IMPROVING THE EFFICIENCY OF HIGHER ORDER UNIFICATION

Jared L. D rlington

Institut
University of

Abstract

The sources of inefficiency in cur-
rently existing higher order unification
algorithms are investigated. Aside from
such theoretical difficulties as the un-
decidability of unification in third order
logic, and the existence of infinite uni-
fiers and the lack of a polynomial bound
on the number of applications of the "imi-
tation" rule even in the monadic subcase
of second order unification, the current
algorithms suffer from a built-in ineffi-
ciency due to their introduction and sub-
sequent elimination of many auxiliary
functional variables, and to the nondirec-
ted nature of the substitutions made by
the "projection" rule. It is argued that
a procedure based on attempting to match
the argument or arguments of a functional
or predicate variable with the subterms of
the other formula in the unification can
decide the possibility of unification and
generate the resulting unifiers much more
directly than the theoreticallv comolete
algorithm.

Descriptive Terms

Higher order logic, resolution, theorem

proving, unification
The recent interest in developing
linear and near-linear unification algo-

rithms for first order languages (see for
example Huet 1976, Paterson and Wegman
1976, and work referred to by them) has,
with few exceptions, not been matched by
a corresponding effort to improve the
efficiency of higher order unification.
A linear unification algorithm is of
course-out of the question for higher
der logic in general, for not only is
unification known to be undecidable in
third order logic (Huet 1973; Lucchesi
1972), but even in the monadic subcase of
second order logic it has been shown (by
Winterstein 1976) that there exists no
polynomial upper bound on the number of
applications of the "imitation" rule which
together with the "projection" rule plays
an essential role in a complete higher
order unification algorithm. Although
linear bounds on the number of their ap-
plications do exist in some cases (Win-
terstein 1976), the two above-mentioned
rules are inherently inefficient, (a) be-
cause of their introduction and subse-
quent elimination of many auxiliary

or-

Theorem Prowhn-1:

fur Informatik
1 onn,

Germany

functional variables, and (b) because of
the nondirected neture of the substitu-
tions made by the projection rule. The
new function symbols referred to in (a)
appear to play an essential role in the
unification of certain pairs of formulae
-- for example, where the head of cone for-
mula is a higher order variable 'f' which
occurs also within the other formula but
not within an argqument of another vari-
able 'g' =-- but there are many cases in
which thevy merelv delay the unification
process, For example, suppose one is
unifying

KA

£A with {Example 1)

in second order leogle, where

tvpe(ad) = 1 {individual)

type(f) = typelK) = (11}

f is a variable, A and K are constants,
and n is any positive integer. The usual
unification procedure based on imitation
and projection (see for example Huet 1975,
Winterstein 1976, and Jensen and Pietrzy-
kowski 1976, the last of whom also use
other rules) introduces and eliminates for
this example n new functicnal variables of
type {(1i=1), and after n+1 imitations and
an equal number of projections generates
the two unifiers

{f,
{f,

In general, if one is unifying e, and e,
in second order logic, where

Au.x"ad (1)

Au.x"uy (11}

e1=f(a1; rw am}

e -P(b1' eay bn’

