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| Introduction

A deductive system for program verification
must be able to reason proficiently about equality.
Equality is often handled in an ad hoc and incomplete
way—most usually with a rewrite rule that substi-
tutes equals for equals with some heuristic guid-
ance. We present a simple algorithm for reasoning
about equality that is fast, complete, and useful
in a variety of theorem-proving situations. We
also present a proof of the theorem on which the
algorithm is based.
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The following formula is of the kind one cn-—
counlers ln verifying programs involving array
indeoxing:

{I= A K=L A A[1]=BfK]1 A J=A{J] » M=B[L1)
> AIM]=B{K3}),

Here, A and I are function symbols while I,...M are
unlversally guaniified variables.

One mipht approach such a formula by working
backwards from the conclusion, substituting equals
for equals until the left-hand-side is transformed
inte the right-and-sidce:

A[M)=A[B{L}]=A[BIK]])=A[A[1]]=A[A[J])=A[J)=A[1]=B[K]

One could also work from BfK] rather than from AfM"],

or from both simultaneously; the links needed in
the chain are the same in either case.
While this "backward substitution" method and

other methods that transform formulas through a
sequence of substitutions are logically sound, they
are not well-suited to machine deduction because
there is no easy way of selecting the right
substitution to make at each step.

Intuitively, it would not seem necessary to
generate terms beyond a certain depth. However,
the critical depth (the smallest depth necessary to
consider) cannot be calculated solely as a function
of the depths of the terms appearing in the orig-
inal formula; in particular, the critical depth is
not simply the maximum of these depths. For
example, no backward-substitution proof can be
carried out for the above formula without generat-
ing a term of at least depth 3. Even if one could
conveniently calculate the critical depth, one
would still, in general, generate many more terms
than are necessary.

This difficulty with substitution
tion methods is not inherent in the problem. The
next section presents a more efficient method that
considers only the terms appearing in the original
formula.

transforma-

Our method is a decision procedure for the
subclass of predicate calculus with function
symbols and equality whose formulas have only uni-
versal quantifiers in prenex form. While the
decidability of this subclass is well-known,
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classical decision procedure for it (W. Ackermann
[1]) produces a combinational explosion that makes
that method infeasible for non-trivial problems.

The procedure is as follows. The matrix of
the formula F is first negated and placed in dis-
junctive normal form. Next, all atomic formulas
other than equalities are replaced by equalities as
follows. For each n-ary predlcate symbol PU pecour-
ring In the formula, & new n-ary function symbol f?
is introduced, Each atomic formula P?(tl, tz,...
t_) occurring in the formula is then replaced by the
equality f?(tl, tgeun, t“) = c, where ¢ is a constant,
The modified d.n.f, is intersntisfiable wilh the
eriginal one, and ls satisfiable if and only i(f one
nf its disjuncts is satisflable. Each disjunct,
moreover, consists of a conjunction of eqgualitios
and negations of equalities., The problem is thus
reduced to testing the satisfiability of each such
conjunction.

It remains te test each conjunction for satis-
flability. Let 8 be the set of egualities and
negations of equalltles occurring in Lhe conjunction
to be tested. Let T be the set of terms and subterms
of terms cccurring in §, and define the binary
retation . as the smallesi rclation over T X T
(where uy, ugp...up, tp, ts, ¥, Vu...v, denote lerms
and f denotes s funciion symbol) that:

{1} Contains all palrs <L.,t,> Tor which 't1=té e 8

(2) ls reflexive, symmetr}c, and transitive

(3) Contains the pair <I(u1, Ug...up}, f(vl,vz,...vr}f
whenever it contains the pairs <ui,v1>, 1 ~1i:=r,

and T(uy, uvg...u,.), flvy, v,...v, ) are both in T,

The test for sallsflebility of 5§ depends on the
following thearem {to be proved latler):
S5 Is unsatisfiable ¥ there exist terms tl'
to e T such that "t # t5 ¢ S and t1 . ty .

The theprem ifells us thal to delermine the
satieflabllity of 8 1t sufflces to consider the
negated equalities of 8 one at a time., If one is
found (say ¢t < t2) for which t; , tp, 8 Is unsalis-
fiable; otherwise 8 is satisfiable. Note thal Lhe
detinition ¢f . involves only terms 1ln T,

Te use the theorem, we must bo able 1o calculate
whether a given pair of terms is in the relation .
This can be done by buildlng the relation from the
definition: (1) is used as a basis, and (2) and (3)
are repeatoedly applled until no new terms are gener-
ated. Since . 1s an equivalonce relation, one can
cohveniently represent it during the construction as
a collection of sets of vlements of T, each set con-
tailning elements known to be in the relation with
the other elements of that set.

