGEN,
and FORMP.OPTIMIZE it can prove the main theorem,
CORRECTNESS.OF.OPTIMIZING.COMPILER, above, by
rewriting:

(EXEC (REVERSE (CODEGEN
pds envrn)

(OPTIMIZE x) NIL))

to

(PUSH (EVAL (OPTIMIZE x) envrn) pds),
using the CORRECTNESS.OF.CODEGEN as a rewrite
[Note that in order to do so it must first
establish (FORMP (OPTIMIZE x)). This is done by
backwards chaining through FORMP.OPTIMIZE, picking
up the (FORMP x) hypothesis from the main theorem].
Further simplification gives:

rule.

{FORMP x) -> (EVAL (OPTIMIZE x)} enwvrn)
{EVAL x epvrn)

which is just CORRECTNESS.OF.OPTIMIZE, so the proof
is complete. (Note that had we not already proved
CORRECTNESS.OF.OPTIMIZE the system would have
generated it and proved it here.)

The lemma CORRECTNESS.OF.CODEGEN is
reminiscent of the correctness of a compiler for
expressions presented by McCarthy and Painter in
[13]. We have assumed that we have a push-down
stack while they explicitly allocate registers.
Diffie [14] and Milner and Weyhrauch [15] were able
to proof check versions of this theorem with a
considerable amount of user interaction.

Cartwright [9] obtained a proof with less user
assistance than [14] and [15]. Our automatic proof
is distinguished from these proofs in that the
proof of the lemma CORRECTNESS.OF.CODEGEN requires

only that one lemma be proved ahead of time, does
not require any guidance in doing induction, and
handles the function CODEGEN, whose recursion is

more efficient and more difficult to understand
than the versions which employ APPEND. Our
investigation of the subject of compiling
expressions was inspired by the Buratall version of
the theorem [10]. In fact, our first proofs
employed functions akin to the LIT function

Boyer



Burstall uses. After producing this proof and
writing [12] we received a copy of Aubin's thesis
[81]. In it he presents an automatic proof of a
theorem extremely similar to our
CORRECTNESS.OF.CODEGEN employing a single

analogous to SEQUENTIAL.EXECUTION.

lemma

Readers familiar with the old LISP theorem
prover may be interested in knowing how that system
fails to prove the correctness of our optimizing
compiler. There are five basic inadequacies: its
theory is too simple to permit a natural statement
of the problem; it could not formulate the right
induction for CODEGEN; its type handling is
inadeaurte to simplify the induction arguments;
would run out of list space because it would not
split often enough; and it could not have made
sufficient use of lemmas.

it

I\ HOW LEMMAS ARE USED

The new system uses in

this section we explain

lemmas in many ways;
three of them.

A. Lemmas. for Rewriting

lemmas is as
Of course,
function definitions as rewrite
a function call by replacing it
with its definition (when the result is simpler in
some sense). But more generally, the theorem
prover interprets all axioms and lemmas as rewrite
rules in the following way.

The most common use of axioms and
rewrite rules during simplification.
the simplifier uses
rules to "open up"

Given any formula

all of the sequents
H1 & H2 & & Hn ~> C

one can deduce from it by propositional calculus.
We classify each sequent according to the form of
C. If C is of the form (NOT u) then the rule can
be used to rewrite any term which unifies with u
FALSE, provided the instantiated Hi can be
established. If C is of the form (EQUAL u v) it
can be used to rewrite u to v, again provided the
instantiated Hi can be established. Otherwise,
C is Just u, where u is Boolean, then it can be
used,to rewrite u to TRUE, under the same
provision.

(axiom or lemma) consider

to

if

When the simplifier has decided to use a given
rewrite it tries to establish the Hi by
(recursively) simplifying them (to non-FALSE).
This was illustrated above in the discussion of the
proof of CORRECTNESS.OF.OPTIMIZING.COMPILER when
the hypothesis (FORMP (OPTIMIZE x)) was established

(i.e., rewritten to TRUE).

