A THEOREM PROVER FOR ELEMENTARY SET THEORY

F. M.
Department

of Artificial

Brown
Intelligence

University of Edinburgh
Scotland

Abstract

We describe a theorem prover for elementary
set theory which is based on truth value preserv-
ing transformations, and then give an example of
the protocol produced by this system when trying to
prove the theorem of set theory known as Cantor's
Theorem.

1. Introduction

This is a report of some of our research car-
ried out mainly during the summer and fall of 1974,
it describes an implementation of a theorem prover
based on truth value preserving transformations
which has been applied to proving theorems in the
domain of elementary set theory.

In section 2 we describe the basic deductive
system, and in section 3 we present some protocols
produced by the. theorem prover while trying to

prove some theorems of set theory. Finally, in
section 4 we draw a few conclusions.
2. Description of the Theorem Prover
Our theorem prover consists of an interpreter

for mathematical expressions and many items of
mathematical knowledge. This interpreter is a
fairly complex mechanism, but it may be viewed as
applying items of mathematical knowledge of the
form ¢ + ¢ or ¢ = ¢ to the theorem being proven,
in the following manner: The interpreter evaluates
the theorem recursively in a call-by-need manner.
That is, if (fa....a_) is a sub-expression being
evaluated, thenlthe 1'l"interpreter tries to apply its
items of knowledge to that sub-expression before
evaluating the ar g u ma,...a_.F or each sub-
expression that the interpreter evaluates, in turn
it tries to match the $ expression of an item to
that sub-expression. If, however, during the
application process an argument a does not match
the corresponding argument of the>§ expression,
then a, is evaluated, and the system then tries to
match the result of that evaluation. If ever the
interpreter finds a sub-expression ¢8 which is an
instance of ¢ of some item, then it replaces that
expression by the corresponding instance ¥8 of ¢.
At this point all memory of the sub-expression ¢8
is immediately lost and the interpreter now evalu-
ates y8. If no items can be applied to a sub-
expression then the sub-expression is not evalu-
ated again but is simply returned.

For example if {x} = {y} ~ x = y and {x] =
{x} ++ B are the only items and if they are listecl
to be used in that order then evaluating the
thecrem {A} = {A} V A ¥ A will cause the sub-
expregsion {A} = (A} to be replaced by A = A re-
sulting in A = AV A ¢ A. All memory of the sub-

Sometimes it will be the case that our interp-
reter will need to use items which are only valid
in certain sub-domains of a given domain. For
example, 1f we wish to use an item ¢x <+ y¥x (or
¢x = yx) where x 1ls restricted to the sub-domain
Iz, then we represent it by a conditlonal item:

x + {dx <+ ¢x) (or Mx + ¢x = Yx)

The interpreter handles conditional items in
the same way in which it handles non-conditional
items until it has found a ¢& which matches the
sub-expression being evaluated. At this point on
a conditional item, the interpreter tries to match
each element in the conjunction Tx with some ex-
pression which it believes to be true. If such
matches are found with substitution 8 t h §8oi s
returned. Otherwise the interpreter tries to
apply another item as previously described.

The use of conditional items provides a gen-
eral method of restricting the free variables of
an item to a particular sub-domain. Its only dis-
advantage is that the amount of extra matching it
forces the interpreter to perform. In order to
minimize the amount of matching on the most common
sub-domains we allow those sub-domains to be in-
dicated by a particular style of variables.

For example, the automatic theorem prover de-
scribed in this paper which is based on the set
theory system described in Quine's [1969] book
Set Theory and its Logic involves two domains: The
larger domain, is the domain of abstracts, where
an abstract of any propositional function fx with
one free variable x is simply: {x: £x}, and the
smaller domain is the domain of sets where a set
is nothing more than an abstract a which exists;

that is where 3x x = & is a theorem of Quine's
system.
Roman letters are used to indicate the sub-

domain of sets whereas Greek letters are used to
represent both sets and other abstracts.

An informed reader will recall that tables of
re-write rules (rather simple items represented in
ones mathematical language), and other items were
used in many of Bledsoe's theorem provers [1971,
1972], and that Boyer and Moore [1973, 19743 used
a symbolic LISP interpreter to order the applica-
tion of various recursive definitions, re-write
rules, and induction rules. More recently Aubin
[1976] has also used a symbolic interpreter for
much the same purpose. Our interpreter for mathe-
matical expressions has also been used in other
mathematical domains (Brown [1976]).