2

type{e,) = type(e,), and f is a functicnal
or pre&icnte varigble with

type(f) = (hys vver 1, -4 1) or
{i.', cae g 1m—+0}
{o = “"truth value"), the

Imitation rule

vields for f

Darlington

520

§, 'ﬁu1 vee U, If n=3 in Fxample 1, imitation-cum-pro-

" jection generates the tree shown in
Plagfu,, coop)y uas 9oy ens um)}) Figqure 1 helow. It 1s clear that each
increase of T in n, the numher of K's,
where the qj are new varlables with adds one new function svmbol «. and there-
fore one imitation and one nroqection,
tvnelqg.) = tyr oves i, =D without addina anv unifiers. One reason
J for this waste of effort is that imita-
tvpetuk] = i tinn-cum-nroiection as it Is ordinarilv
used does not take account of the fact
resulting in the "successor node" that nrojectinag £ onto one of 1ts arou-
ments a, , in the unification of e, and e,
i<q1(a1, . am}, b1) Ceas in secohd order lonic, succeeds i} and
onlv 1f the resultina successor node
{a (ays <oy}, B3 §¢a,, .3} 1s unifiable. Im$tation-cum-
. nro?ect.on, however, first makes the nro-
while the jection substitutions for f and then com-
nares the results with e,. TIn comnarison
Projection rule with imitatien, prniectign is in this re-
spnect less lite unification, which should
generates m substitutions for £ ideally make onlv suohstitutions thet are
in some wav dAlrected by the other formula
(f, nu1 cee ULow) 1€ %x%m in the unification, and more like some of
the nre-resolution first order Ferbrand
with typetuk) =i, nroof orocedures that, Iinstead of unifi-
cation, emnloved substitution for vari-
resulting in m successor nodes ahles followed bv comnarison of the

resultina formulae,

§¢en, KvraY}

-
{F, Ru1.Rﬂ1u1} {(f, 2u1.u1)

/ 1 r

1<, As KKAY} i{};, KKRAYY

F
<q1;/332.K02u2} <n1, 2u2.u2)
T r \\\x

$Ca,n, m')'} i¢n. xraY}

F

(s Mug.Kaguyy (ape Rug.us)

P

F

{94, 11142\) ('q3. Ru%-ud)

P

N
${n, AN} Ca, AYS

5 g

Fig. 1. Unification tree for Example 1 (n=3) given bv imitation~cum-projection.
Theoron Provin§-1: Darlington
521

To see how unification mav be per-
formed more efficientlv in examples like
the preceding, let us consider the unifi-
cation of

f/eta), €)%

where the types are as before, and where
f is "monadic" and does not occur in es.
For every subformula t of e, the unifi-
cation tree includes some node containing

the pair

{ajla), £
where q. is either f (if t is e;) or is a
variable introduced into the tree bv imi-
tation (see for example Figure 1). Apply-

ing imitation to every; oduces the

unifier
(£, 2u.ez\)

as in unifier (i) of Example 1, but apply-
ing projection to a g. leads to a success-
ful unification if and only if

{a 0ty

3

leads to a successful unification. This
suggests that one may "screen out" in ad-
vance projections that are bound to fail,

bv first checking the unifiabilitv of a-
with the various subterms t in e2. Tn
Example 1, there is clearlv just one pro-
jection that can succeed, since there is
just one subterm of K A, namelv 'A', that
the arqument 'A' of f matches, leading to
the unifier (ii). Here, the match of A
with A is trivial, but in other cases a
fair amount of work mav be reauired com-

pletely to unifv an argument a- of f with
a subterm t of e~, especially If either or
both contain functional variables. It is

therefore more efficient to set UP a
"search pattern" corresponding to a-, but
based on less than complete unification,
that will "match" just those subterms of
e~ that are potentially unifiable with a.
wnile ignoring the obviously impossible
cases', such as those in which a1 and t
begin with opposing constants. specifi-
cally:

P1: If a; is flexible (i.e. has a vari-
able head), then

PATTERN = any term of type .

P2: If not, then

PATTERN = anv flexible term or any
term with the same head as a1l .

A program based on this idea and coded in
SNOBOL4 is being experimented with on the
IBM 360/50 at the GMD/Bonn. Earlier pro-
grams performed the pattern matching bv

Theorem Proving-l:
522

means of complete unification of a1 with
each subterm t of e2, a technicme that
was called "f-matchlna", and the current
method is a refinement of this technicme.
Moreover, it can be incorporated into anv
proaram that uses imitation and projec-
tion. In cases where it is applicable,
it has the advantages of introducing no
new functional variables and of screening
°“! 3 priori impossible projections in
advanc.e.