Care is taken to avoid infinite regression
(e.g., repeated applications of a commutativity
rewrite or "pumping" up a term with a rewrite like
the contrapositive of FORMP.OPTIMIZE.) For
example, we avoid the first problem by refusing to
apply a rewrite of the form (EQUAL u v) when u and

v ere variants unless the result is
lexicographically less than the original formula.
Thus, the lemmas

(PLUS i J) = (PLUS J i)
and

Theorem Prowlng-I:

514

{PLUS & (PLUS J k)} = (PLUS J (PLUS 1 k))},
with the lexicographic restriction, cause nested
PLUS expreasions to be right =asscclated with their
erguments in (lexicographically) ascending order.
{For example, (PLUS (PLUS y x) z) is normalized to
{PLUS x (PLUS y z)} by the zbove described
process.)

B. Lemmas for Geperaliziog

When trying to prove theorems by induetion it
i3 often neceEesery to prove a more general theorem
thar that given (where P is more general than G if
Q is an instantiatien of P). Like the cld LISP
theorem prover, the system generallzes subterms
common to both sldes of sn equality or implication
by replacing the subterms with new veriables,
Unlike that theorem prover, the new system is
sensitive to previously proved facts about the
subterm.

Assume SORT is a list sorting function snd
ORDERED is a predicate that returna TRUE 1f the
elements In 1ts input list are 1n ascending order.
Assume further that the system has proved that
(SORT x) is a list of numbers when x 1s 2 list of
numbers and that the aystem lgter has to prove:

(L1ST.OF .NUMBERS x) &

(ORDERED (EORT x}) & (NUMBERP 1)
-
(ORDERED (MERGE i (SORT x))).

Then the system will generalize (SORT x) by
replacing it with z, but will restrict z to being a
list of numbera. That ias, the system will sdopt
the new goal:

(LIST.OF.NUMBERS x) & (ORDERED z)

& (NUMBERF i) & (LIST.OF,NUMBERS z)
->
(ORDERED (MERGE i z)).

{Note: (L1ST.OF.NUMBERS x) would later be
eliminated as irrelevant.) This use of lemmas
dllows the new system to avoid one of the most
commen ailure modes of the old L1SP thecrem
prover: generalizing & conjecture too much,

C. Lemmasz for Inducting

A3 observed in Boyer and Moore [1], what
makes an induction principle appropriste for s
conjecture is whether it supplies indoctive
hypotheses about the recursive calls introduced
when some of the functions in the induction
conclusion are opened up.

1. Lhoosing ac Appropriate Principle

For soundness, all of the induction
hypotheses supplied must be instances of the
thecrem being proved, and, in the Generalized
Principle of Induction [10), all the instances
assumed muat result from instantiating some n-tuple
of variables in the conclusion with n-tuplea of
terms that sre smeller (under the conditions
governing the induction step) than the variable n-

tuple in scme well-founded paritiasl order. The
Boyer



trick, then, to finding an appropriate induction
for a conjecture is to find a well-founded partial
order on n-tuples and an n-tuple of variables in
the conjecture, such that if one were to open up
some of the function calls in the conjecture one
would find subexpressions occurring that could be
obtained by instantiating the conjecture itself
with smaller n-tuples chosen from the ordering.
Thus, one is lead naturally to the question: "What
are some plausible well-founded orderings on n-
tuples of variables that a given recursive function
descends through in its recursion?"”

To answer this question, our system
imposes a basic responsibility upon the user to
assume or to prove certain lemmas that we term
"measure lemmas". Measure lemmas state that
certain terms are less than other terms under well-
founded orderings such as LESSP (on the non-
negative integers.) Our induction facility then
uses such lemmas at the time a recursive function
is defined to determine some induction principles
appropriate to that function. Of course, this
induction mechanism is capable of examining all
subsets of arguments to find appropriate principles.
It also recognizes lexicographic orderings induced
by existing orderings and chains together measure
lemmas using transitivity (for example, to derive
that (SUB1 (SUB1 x)) is less than x from the fact
that (SUB1 x) is less than x.)

As an example of the use of such "measure
lemmas" consider "big number" arithmetic. The
problem is to represent and manipulate (in our
case, add) integers that are larger than the word
size of the host machine. The obvious solution is
to represent them as sequences of digits in some
chosen base, and to add them with the algorithm we
all learned in the third grade. Two examples of
the use of that (or similar) algorithms in
computing are the "big number" arithmetic of

MACLISP (where the base is 2 ) and the binary
representation of integers on most machines (where
the base is 2).