This theorem prover includes both logical and
set-theoretic knowledge. We first describe the
items of logical knowledge, and then the items of
set theoretic knowledge.

2.1 Logical Knowledge

Our theorem prover has knowledge about twelve
logical symbols which are listed below with their
English translations:

expression {A} = {A} i3 immediately losthgeiemitBrov!ng-2: Brown
replacement by A = A and thus the interpreter does 534

not attempt to apply the second item to {A} = {al}.

/A and = implies

v or > 1ff

w not | there exists

® true ¥ for all

-] false - equal

+ implies (This symbol is called & sequent

ATTOW)
and and (Thie symbol is used to form an implicit
conjunction of sequents)

The seguent arrow may be defined as follows:

$l _..¢n =+ Yl...¢n =df(¢ln...A¢n):D(wlv...v¢n)
where ¢i and i are s&ntences. Thus a seguent may
be thought of as being a database of statements
4l, ..., ¢n called assertions which occur before
the segquent arrow, and statements Pi, ..., n
called goals which occcur after the sequent arrow.

The items of logical knowledge, which are all

schemata because they involye ellipses ({.2. dots
representing arbitrary expressions), are listed
below:
Asserticn schemata:

L I R S I A T SR |

g+ (.8 ...)<A

LTIC PN LT SR S L aed T > S |

A LAY, L)X YL L)

Voo LG XYL e L Jand LY. el L)

2 (LX) (L, LK dand (L WYL L L)
o (LAY, L L (LUK Y dand (Ll (XYL L)
b RTINS P S L2 PR P L R et

where ¥ i5 a new skilem Teunction and

*l...*n are all the unification variables*

which occur in ¢x.
(> ...x=t)

Ha.. i..Tardpa.. e .. ‘e

(Ha ?t=(;'1---*nh a+pa..pa)y+(It..Terde. .Y
where £ is a skolem function not occurring
in t. This is our wverslon of the Law of
Leibnitz, for example:

(A=Bu C>C¢C A) = (-CS BUY O
Goal schemata:
+ W (..+.. M R |
=+ M (..., B vedtrloaroL L))
R PP LT GRS o S o PR |
A (L. XAY Lol XL dand L o, YL L)
L2 F P V" B QR S 35 SO
E = T GURE T &) SR L G & R S |
o (L, KERYL)L L X YL dand(L LY L XL L)

+ ¥: (..%..¥x ¢x..)**(..+..¢tf*1...*n)..)

is a new skolem function and
are all the unification variables*

where #
w* -

17",
which oceur In $x.

Other loglcal schemata:

atom: (.. X.. > ..X ,.) —~ A

and : (.. and ® and ..} < {.. and ..}

Logical schemata used only at certain times:

Unify: [(..xl..*..Yl..Jand..and..(..xn..+..Yn..)14*

[(..xi-.+..Yi..)and..and..(..xn,,»_,yn_.)]

where l<ifn and 8 i any one of the substitutions
which satisfy both the forcing restriction and the
instantiation restriction. Thege two restrictions
are described below.

*Unification variablea are those variables pro-
duced by the ¥ + and + 3 items and which may later
ba inatantiated by the Unify item {(i.e. the Unify
Schemata).

Theorem Proving-2:
53

The forcing restriction is the requirement

that the substituotion 6 makes tautologous the
greatest number of sequents starting with the
firat sequent and progressing towards the nth
sequent. That is, the substitution B makes the
first i=-1 sequents tautologous, and there ie no
substitution which makes the first i sequents
tautologous. The raticnal behind this restriction,
iz similar to Bledsoce’s (1971, 1972] ideas on forc-
ing, in that we force each sequent to make ita con-
tribution to 8 and then throw it away. In the
case that there actually 1s some substitution which
will make all the sequents tautologous, without
further unification varlables being created (by the
¥ +~and+ 1 items which will be described later in
this section) this restriction leads to a complete
proof procedure, in that § will be one such subsati-
tution, As a minor point, if 8 makes all the
sequents tautologous, then this item 1s defined to
return &, An example instance of this item
illustrating the forcing restrictien is:
[(P* + Pa,Pbland{g* + Ob) and R* + Ra)l++(Rb + Ra)
We call any strategy which chooses the ordering of
the sequents to which the unify item is applied, a
forcing strategy, and will later discuss our fore-
ing strategy.