To explain the method in greater
detail, we start with a node

IR By <An,nnﬂ (N)

of a unification tree, containing one or
more unification pairs <A.,B > where
each A, is of the same tvpe as B.. Imi-
tation-cum-projection generates successor
nodes to N by choosing a pair <A.,B.>
from N according to some criterion and

applving imitation and projection to A.
and B. in all nossible wavs. The unifi-
cation' substitutions resulting from each

application are then applied to all the
nairs in N, thereby generating a succes-
sor node after all possible "lambda nor-
malisations"” and simplifications have
been made. If no unification substitu-
tions are applicable to anv pair in N,

it is labelled either 's' for "success"

or 'F' for "failure", as the case mav be.

If the pair sinaled out from N
{flay), e,% (P)

the simnlified nrocedure first checks
whether the nair P bears a subscript u..

If so, it proceeds directlv to the aener-
ation of nodes N" described below, but
if not it adds a subscript u. to P, where

u. is a variable not occurriita in N or its
predecessors, and will serve as the vari-
able to be used in Kubseauent lambda ab-

stractions. It then generates a successor

node N from P, based on the substitution
(f, Au_.l.ez> (fo>

that results from imitation alone (in Ex-

ample 1, this is unifier (i)) For each

subterm t of e, that PATTERN matches, it-
next aenerates a node N. that results

from replacing P in N (31, t?» ., d
a unification substitution

t t
£f, ;lu_i.e2> (£

where e, results from replacing the
matched term t by u.. In Example 1,
there is just one subterm t that
PATTERN matches, namelv 'A' producing
the successor node §¢a, A) and the cor-

responding unification substitution (ii).

Darlington

At the time of generatina each N the
nrocegure examines the lambda gx;reqqion
for f, to mee whether a node N can be
qener;ted, as follows: {f thnge is some
subterm arpearina befogp the first lambda-
hound vagiahle u., in e; {(this cannot han-
nen jf e, 1is mon&dic), then a successor
node N2 Ee gqenerated bv renlacinag P in N
hv

E ey, e;)u__' Loy, t)

is flexible, or

(etap), 2) (aqe tY

otherwise. The nodes Nt correspond to an-
plving more than one nr81ecfjon in the
unlification of P, in case a, is simultan-
eouslv unifiable with two 0} more suhterms
of e, and mav therefore be renlaced bv the
same u, in the lamhda exnression. The_re-
qtrictlon on the generation of nodes N?
{don't scan past a u.) is necessarv to
prevent multinle der!vationq of the same
unifier. Without it, for examnle, the
unifier

if a,

<ﬁ,. Ru1.P(u1,u‘,u1,u1}>
for f<q1(A}, P(a,a,A,A)

would be generated manv times over.

The procedure for generating suc-
cessor nodes just descrihed mav he com-
nared with imitation-cum-nrojection in
the unification of

fi{g{A)) with P(¥K(A), B) {Fx. 2)

where tvre(f) = tvpe(B) = i
tvoe(f) = (i-=0)
tvnel{ag) = tvpe(K) = {i=1i)
tvne(P) = {i,i-=0)
Tt mav be seen from Ficures 2 and 3 that
hoth nrocedures generate the same six
unifiers for Fxamople 2, namely

.

Jf, RuT

{f, A B, Ao,

LPUKA R (i)

KA {ii)

{f, Juy.piag B, Quy . Kuy) t1i1)
{f,)u1.P(Ku1,BD(I, 2u2.A> (iv)
{F, lu1.F(Ku1,B}M\ﬂ,)uz.uz) (v)
{f, Aug.Pixn,u . DCa, 1u2.8> {vi)

but the simplified nrocedure gets them
considerahle more directlv, adenerating a
tree of depth two instead of denth five.