To state and prove the correctness of a
big number addition algorithm one must define the
mappings from integers to big numbers and back.
Consider the first: To convert an integer i to a
big number in base base, if i is less than base,
then write down the digit i and stop, otherwise
divide i by base, write down the remainder as the
least significant digit, 8nd obtain the more
significant digits by (recursively) converting the
quotient to a big number in base base. This
algorithm is embodied in the function POWERREP
(for "power series representation"”) in Appendix A,
where big numbers are represented as lists of
integers with least significant digit in the CAR

Note that the algorithm above recurses on
the quotient of i divided by base. What is the
measure lemma that Justifies this recursion (or,
analogously, the induction necessary to unwind it)?
It is:

(i i0) & (j i 0) & ((SUB1 j) i 0)
->

(QUOTIENT i J) <i,

Theorem Provinp-1:

515

That is, the QUOTIENT of i divided by j
is less than i if i is not 0, and j is neither 0
nor 1 (actually, in our untyped language,
arithmetic on non-integers is legal and all non-
integers are treated as though they were 1, thus
(SuB1 j) i 0 is stronger than j i V, it implies
that j is neither 1 nor a non-number).

Thus, if one wanted to prove by induction

a theorem of the form P(POWERREP i base)), and
one were cognizant of the above lemma, a plausible
induction to perform would be:

(i = 0) -> P(POWERREP i base))
&

(base = 0) -> P((POWER.REP i base))

((SUB! base) = 0) -> P(POWERREP i base))
&

((i i?7 0) A (base i 0) 4 ((SUB1 base) i 0)

h P(POWERREP (QUOTIENT i base) base)))
->

PUPOWERREP i base))

Note that the induction hypothesis is an
instance of the theorem being proved, that the
instantiation takes the tuple <i> into the smaller
tuple <(QUOTIENT i b7?se)>, according to the above
measure lemma, and that the term (POWERREP
(QUOTIENT i base) base) appearing in the hypothesis
will reappear when we open up the conclusion.
Finally, observe that by employing proved measure
lemmas we not only allow the theorem prover to be
extended but we insure that it is done soundly.
(Our first attempt to state the induction principle
for QUOTIENT left out the J i 1 case and would
have produced unsound inductions had it been either
explicitly assumed or wired into the theorem prover
program.)

The system has proved the measure lemma
above. The proof involves a similar induction by
DIFFERENCE (note in Appendix A how QUOTIENT itself
recurses) which in turn was justified by a (proved)
measure lemma stating that i-j is less than i under
certain conditions. Once the QUOTIENT measure
lemma has been proved the system, in accepting the
definition of POWERREP, will pre-process it to
discover the plausible induction scheme above.

That scheme is precisely the one the system uses to
prove that the mapping back from big numbers to
integers (POWEREVAL in Appendix A) is the
"inverse" (modulo non-numbers) of POWERREP:

(EQUAL (POWEREVAL (POWERREP i base) base)
(IF (NUMBERP i) i 1)).

The above lemma is crucial to the
system's proof that a big number addition algorithm
(BIG.PLUS in Appendix A) is correct:

(EQUAL (POWEREVAL (BIG.PLUS (POWERREP i base)
(POWERREP | base)
0 base)
base)
(PLUS i j)).

As a second example of a measure lemma,
consider:

Rover



i < mex ~> max-(ADD1 1} < wax -1

This lemma informs the system that it 1s sound to
induct up by ADD1 to & maxiwum (e.g., that to prove
Pix,¥) inductively one may prove it when ~{x < y)
(base case} and prove it when (x ¢ y) sssuming
P(x+1,¥)). In thiz ordering, <x+1,y> is leas than
<x,¥>. Thisa induction would be appropriate for a
function which counted up.