The instantliation restriction is the require-
ment that no unification variable be instantiated
to a term which already occurs in the list associ-
ated with the quantifier from which that unifica-
tion variable was produced by an application of
either the ¥ » {tem or the + 1 item. The rational
behind this restriction is that if a term t 1s al-
ready in the list associated with a quantifier such
as ¥ in (..¥xéx .. ~ ..} then ¢t has already been
produced in that sequent, and hence producing an-
other ¢t by instantiating * to t could only be
redundant.

The list of terms associated with a guanti-
fied formulae such as {¥x¢x) essentlally represent
the instances ¢tl - ¢tn of it that have been pro-
duced. This list is stored by appending it onto
the end of a list contalning the bound variable x
aa in: (¥ix t ... £ $x}. An example of the
use of this restricton is the following instance
of the Unify schemata:

(o3 (x t *)(Px}), (@*})++(Qt+(I (x t *) (Fx)},Q")
gxw('} (1 (x*) §x ‘}
. -'...'“..)4""(-.—".% i r¢*--}

{x...0¢x} A(x... ") dx)
where * 15 a new unification variable and no
more than one Unification wvariable occurs in
[T

3xHx

\ gi(x*um
o+ 3s t..+..{; RYIE STE L PPN (x"...)¢;}'¢"')

where * iz a new unification variable and no

more than one Unification variable occurs in

(%..u)s

In the last two items we have seen formulae
of the form ¥{x...)¢x and 1(X...)¢x which are not
usually thought of as being well formed sentences
of loglc. Such formulas should be interpreted as
respectively ¥x¢x and ixéx which are well formed
sentences of logic. The ... list is used merely
to store certain pragmatic information used by the
deductive system. This information is simply the
list of instantiations of the Unification variables
that were produced from this guantifier by applica-

¥ o

Brown

tions of the ¥ + or =+ 1 item. This pragmatic in-
formation 1s kept in order tc be able to check the
instantiation restriction, when using the Unlfy
item {i.e. the Unify schemata), and in order to
check the restriction on the ¥ » and + 1 items that
no more than one unification variable may already
ocour in the (x...)} list. This last requirement
ia called the variable restriction. The rational
behind this reatriction is that there is no way in
which three instances $*. , ¢ 2t $*. of a formulae
¢x could interact so as %o bind at least one of
those unification variables, that could not be
obtained by initially using only two Ilnstances and
and then creating a third instance only after one
of the first two unificaticon variables ia bound.
An example of the use of this restriction is the
fact that the -+ 1 item could not be applied to the
sequent: (- (i(x*1 *2]¢ i

The logical items are not all used at the same

time. In particular the ¥ -, + 3 and unify items
are used in a special way. Initially, the interp-
reter evalunates each sequent trying to apply the
iteme in the following order:
{1) Non splitting assertion items:
e, O, Ak, A, P o
{2} Non splitting gwal items:
-\, *0, ¥y, +v, > 2, Y
m(3) Non logical items
¢ {4) The atom and “and" items
{9) Splitting assertion items:
V=, D+, 4+ >
{6) Splitting goal items:
+ M, e
[4:))] The Unify iltem
cy The ¥ + and +1 items once.
{A} The group (A) of items are applied first and

are used in what is the norwmal evaluation process
in a call-by-need manner. The sub-ordering from
{l}) to (g) reflect the fact that we try to delay
splitting as long ad possible, and within that
restriction, try to work on assertiocns in a sequent,
before working on goals. & reason for preferring
to work on asserticna first is that applications

of the = + itam can often Bimplify the prohlem a
great deal. A simple reason for delaying split-
ting and applying the other items first isa sc that
we don't have to apply those jtems twice after the
split to each sequent separately. Howeveyr, we
find that the time gained by not having to apply
items a second time,geems to be balanced by the
time loet necessary to effect the delaying operation.
A more substantial reason for delaying the split-
ting items 1% to handle certain subtle interactions
between the ¥, 3+, =3, and ¥+ items necessitated
by the incompleteness caused by the forcing restric-
tion. These interactione will be described later
in sec¢tion 3 when we discuss our proof of Cantor's
theorem.