{fan, »xa,B1}

{(h 198, kaxhan, B >E

f('h1 an, ¥ad)

N
$(hgan, Ay idan, ka3

AN

f(i\ Y Kan, 2} Kb, ke Knoa, A%}

AN

$(a, B Ka, A

s 5 s 8

Flg. 2.

P

{(h.l qa, KA?(?_}L:_B_>}

(h B, K;\)} ?(h.l}\, xAX A, BM}

/N F

ih,r, Y KB, kA

A

G DY B) Gh, B KB)

5 F

Imitation-cum~projection unification tree for Example 2.

Theorem Provlgg-l: Darlington
3

{{tan, ngn,ay)u

-

L€, Au, . P(xA,BI> (£, Au .Pluy,B)) (f, du .PiKe,,BY)

§

1

{€, Au, .P(KR, u.))

!
j’NO N, N, / N\’Nz
§¢pixa,m), pixa, M {¢an, xA}uzf j¢an, A)u;s $<an, B)ug {tB, p[xa,u1))u1
S <an, BY3
F
£y Auy kY La, Juy.Kuy) K, Auy AY Loy Auyauyy L9, AuylB)
o N, N, N, N,
- -f
$<ka, xay} J<n, A% 3n, A i<a, 2% i¢n, By}
8 8 S 8 s
Fig, 3., &fimplified unification tree for Fxample 2.
{The apparent eaualitv in size of the dia- (f(a1, PR e2> m 31

grams in Piqures 2 and 3 is due to the
fact that, in order to =ave snace, the
unification substitutions have heen omit-
ted from Figure 2.} After generating the
first success node, N _, in Filaqure 3 above,
the simplified procedire then searches in
'P{KA,B)"' for possible matches for 'aA';
since gA is A flexible term, the search
pattern will match anv term of tvpe i,
namely 'KA', 'A' or 'B', generating the
three N, -nodes f<an, RAYY, fcan, A9 and
{¢ah, BY$, with their corresponding sub-
stitutions for f. Since one of these
f's, namelv

{f, 2u1.P{Kn, uy ¥
has a term 'KA' apnearing before u,, a
node N, is generated in an attempt to et
A valu% for f containing two or more oc-
currences of u,, namely

{f, Au,.Plu,, u)y or

{f, Au,.P(Ru,, uh

but this 1s not nossible since 'B' will
not match any part of "KA': in other
words, 'gA' will not simultanesusly match
'B' and some part of 'KA'., The three
N,-nodes are then processed in the same
wlv as the root node, resultinan in five
success nodes, The procedure mav also he
arplied to cases where £ {s nonmonadic,
namelwv

Theorem Provine-1:

524

Here, however, it 1s necessarv to annlv
the nrocodure m times, searching separatoe-
lv in e, for a mateh for each aragument Ay
Tt i=s fgir to sav that, as the denree of
f incrmases, the advantages of our nroce-
dure vis-a-vis imitation-cum-nrojection
hecome nroqressivelv less, Furthermore,
it will not handle all cases in which the
same functional or nredicate variahle oc-—
curs in hoth terms to he unified, such as
{(an, KfP)} (Fxamnle)
in second order loaic, whilch aenerates in-
finite unifiers, hut even here our nroce-
dure aenerates two unifiersa, namelw

{f, Auguy
£f, 1u1.Ku1) .

and

This tvne of case, however, does not arise
in the annlications of second (and higher)
anrder theorem nrovind that we have heen
makinag, such as to automatic nroagram svn-
thesis (Darlinaton 1976} and to proofs of
theorems in tomcloav. The simnlified oro-
cedure has in fact bheen extended to per-
form certain unifications in third and
hicher order laqic, though we do not at
nresent have a qeneral characterisation of
the limits of its aonlicability bevond
second order logic. Within second order
loaic itself, it aprears to be eculivalent

hartinston

to imitation-cum-projection for unifica-
tions whose trees contain no pairs of the
sort found in Example 3, where the same
higher order variable occurs in both e.
and e,. The argument in outline is that
each successful path containing n projec-
tions (n * 0) in an imitation-cum-projec-
tion tree corresponds uniquely to a suc-
cessful path containing n N - and Nj;~nodes
in the simplified tree.