Choosing the Right

If one has a well-founded order on n-
tuples then it can trivially be extended to a well-
founded order on n+k-tuples, where the last k
elements are simply irrelevant. Thus, once the
system has found a plausible well-ordering that
accounts for how n of the arguments change in
recursion, it is free to throw in the remaining k
arguments and let them change arbitrarily. One
example of this occurs in the compiler proof.
Recall that CODEGEN has two arguments, FORM and
INS, and that during recursion it changes FORM by
digging out one of its sub-expressions. However,
while in one of its recursive calls INS (the
instructions thus far laid down) is unchanged,
the other call INS is arbitrarily larger. This
acceptable since the behavior on FORM induces a
well-founded order. Thus, the system knows that in
a conjecture involving (CODEGEN form ins) an
induction on the structure of form leaves it free
to choose any instantiation it wants for ins. (For
an example of such a choice in a simpler situation
see Appendix B.) However, in a conjecture
involving (CODEGEN form NIL) (where the INS
argument is not a free variable) the system still

Instances

in
is

knows it is sound to induct on form.
We originally tried to avoid such a deep
and lemma driven analysis of the well-founded

orderings used by functions by using subgoal
induction [16], where, provided one assumes a
function terminates, one can use the conditional
structure of the function plus its recursive calls
to define a well-founded order on the n-tuple of
all of its arguments. However we found that in
many theorems it was crucial to be able to induct
on some subset of the arguments (knowing that they
alone were sufficient to define an ordering) and
that the conditional structure of most functions
unnecessarily clutters inductions (which may seem
like a mere inconvenience but often sets up too-
restricted subgoals for subsequent inductions).

1

\ REMARKS

We would like to reiterate that this paper
reports work in progress (both on the features of

our theory and the proof techniques). While the
ourrent system is clearly not yet suitable as the
theorem prover for practical program analysis, we
are encouraged by our success at extending the
theory of the our earlier LISP theorem prover
without loss of proof-power. We believe we will be
able to develop the system into a useful tool.
Theorem

516

Appendix A
FUNCTION DEFINITIONS

Here we present the definitions of the
functions involved in the optimizing compiler
proof, the big number discussion, and the proof in

Appendix B. Several axiomatically specified
primitives are used. (NUMBERP x) is TRUE if x is a
number and FALSE otherwise. (L1STP x) is TRUE if x

is a OONS and FALSE otherwise. (PUSH x pds)
returns a stack with x pushed onto pds. (TOP pds)
returns the top-most element of a stack, and (POP
pds) returns the popped stack. GETVALUE and APPLY
are undefined (but APPLY is axiomatically specified
to be numeric - a fact crucial to
CORRECTNESS.OF.OPTIMIZE).

{APPEND {LAMBDA (X X}
(1F {LISTP X)
{CONS {CAR X) (APPEND (CDR X) Y¥))
1))

{B1G.PLUS
(LAMBDA {X Y I BASE)
(IF
{(LISTP X)
(IF
(LISTP ¥}
(CONS
{REMAINDER (PLUS 1 (PLUS (CAR X} (CAR Y)))
BASE)
(BIG.PLUS
{CDR X)
(CDR Y)
{QUOTIENT {PLUS I (PLUS (CAR X) (CAR Y)})
BASE)
BASE)}
(BIG.PLUS1 X I BASE))
(PIG.PLUS1 ¥ I BASE))))

(BIG.PLUSY
(LAMBDA {L 1 BASE)
{IF
(L1STP L)
(IF
(EQUAL 1 O)
L
{CONS
(REMAINDER (PLUS (CAR L} I} BASE)

Proving-1: {Bb}.&LUS1 (CDR L)

(QUOTIENT (PLUS (CAR L) I) BASE)
BASE)})
{CONS I NILID))

(CODEGEN

fLAMEBDA (FOBM THRY



(COMPILE
(LAMBDA (PORM}
(REVERSE (CODEGEN (OPTIMIZE FORM) NIL))))

{DIFFERENCE
(LAMBDA (I J)
(IF (EQUAL I ©)
0
(IF (EQUAL J 0)
{IF {NUMBERP I) I 1)
(CIFFERENCE (SUB1 I) (SUB1 J)}))))