{B] After the items of group (A) have been applied
as many times as poasible, the Interpreter then
tries to apply the unify item to the particular re-
ordering of the conjunction of segquents, that is
determined by the forcing strategy. The forcing
Strategy we have used is this: The conjunction of
sequents are re-ordered such that those seguents
which contain formulas beginning with a guantifier
such that the quantifier

(1)
and
(2}

satisfies the variable restriction

has the shortest associated list of in-
stantiations of any sequent in the con-
junction.

are at the end. and hence will be unified last.
The rational behind our forcing strategy 1s that
each quantifier should get ita fair chance to con-
tribute instances towards proving the theorem.
Thus, for example, if we forced out a sequent (by
unifying it first) containing a guantifier which
had not contributed any instances yet, and if that
quantifier was actually needed in order to prove
the theorems, then it is wvery probable that the
substitutions made in uwnifying that sequent are
irrelevant and in fact detrimental to solving the
other sequents in the conjunction of sequents. An
example of the effect of cur forcing strategy is
toe re—order:[(Qar? (x *l)Q‘l)and(Qb+3(x *l s)Q*l)]

as: [ipb3 (x *1 c)Q*l)and(Qa+3{x *l)Q*l)]

{C} Next, If the applicaticn of the unification
item does not result in @, then the interpreter
picks a sequent from the conjunction of sequents
and triles to apply the ¥ + and 1 + items once to
each formula in the sequent which begins with a
guantifier such that, the quantifier has the fewest
nunber of terms Iln its associated list of any
quantifier which satisfies the variable restriction
in that sequent. We call this strategy for creat-
ing unification variables the creation strategy.
The process of applying items then repeats itself
starting at step (A). Note that a quantifier
fellowed by only a variable, not a 1list, counts as
having zerc terms. Thus, for example, the creaton
strategy implies that only the ¥ -+ ltem would be
applied to the sequent:

{0z Px) o~ (4 (xa) Qx), (A{y*} Qv))

The rational behind the creatlon strategy is
that for each sequent it simply implements a breath
first method of creating unification variables from
the quantifiers in that sedquent. This strategy ls
initially, therefore, the method that one
unification variable will be created for each
quantifier, before a second unification wariakle is
ever created in that gequent. It differs from
such a method in that Iif the thecrem cannot be
proven with a single unification wvarlable for each
quantifier, then it dees net fall but econtinues to
create more instances as called for by the creation
strategy. This allowe us, for example, toc prove
theorems which need multiple wvariables from their
gquantifiers such as Example 2 glven in section 3.

Finally, Af the application of the unification
item of step {B) resulted in M then the processes
terminates because the thecrem has been proven.

An informed reader will recall that these prop-
csitional rules are used In Wang's algorithm in the
LISP 1.5 manual [1965], and that Wang [1960] used
the other rules restricted tothe decidable case of
where only skolem constants, but not skolem func-
tiens were necassary. The general idea of unif-
ication is due to Prawitz [1960)who used rules sim-
llar to all the rules given here except for = + and
unify. His unification rule leads toc a complete
logic, ours does not. FRobinson [1965] clarified
Prawltz'es unification algorithm by re-defining it,
a5 we have done, in terms of skolem functions,

Theorem Proving-2: Brown
536

rather than in tems of ordering restrictiona on
Prawitz variables and ekclem constants. More
recently Bibel and Schreiber [1974] have implement-
ed a complete sequent logic.

2.2 Set theoretic knowledge

Our thecrem prover has knowledge about one
primitive set theoretic symbol: ¢ which is in-
terpreted as: is an element of, and knowledge
about a large number of Jdefined symbols. Some of
these defined symbols along with their definitions
and English translations are listed in table 1.

In that table, the name of each expression usually
indicates where that expression may be found in
fuine's [1969]) book: Set Theory and its logic.

For example, the definition of the symbol A\ whose
name 1s Q2P5 is expression number 5 in chapter 2

of that book. Note that a definition essentlally
defines the expression on the left side of the
cuter most — or = sign in terms of the expreasion
on the right side.