For example, for the set § = {I=J, K=L, A[I]=
Bi K], J=A(J], M=B[L], ArM}# B[K]] that arises from
the earller example, . 1s constructed as follows.
From the basis (1), one obtalns:

{{r,5}, {k,n}, faf11, Brx3d, {5,a(31), m,BrL1}}
Using (2):
{{1,0,ar31} {x,13 {arn1, Brxa}, im,B[13)}
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using ¢3): _{{1,7,Aa1J1)} {x,1} {ar1y, srx1}, im,s[L1],
{ar11, a(a1}, ferxi1, a[all

using {2): {[1,3, A[33, A{13, BIK3, B{L1, M}, {x,L}}

Using (3): [[I.J,ALJ],ﬁEIJ.B[K],B[L],M}, x,L,],

{ army,aL11), {AtM],A70]

using (23: [{{1,7,A131,A[(13,B(K],B[L],A141), {x,L}]
Bince(3) vields no new pairs,

is complete.
fiable.

the construction
Since A[M] . B[K], 5 must be unsatis-

The rules for building up , can be implemented
quite efficlently. L. Oppen and G. Nelson* have
recently coded a very fast lmplementation Lhat rep-
resents terms ns graphs and uses the Tarjian [4]
set—union algorithm Iin the closure siep. Oppen and
Nelson have ghown thail iheir lmplementation requires
only order n” deterministic time and linecar space,
whare n is the length of the Input 5,

IV Proof af Lhe Theorgm

The maln import of ihe theorem on which Lhe
algorithm is based ls that it sulfices to "eonstder”
only Lhe Llerms occurring in Lthe formula Lo be
declded. The proof is largely concerned wilh ex-
tepding the model proavided by . frem T to the entire
Herbrand Universe,

Theorem 8 is satisfiable =2 d t3, 1y ¢ T such that
by L, and 't1 # té € 5.
Proof = Buppose 5 is satisfiable, 1y,1, ¢ T and
£y » tp. Let M be a model [ur S.
Becausc M satisfies the relflexivity,
symmetiry, transitivity and substitutivity
axioms of equality, 1 . tg implics that
t; end t% musil have the same values in M. Henceo,
"t # tg" is not in B.
= Suppose there are no lersms tl,t2 in T
such that 1y , tg and 'ty # Lg' e 8. We will

show that 8§ is satisfiable by constructing a
Herbrand wmodel M for S.

We first construct the term universc
(-]
Te =iyb Ty of 8 inductively as follows:

T, =T T = (0, ot ye iU
(where f ranges over all function symbols
occurring in 5).

Next, pick a representative term from each of
the equivalence classes induced by ., on T, and define
the function s : T - T that assigns to each term In
T the representative of its class.

The model M is now constructed inductively as
follows:
1. Ifte Tb, ledl vu(t) = a(t)
IT. If t ¢ T, 1 - TJ’ j & o, and t =

e, tg..01),
thon 113!.‘]+ ! r

(&M(I(xl, enXp)) AL BfORp, .0l Xp)E Ty
and v (x.)= v {t;), 1 =1 < r
vyt =J LA ML
EICNLSS PRI MM

Note that M 15 a Herbrand model, i.e., tt

always assighs values from the Berbrand Universc,
The notation "f(vu{tl). cess vu(tr))" is intended

otherwlse

*Personal communication,
work is forthcoming.

A paper describing this

to represent the function symbol denoted by f
followed by the terms obtained by evalualing VM(ti)
faor each i.

To see Lhat M satisfies §, first note that

"ty=tg & 8t .ty = alty) = alty) 7ov,(t) =
VM(tz)
and
t LI - B =
Ty E 1y 6 87t Aty T oalt)) #oalty) T ovlty) #

vm(tz).

It remnins to show that

vM(xj} = vm(yi). 17 3% r, implies that

vM(I(xl,.,.,xr)) = VM(f(yl,,,,yr)),
This follows straightforwardly by induction on the
maximum of the term universe heights of

T(Xyyo-oXp)y [(yq--o0y)

Q.E.D.
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