{EXEC
(LAMBDA (PC PDS ENVRN)
(IF
(LISTP PC)
(IF
(LISTP (CAR PC))
(IF
(EQUAL {(CAf (CAR PC)) (QUOTE PUSHI))
{EXEC (CDR PC)
(PUSH (CAR (CDR (CAR PC))) PDS)
ENVRN)
{EXEC
(CDR PC}
{PUSHE (GETVALUE {CAR (CDR (CAR PC))) ENVRN)
PDS)
ENVRN})
{EXEC (CDR PC)
{PUSH (APPLY (CAR PC)
(TOP (POP PPS))
{TOP PDS)}
(POP (POP PDS)))
ENVRNY)
PDS)))

(EVAL {LAMBDA (FORM ENVRN)
(IF (LISTP FORM)
(APPLY (CAR FORM)
(EVAL (CAR (CDR FORM)) ENVRN)
{EVAL (CAR (CDR [CDR FORM))) ENVRN))
{IF (NUMBERP FORM)
FORM
(GETVALUE FORM ENVRN)})))

{FLATTEN {LAMBDA (X)
{IF (LISTP X)
{APPEND (FLATTEN (CAR X))
{FLATTEN (CDR X)})
{CONS X NIL))))

(FORMP
(LAMBDA (X)
(IF {LISTP X)
{IF (LISTP (CAR X))
FALSE
{IF (L1STP {(CDR X))
(IF (LISTP (CDR (CDR X)))
(IF (FORMP (CAR (CDR X)))
(FORMP (CAR (CDR (CDR X))))
FALSE)
FALSE)
FALSE))
TRUE)))

(LESSP (LAMBDA (X Y)
(IF (EQUAL X 0)
{IF (EQUAL Y 0) FALSE TRUE)
(IF (EQUAL Y O)
FALSE

(LESSP (SUBT X) (SUBY ¥))}}))

(MC.FLATTEN
{LAMBDA (X Y}
(IF (LISTE X)
(MC.FLATTER (CAR X}
(MC.FLATTEN (CDR X) Y))
(CONS X Y))))

(CPTIMIZE
{LAMBDA (FORM)
(IF
(LISTP FORM}
{IF
{NUMBERP (OPTIMIZE (CAR (CDR FORM))))
(1F
(NUMBERF (QPTIMIZE (CAR (CDR {CDR FORM)})})
{APPLY (CAR FORM}
(OPTIMIZE (CAW (CDR FORM)})
(OPTIMIZE (CAR (CDR (CDR FGRM)))))
(CONS
{CAR FORM)
(CONS
(OPTIMIZE (CAR (CDR FORMY))
(CONS (OPTIMIZE (CAR (CDR (CDR FORM)})}
NIL))))
{CONS
{CAR FORM)
(CONS (OPTIMIZE (CAR (CDR FCRM}))
{CONS (CPTIMIZE {CAR (CDR (CDR FORM))}})
NIL))})
FORM}))

(PLUS (LAMBDA (I 4}
(IF (EQUAL 1 O}
(IF {(NUMBERP J) J 1)
{4DD1 (PLUS (SUB1 I} J))))}

{POWER. EVAL
{LAMBDA (L BASE)
(IF (LISTP L)
(PLUS (CAR L)
(TIMES BASE
(POWER.EVAL (CDR L} BASE}})
e

(POWER . AEP
{LAMBDA (I BASE)
(1F
{EQUAL 1 0}
NTL
(IF
(EQUAL BASE 0)
{CONS I NIL)
{iIF
(NUMBERP BASE}
(IF
(EQUAL BASE 1)
{CONS 1 NiIL)
{CONS (REMAINDER I BASE)
{POWER.REP (QUOTIENT 1 BASE) BASE)))
(CONS 1 RIL)}))))

(QUOTIENT
(LAMBDA (I J)
(IF (EQUAL J 0)
0
{IF (LESSP 1 J)
0

(ADD1 (QUOTIEMT {DIFFERENCE I J) JIIN

Theorem Proving-1: Boyer



(REMAINDER
{LaMBDA (I J)
(IF (EQUAL J 0)
{IF (NUMBERP 1} 1 1)
(IF (LESSP I J)
(IF (NUMBERP 1) I 1)

(REMAINDER (DIFFERENCE I J) J})))}

{REVERSE (LAMBDA (X)
{IF (LISTP X}
{AFPEND (REVERSE (CDR X))
{CONS (CAR X} MIL})
NIL)))