With the sole exception of the axiom of exten~
tionality, there are four kinds of items of set
theoretic knowledge used by our theorem prover.
They are: definitions, reduction lemmas, exiatence
axioms, and existence lemmas. Asg previously
mentioned some of the definitions that were used
are listed in table 1. Scme reduction lemmas that
were used are listed in table 2. Some existence
axioms that were used are glven in table 3, and
some existence lemmas that were used are glven in
table 4.

befinitions and Reduction lemmas are of the
forms ¢ <> .9 = ¢, I+ (p ++ Y),or T+{p = y).
Existence axioms and existence lemmas are of the
form: ¢cV where ¥V is the universal abstract.

The definitlens and reduction lemmas are used
only as items by the interpreter to evaluate sub-
expressions, as described at the beginning of
section 2.

For any given sub-expression that is being
evaluated the interpreter tries to apply the defin-
itions and reduction lemnas in the followlng order:

firgt: Q2ZPL

then: All reduction lemmas in reverse order
from that listed in Table 2.

and finally: all other definitions.

For example, since the definition Q9P 1is tried
only after the reduction lemma Q9P3, <xy> = <uy>
evaluates to X = u A ¥y = v using Q9P3 and not to
({x}={u} A {x yi={uv}} v ({x}={uv} A {xy}={u}}
using QVPY via definition Q9P1.

The philceophy bkehind restricting definitions
and reduction lemmas to being used only as ltems
is twofold: First, since the transformations made
by the interpreter are truth value preserving as-
suming our axioms of aset theory (and in the case
of conditional items alsc assuming the particular
sequent in which thae sub=-expression being evaluat-
ed occurs) the resulting sequent ie & theorsm of
our wat theory 1ff the original seguent was a
theorem of our ®set theory. second, at least in
the case of definitions (because after all thasy
are definitions and hence can be eliminated), we
know that in a certain senpe the complexity of the
resulting expreseion is less. This fact, combined
with the manner in which the sequent calculus it-
self reduces the complexity of its sequentd, means

Theorsm Proving=-2:
537

that the resulting expressions are becoming less
complex.,

Furthermore, in the case of reduction lemmas
such as ¢ +*+ Yy, if the ¢ expreasion contains at
least one symbol which was defined later than any
symbol in ¢, then it 1s gquite probable, but not at
all certain, that the above termination property
will hold. For example, all the non-conditjonal
reduction lemmas in table 2 contain a later de-
fined symbol in their ¢ expressinn, and thus the
use of such ltems probably will reduce complexity.
Thus our philosophy for using reduction lemmas as
items is basically the same as for our use of de-
finitions as items.

It should be noted that several people have
consldered the problem of proving that wvarious sets
of reduction lemmas preserve termination when used
in this manner, notably Plotkin [19721, Lankford
[1975) and Siekmann (19731,

It should not be thought that the termination
property must hold in all cases for it to be useful
to use reduction lemmas in this manner, for it may
be the case that it fails only for pathelocgical
expressions which are of little interest in mathe-
matics. An example of this ia the fact that pP2P1
fails to reduce complexity when ¥ is replaced by
the following name in ZF of the null set: {x:xex}.

The existence axioms and the existence lemmas
are used to increase the range of applicability of
the logical schema = + the contextual definiticn
QZ2P1 and of the reducticn lemmas. Namely, when-
ever an expression ¢f the form R € V where R is
some abetract is either assuped or proven, then
for every combination of variables and abstracts X
such that X ¢ V is now known, new versicns of Q2Pl
and the reductlon lemmas are asserted.