result of the simplified
procedure is, in its application to "con-
strained resolution" (Huet 1973a), to de-
cide more quickly that only one unifier

is possible in a given case, and therefore
to reduce the number of constraints that
need be generated. For example, if a par-
ticular resolvent is based on the unifica-
tion of 'fA' with a complex e,, con-
strained resolution would normally decide
that there exists no "most general uni-
fier" in this case and therefore generate
only a skeletal resolvent with {fA ey

A practical

attached to it as a "constraint" to
be unified later. I1f, however, e, con-
tains nothing that 'A' will match, then

there is only one possible unifier, namely
4., Au.e,™ , and no constraint need be
generated. Alternatively, if 'A" matches
only one term t of e,, then *f, >u.e,>
may be taken as "the” unifier, leaving

out <f, Mu.e,> , since unifiers of this
sort, based on imitation alone, seldom if
ever lead to "useful" inferences — for
example, imitation alone will not permit
the derivation by resolution of P(B) from
P(A), A =B, and x +y V 7*f(A) V f(B),
which requires the unifier <f, “u.Pu>.

Similar heuristics are employed by BUlow
(1976) , who does a certain amount of
"look-ahead" during higher order resolu-
tion in order to rule out branches result-
ing from nonproductive or impossible imi-
tations or projections, thereby reducing
the number of constraints. Another proce-
dure related to ours is Bledsoe's (1977)
method for finding values of set vari-
ables, equivalently monadic predicate
variables, in topology, program verifica-
tion and other theorem proving domains,

where the full power of imitation-cum-
projection is not required. In view of
the theoretical difficulties in achieving

significant improvements in higher order
inference in general, research of this
sort into improving its efficiency in im-
portant special cases is particularly
vital if the inclusion of higher order
features in automatic theorem provers,
be they based on resolution or natural
deduction, is to become a practical
proposition.

Theorem Proving-1:

References

Bledsoe, W. W. (1977). A Maximal Method
for Set Variables in Automatic Theorem
Proving. Report ATP-33, Departments of
Mathematics and Computer Science, Uni-
versity of Texas.

BUlow, R. (1976).
fUr die Typentheorie.

Resolutlonsverfahren
Diplomarbeit,

University of Bonn, Institut fur Infor-
matik.
Darlington, J. L. (1976). Automatic

synthesis of SNOBOL programs. In
Computer Oriented Learning Processes,
J. C. Simon ed., Noordhoff-Leyden.

Huet, G. P. (1973). The undecidability of
unification in third order logic, Infor-
mation and Control 22(3), 257-267.

A mechanization of
IJCAI-3,

Huet, G. P. (197 3a).
type theory. In Proceedings of
Stanford, California.

Huet, G. P. (1975). A unification algo-
rithm for typed lambda calculus, Theor-
etical Computer Science 1(1), 27-57-

Huet, G. P. (1976). Resolution d*Equa-
tions dans des lLangages d'Ordre 1,2, ..,
xj . These de doctorat d'etat, Univer-
site Paris VII.

Jensen, D. C. and Pietrzykowski, T. (1976).
Mechanizing w-order type theory through
unification, Theoretical Computer Sci-
ence 3(2), 123-171.

Lucchesi, C. L. (1972). The Undecidabil-
ity of the Unification Problem for
Third Order Language's. Report CSRR 2059
Department of Applied Analysis and Com-
puter Science, University of Waterloo.

Paterson, M. S. and Wegman, M. N. (1976).
Linear unification, Proceedings of 8th
Annual ACM Symposium on Theory of Com-

puting, 181-186.

Winterstein, G. (1976). Unification in
Second Order Logic. FB Informatik,
University of Kaiserslautern.

Darlington