(TIMES (LAMBDA (I J}
(IF (EQUAL 1 O)
0
{PLUS J (TIMES (SUBT 1} J)))))

Appendix B
THE FLATTEN.MC.FLATTEN THECREM

This Appendix contains the mschine's output
during its proof of 8 relationship between two
different tree flattening functions, FLATTEN and
MC.FLATTEN (mee Appendix A). The purpose is two-
fold: To illustrate in 2 pages the theorem prover
performing an induction almilar to that done for

CORRECTNESS.OF .CODEGEN (which takes 11 pages), snd

to exhiblt the theorem prover's output.

PROOF OF THE "FLATTEN.MC.FLATTEN" LEMMA

The conjecture to be proved im:

(EQUAL {(MC.FLATTEN X Y)
(APPEND (FLATTEN X) Y))

Simplificetion produces:

%§. (EQUAL (MC.FLATTEN X Y)
{APPEND (FLATTEN X) ¥)).

Give this the name *1. We'll try to prove
it by induction.

There are 2 plausible inductions. These merge
ipto one likely candidate induction. Induet
on X {inatantieting ¥). Thi= induction ia
Justified by the CAR.LESSP end CDR.LESSP
inequalities.

We muat now prove the following 2 goals:
*1.1., (IMPLIES (NOT (LISTP X))
(EQUAL (MC.FLATTEN X ¥)
(APPEND (FLATTEN X) Y)))
and
#1.41., (IMPLIES

{ARD
(LISTP X)

{EQUAL (MC.FLATTEN (CDR X) Y)
(APPEND (FLATTEN (CDR X)} Y))

{EQUAL

{MC.FLATTER (CAR X}

(MC.FLATTEN (CDR X} Y)}
{APPEND (FLATTEN (CAR X))
{MC.FLATTEN (CDR X} ¥))))
{EQUAL (MC.FLATTEN X Y)
(APPEND (FLATTEN X) Y))).

Simplification produces:

#1.441. (IMPLIES
(AND
(LISTP X)
(EQUAL (MC.FLATTEN {(CDR X} Y)
(APPEND (FLATTEN (CDR X)) ¥)}
{EQUAL
{MC.FLATTEN (CAR X)
{MC.FLATTEK (CDR X) Y))
(APPEND (FLATTEN {(CAR X))
(MC.FLATTEN (CDR X) Y} })
(EQUAL
{MC.FLATTEN {(CAr X}
(MC.FLATTEN (CDR %) ¥))
(APPEND (APPEND (FLATTEN (CAR X))
{FLATTEN {CDR X})}
1)),

Apply the lemma ASSOCIATIVITY.OF.APPEND to
#1.i1i. This producesa:

#1.iv. (IMPLIES
(AND
(LISTF X)
(EQUAL (MC.FLATTEN (CDR X) 1)
{APPEND (FLATTEN {CDR X)) Y))
{EQUAL
(MC.FLATTEN (CAR X)
{MC.FLATTEN (CDR X) Y))
{APPEND (FLATTER (CAR X))
(MC.FLATTEN (CDR X) Y))))
{EQUAL
(MC.FLATTEN (CAR X)
{MC.FLATTEN (CDR X) Y))
(APPEND (FLATTEN (CAR X))
{APPEND (FLATTEN {CDR X)) X))}

Croas fertilize
{MC.FLATTEN (CDR X) Y)
for
{APPEND (FLATTEN (CDR X)) Y)
in ®#1.1iv, &nd throw away the equality. This
producea: TRUE.

That finishes the proof of #1,

Q.E.D.

Load average during proof: 4605102
Elapsed time: 5.377 seconds

CPU time: 4,159 meconds

CONSea consumed: #4926

Theotrem Proving-1: Rover
518



All of the commentary in
mechanically produced by the

the above proof was
theorem prover in

response to the user command to prove (EQUAL
(MC.FLATTEN X Y) (APPEND (FLATTEN X) Y)). Several
additional comments are in order.