Table 1: Definiticns English
Name Definition tranglation
QZPl: ¥y ye{x:Txl}++Ty the abetract of

all » such thatl

Q2P2: af B++¥x xea+xef ia c¢contained in

Q2p5; anB={x: xeaAxch} intersection

Q2P7: a=8—Y¥x Xea+*XER equals

02P%: VvV = {z: u} universe

©5P5: {x:Tx}ep+sy ym{x:Pxlayef the set {x:Ix)
iz in B8

Q7Pla: {al} = {z: z=a} unit set

O7P1B: {aB) = {z: z=oaz= B} pair set

Q9Pl: <of> = {{aHaB8}} ordered pair

Q9P4 ; {fexy>:Ixyl={u:Ixdy uwixy>aAlxy} abstract of

o ordered pairs

Q7P6: a={ <xy>:<xy>ca} relational part

Q9P11: oxb={<xy>:xecayef} cartesian product

09Pld: a"B={x:Iv<xy>caaych} image

RIOPL: Func a++(vxvy72<xz>eaA<yz>ea0x-y)Aa-°a i=m
a function

QLOP11: o'B= 7y<yR>ea apply

Dl: Paw{u: ua} powerset

QLLIP1: a%p++1f FunciAa aS F'f The cardinality
of o Lg lass
than or egqual to
the cardinality
of B

The cardinality
of a i5 less
than the cardin-

ality of B

Q2QP3: a < B + “BEa

Rrown

Table 2: Reduction Lemmas:

Q7PT: ¥x¥y {x} = {y} + zmy

Q7PBA: Vx Wy ¥z {xy] = {z]} +*> x=z2 A y=2

Q7PBB: ¥x ¥y ¥z {z} = {xy} <+ z=x » zay

Q7P9: ¥x ¥y Yu Yv{xyl={uvl+r (x=us y=v) v(x=vay=u)

Q9PI: Wx Vy <xy> = <uy> ++ x=mu A yov
O9P5: W¥x ¥y <xy> € {<uv>:¢puv} > ¢xy
CRL1: Func § -+ (<wyref «» w=f'y)
Takle 3: Exletence axloms and axiom of
extentionality

QIP10OA: @PcV

Q7PLOB: ¥x Wy {xylev

Q4P1: ¥x Wy ¥z ({x=v ~ xez. D yez)
Table 4: Existence Lenmas:

Q7P12: {alev

Q7PL3: {aBlev

E2: <aB>eV

A simpler method of implementing the addition
of these new reduction rules, is to agree that the
initial universally guantified variables of a de-
finition or a reduction lemma are allowed to match,
not Jjust variablea, but also any abstract B such
that R £ V is known.

There is one further way in which the exist-
ence axioms are used, and this has to do with the
fact that they are axioms. For this reason, if
the interpreter gets "stuck" while trying to solve
a sequent {that is, if no items can be applied to
that sequent} in proving a theorem, it will in
privitive notation, i.e. with the defined symbols
eliminated, add each axiom ags an additional
hypothesis in that seguent.

Again an informed reader will recall Bledsoce's
set theory theorem prover [1971].

3. Example

We give below a protocol produced hy our
theorem prover while proving Quine's version of
Cantor's Theorem. We have listed on the right
the name of the item which was applied to each
seqguent in the protocol . Any name which is
starred: '*' is the name of a lemma. A list of
names lndicates the use of a reduction lemma cor-
responding to the item named by the first name in
the list, and created by the items named by the
remaining names in the list.

The protocol 1s presented as a tree of sequents,
grown top down, starting with the sequent contain-
ing only the theorem the aystem 1s trying toc prove.
On each line of the proof the item name following
the colen indicates that that item was applied to
the seguent on that line, producing the sequent on
the line immediately below that chne. In the casme
of a legical split item (A, + «—, ¥V, 3 >,
++ +] two sequents will be produced, and they are
indicated by drawn arrows.

The proof is segmented by the scope of
attempted applications of the Unify items. The
boundaries of each segment are indicated by stat-
ing where each segment starts, That is by stating:

:Gk starts here

where Xk refers to segment k. The system attempts
tc apply the Unify item once to a segquence of all
endsequents of each sagment. Thus, every saguent

in the segment marked as having the Unify item ap-
plied to it are jeintly the conjunction of sequents
to which the Unify schema is actually applied.
Example 1
Q28P17 Cantor's Theorem: The cardinality of any
abstract is less than the cardinality of its power
abstract, provided that a M {y:vyew'y) 15 a set.

