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1. Introduction

For almost as long as attempts at proving theorems
by machines have been made, a critical problem has
been well known: Equational axioms, if left with-

out precautions in the data base of an automatic

theorem prover (ATP), will force the ATP to go a-
stray.
Four approaches to cope with equality axioms have

been proposed:

(1) To write the axioms
use an additional
paramodulation.

(2) To use special "rewrite rules".

(3) To design special inference rules
these axioms.

(4) To develop special unification algorithms in-
corporating these axioms.

At least for equational axioms, the?

(4) appears to be most promising.

So far we have concentrated on the axioms of asso-

ciativity, commutativity, idempotence and various

combinations of these. In this paper, algorithms
are presented for theories of idempotence and for
idempotence together with commutativity. Idempotent
functions appear in group theory, practical examp-
les being proofs about substitutions which are -

into the data base, and
rule of inference, such as

incorporating

last approach

dempotent if they are in normalform. See e.g. the
proof of Theorem 3-2 in this paper. A historical
example is how Luckham's program verifier found the

correctness of Robinson's unification algorithm on-

ly after the idempotence for unifiers had been ad-
ded.

The main results are that the unification problem
for idempotence is decidable,and the set of all uni-
fiers is finite, but not a singleton in general.

2. Algorithm for I-Unification

2.1. Intuitive Overview. Our algorithm unifying two
terms s and t is split up into two interlocking
parts:

(1) Collapsing phase: In both s and t we look for
subterms (r*,*) s.t. r and r can be unified by a
substitution p to r. Then, applying p to s and t
causes subterms (r ,r2) to "collapse" to r, genera-

ting a new unification problem.

(2) R-unification phase,: Unification problems resul-

ting from the collapsing phase are solved by the al-
gorithm RUNIFY. Essentially, RUNIFY follows the idea
of Robinson's unification algorithm except for the
way an atom and a non-atomic term is unified.
(RUNIFY returns a success/failure message (SUCC/
FAIL) and a substitution (empty upon failure).) For
space limitations we can not state the full algo-
rithms but the following examples may indicate the
basic idea:

(1) s = £(fta,x),c) and t = f{x,c) has mgu 6={ (x+a}}
(2} » = fif(a,b),fiz,d)) t = fix,y)
s has one collapse: f{f{a,b),d)
t has one collapse: ¥
the unifiers are:

{{z + @)}
{{x +~ v}}

Theorem Proving-I:

§ =l(xefa,p)), (y+£iz,d)))
52={(x+f{f(a,b).ftz,d)).(y+f(f(a.b).f{z,d})}
63={tx+f(a.h)}.(y+d).<z+da}
64={(x*f(fta,b),dl.(y+f(f(a,b),d]).{z+d)}

in a modified version of the zlgorithm 63 and &4,
which are instances of §; and 8§, respectively, are
not generated. However even the modified algorithm
is not minimal in general.

}. Completeness of the Unification Algorithm

The completeness of the unification algorithm
IUNIFY is shown in two steps:

{1} First, we show that for any unifier & of terms
s and t not collapsing any non-leaf nodes ("imme-
diate unifier"), RUNIFY applied to s and t success-—
fully returns a unifier g s.t. 6 E 0 I,e. RUNIFY is
complete w.r.t., immediate unifiers,

{2} We then show that for any arbitrary unifler o
of 5 and t we can find substitutions 1 and 17 5.t
18 1s a collapse of s, and v'tis a collapse of t,
1. 1s¢collapse(s) and 7 tecollapse(t), and
2. there is an immediate unifier © with {s =
and o & Jeter’,

3.1. Partial Completeness of RUNIFY

Def.: For any term t, the set ICnede(t) of jmmedi-
ately collapsable nodes in t is given by: For any
k,labelling a node in the tree representation of t:
1f the largest subterm with root k is identical to
a subterm with a root being a hrother to k, then
keICnode{t). Taking NLnode(r) to be the sct of all
non-leaf nodes in a term t, an immediate unifier is
a substitution not immediately collapsing any nofi-
leaf nodes:

Def.: A unifier o of two terms t; and to is rcalled

SR

an immediate unifier for £y and tp iff

ICnode (ot }n Nlnode (t )} = @ (i = 1,2).

To show the partial completeness of RUNIFY in Theo-
rem 3-2, we make use of the following lemma:

Lemma 3-1. let ¢ be an immediate unifier for two

terms £ty and ty, and disagree (ty,t3) = {51,52}.
Then g.a = 0.8

Thecrem 3-2 [Completeness of RUNIFY w.r.t.
Immediate Unifiers]

Let. § be an immediate unifier of two terms t; and
ty. Then RINIFY terminates successfully with

RUNIFY t1t2 = (S0CC,u) & Ea.

3.2. Completeness of IUNIFY

To estahlish the overall completeness of the unifi-
cation algorithm, two auxiliary lemmas about sybsti-
tutions are needed:

Lemma 3-3. Let p and o be substitutions with p c o
Then, for any substitution v, p-T © T 1.

Lemma 3-4. For any substitutions §,0 and o,:

i’ 2
1 2then6502=01.

Theorem 3-5. Let & be any unifier for twc terms £

and ty. Then, there are substitutions Yy and T, E.t.

(i =1,2), and

and

1fé6cog and 6 2 a

(1) Titi is a collapse of t.i.
{2) RUNIFY applied to Tltl and 12t2

returns an lmmediate unifier O with

559::119 T,

The completeness of IUNIFY is then an immediate
congequence of Theorem 3-5.

success ful ly
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