The base case of the induction argument is
formula *1.i and the induction step is *<1.11.
that in both cases the conclusions are the same
(namely the theorem to be proved) and that in *1.ii
the two induction hypotheses are instances of the
theorem to be proved. One sends the tuple <X,Y>
into <(CDH X),Y> and the other sends <X,Y> into
<(CAR X),(MC.FLATTEN (CDR X) Y)>, both of which are
smaller than <X,Y> according to the measure that
compares only the first elements and uses the
traditional ordering on list structures. The
instantiation picked for Y in the second hypothesis
was chosen because such a term would reappear when
the conclusion was opened up.

Note

Formula *1.i
proved. Formula
is proved by

simplifies to TRUE and is thus
*1.ii simplifies to *1.iii, which
re-associating one of the APPEND terms
(to produce *i.iv) and then doing a "cross-
fertilization." (The result of "cross-fertilizing
y for x in (IMPLIES (EQUAL x y) Q)" is Q with some
occurrences of x replaced by y.)

If the associativity of APPEND had not been
previously proved, the theorem prover would have

automatically produced it (from *1.iv, by two

cross-fertilizations, a generalization, and an

elimination of an irrelevant hypothesis) and then
proved it by induction.
REFERENCES

1. R. Boyer and J Strother Moore, "Proving
Theorems about LISP Functions," MCM, Vol. 22,
No. 1, pp. 129-144 (1975).

2. J Strother Moore, "Computational Logic:
Structure Sharing and Proof of Program
Properties," Ph.D. thesis, University of
Edinburgh (1973).

3. J Strother Moore, "Automatic Proof of the
Correctness of a Binary Addition Algorithm,"
SIGART Newsletter. No. 52, pp. 13-14 (1975).

M. J Strother Moore, "Introducing Iteration into
the Pure LISP Theorem Prover," IEEE Trans.
Soft, Vol. 1, No. 3, pp. 328-338 (1975).

5. L. Robinson and K. Levitt, "Proof Techniques
for Hierarchically Structured Prorams," CACM.
Vol. 20, No. 4 pp. 271-283 (1977),

6. W. Bledsoe, "Splitting and Reduction
Heuristics in Automatic Theorem Proving,"

Artificial Intelligence, Vol. 2, pp. 5577

(197D.
7. W. Bledsoe, R. Boyer, and W. Henneman,
"Computer Proofs of Limit Theorems,"

Artificial Intelligence, Vol. 3, PP. 2760
(1972).

Theorem Proving-lI:

519

3.

R

10.

12.

13.

14,

15.

R. Aubin, "Mechanizing Structural Induction,”
Fh.D. Thesis, Univeraity of Edinburgh, 1976.

R. Cartwright, forthcoming Ph.D thesis,
Computer Science Department, Stanford
University, Stanford, California(1977).

R. M, Burstail, "Proving Propertias of
Programs by Structural Induction," Jhe

Journal, Vol, 12, No, 1, pp. 41-38
{1969).

K. Clark and 5-4. Tarnlund, "A Firat Order
Theory of Date and Programs," Department of
Computing and Control, Imperial College,
London (1976).

k. Boyer and J Strother Moore, "4 Computer
Proof of the Correctneas of a Simple
Optimizing Compiler for Expressions,"
Technical Report 5, Contraet NOOO14-75-C-0816,
SRI Project 4079, Stenford Resesrch Institute,
Menle Park, Californie (1977) (NTIS Number AD-
AC36 121/2WC}.

J. McCarthy end J. Painter, "Correctnean of a
Compiler for Arithmetic Expressions,”
Mathematical Aapects of Computer Sclence, Vol,
X1X, Prgceedings of Symposia in Applied
Mothepatics, American Mathematical Scciety,
Providence, Rhode laland, pp. 33-41 (1967},

W. Diffie, Unpublished disc file said to exist
at Stanford Artificisel Intelligence Laborstory
by Richard Weyhrauch. (1972)}.

E. Milner snd R. Weyhrauch, "Proving Compiler
Correctnes® in a Mechanized Logic, Machinpe
lotelligenoe 7, {eds. B. Meltzer and D,
Michie) Edinburgh University Preas, pp. 5170
(972).

J. Morris and B. Wegbreit, “Subgoal

Induction,” Xerox Palo Alto Research Center,
C3L T5-6, Palo Alto, Californie (1975},

Royer