In order to present this protocol the follow—
ing abbreviations are made:
dr = af (vwa nily:vyew'y) e W)
@ = df {¥x xe Po ~ xc F'a)

3 = df (¥x xe {a*) +» xea A {y:vwy e *2')«'])
&' = df (¥x x¢ (a*z) +— xef' (b'zl
+ (Yw.an{y:wew'yl ¢ VI o < Pa i+ D
(vw.anl{y:wew'yl ¢ V) + o < Pa :020P3
. +~Paga =
T, Po o~ 1QIlP1
Y , 3x Pune x A Pa & x"a + 1 -
© , Func f A PuEf"a > A
i{> , Func ¥, Pag #"a + 1Q2P2

:01 starts here

L , Func #, (¥x xePa = xcf"a)~+ Vo
i Func £, * c¢Pa = *1 ef"n, 2 > iV >
a1, @ Func f,a ﬂ{y:W[:*Z'Y}EV,

]ePa D*lcf"a -+ :Q5PS
T, @, Func f, Ix x=a ﬂ{y:’byc*z'y]'\ xeV,

*lePa 3*151'"0, -+ 13-

d', @, Func #, (a*,)=u A {y:"ye*, 'yiata* eV,

"lr:Pcr.D* cef'n » A+
@ . @, Func f.(a‘2}=uf‘l{y:mye*2'y},

(a*z}EV, *lcPc: :n"lsf"rz - :Q2P9
I+ &, Func f, (a*2)=un{y:‘\:y£*2‘y},

(a*z)t:{y:ll},*lePa D*IC:F"U. -+ 102P1
D, @, Puc £, ta*) =an {y:wyer,yl,

", *l:Pq '_'J"lf:f"u - 1Q2P7
(D , @ ,Func F, (Vx xe (a*,)exeaft {ynye, 'y},

n, *1EPU..'."* £F "o > TS
d.,@ Func £, 5, * EPaD* e;F"a -+ o+
4.2, @) Func £, * ef'n + :9P14
T .2, @ Func F, *e{x:Iy<xy>efAyen} » :Q2P1
L. @ . @, ,Func £, 1y <* y>efa yea + 3+
L, . @ Func :F.<*l(b*1)> ef A (b'l]ca > 1A+
@,@.,3 Func f.<*ltb*l}>ef, (b*l}m =+ ;CRLw*
1,2, Q ,Func £f,* = (b}, (b* dea =+ :Q2P7
@ r @’ * @ JFunc £, (¥x XC*l*""'fo' (bil)}a t Propoghr

tion

(b* leca -

1 from 02
:03 atarts here
@G, @ .03 Func ¥, (¥x xe (a*z)-ﬂ—*xef' (b*z)),

(b" Yea > V>
@ ' @ O [Fune £, @ .r* E (3*2}*_"*4!:;' (b"z) '

{b* lea > T

.@ @ . @ ,Func F,* £{ak,)4+ euf\
{y: '\»ye"z‘y}. *Elar,)r’a—w Ef! tbi
(b* Jeo ™+ 1 -

R /@

Thearem Proving=2: Brown
538

L. E,Q, @ Fune £,+ c(a*z) .*Seu.’\.{y:'\-yc'z‘y}.
*dea*zﬂ*‘lef' (b*2] N {h*z)cu - ;Q2P5
O©.2,.0, & Func f,x efa*),
‘SS{x:xsu/\xs{y:'\-ya*z'y},
*42 (a*z)Htacf' (b*2) R (b*z}eu - :R2P1
@ r @ + Q.: [@ Func f,’ss (3*2’ ’ *590/\
*oelyivye® 'ylp e lav, Jea ef " (D)),
(b*zlsza + T A
@ ’ @ a@ ' @ sFunc f:*se (ﬂ*z) '*Bw'
Yoelywe 'y I e (av,) of ' (bY,),
] (b*z)sa =+ 1 Q2PL
Q.&73 ., @ Func :F;*SE (a‘z'l ,*563-
'\"_“55*2'*5 .'45 (a*z)ﬁ*4so" (b*z) ' (b"’z)eu > v >
Q2,3 , @ ,Func Foroela%,), ¥ ea,

- - " L] * L] L] * T
4e{a Z)H» 453‘ {b 2),tb z)eu,:‘__sc 2'%5 e

.
®. D, @, @ Func $,*.cela*,), "0,
*43 (a*z) .*4ef' (b*2) , (b'z)m - ‘5E*2'*5 :Unify

(¥, =, % = = (0%)]

L g - /

-
L .&,.& &, Func forgelar,) > ea,
(b*,lea + ¥ e¥, '* % cla*,) ,*453“ (b*,} :Unify
[*4:*53
Ay "
ﬁ-' ’ Q‘" r Q} ’ @ TFunc ;;*45 ta*z)H*4Ef .(b*z, r
{?*2)53 + ¥oelar,),* ea O{y:‘byc"z'y} :02P5
©, @0, @, Func F,* e ar) e ef (bY),
(b*zjea-r *59 {a*z) .*5e{x:xequE{y:WE*z‘y}}:Q2Pl
L.&. 3,4 . .Func :F,*gc(a*)*—**46!' (b*.},

(b*,)eor* € (a*2) , *Swf*sefyf{t_ig:f A
.8 .8 .@ ,Func §,*4E{a*2}+-rt4ef' {b*), B
(b*z)ea -+ *SE (a*z) ' *sea —_— 4

@] (i’] @ v @ TFune 5‘!’45 (3*2, :*4Bf' (b*z} '
(b*2)eu + *55 (a*z) ' *55:(: :Unif
[*4-*5101: [*5={b'2)] B

] __/
et
{i‘ ¥ @ ’ @] @' JFunc F, {btziﬂu - '55(a'2) ¥
*57.'{:.*4&:{&*2) . *423" (b*z) :Unify
[tsg (barz”

. e

e

@ ' @ ' @ ’ @ +Func 3‘;*45 (a*z)‘_""lﬁf' (b‘z’]

(b*,) eaur¥ e (at,), ¥ edysvye”, 'yl 1Q2P1
® QD @ . @ ,Func *'*46 (Q*Z,H*éﬂf' {b'z) [
(h*z)eu+*5€ (a‘z) ,'\-*55*2‘*5 =+

1

[

i

1
g
¢
s

1
g:
ft;

L

Y

@

/2, 3,4 Fane Fov e (ar)t ef (¥,

* - * i w .
(b 2):1:, 5%y Mg :,_i(a*z) i -

I ’.2_I‘ r {j' + @ yFunc f"4e (3‘2) ;*4'5}' (b'z) -.

(b*z)su.*sc*z'*5+*sz (a‘z) :Unify
[*4=*5]
" e

[y ‘,-'-.—
e 'fj:‘ ¥ (fi" June *a (b*z)suo.se*z
*58*2"‘5”"* E(a*2].*4ﬁla*2);*45f' (b*z) :Unify

5
* =f N oo% ko hk

a
_P‘)- “@.
F 2,3 [JFunc F + * € Pa :bl1
12,3 ,Func £ + *lc{x:x€. o} :Q2P1
’ :_2] (3‘: Func ¥ + *1§G 1Q2P3
L2, 3 Punc F + ¥x xe* > xeq .
;2,3 ,Func f - {c* Je*, 2 {c*))ea i+

;102 starts here

2 .3 ,Func £, {e* Je* = (c*)ea 1Y
L2, PHqedar e eanlyyer, 'yl
Func ¥, tc*l)e*l -+ (c*l)sa -

J ——
BT * * * . * 0

2, (3, *eflary) Y oea AHysvye*, 'y),

Fune ¥, (c*l}(T*l > (c*l}ta 1Q2P5

P | ;*ae(a*z) ,*Sa{x:x:uz\xe{y:'\ays*z'y}},

Func ,‘,(c"’l)e‘l > (c"'l)ea. 1Q2P1
P& T relar,) tgea arely e, 'y},

Func :",(c*l}ﬁ*l + (c'l)ea A -
SZ5 .3 .*36(3*21 .*aau.*3e{y:'\4ya*2'y},

Func #, (c*l)e*l + {c*l)m 1Q2P1
L@ E SroE(Er) s, v e, Y

Func #, (c*lle‘l - {c*l}ca o>

] (2—’ r (‘3- l*3s (a"z) ;*aﬂuff‘unc +,

{c'l}c*l - *35*2'*3.&:*1)5:(: :Unify

[* o (c¥ 1]
Vg ‘—"’j'

. (21, 3 ,Punc ¥, lc‘llt*l -+ (l‘-‘*l
*35(3‘2) R ﬂ{y:wc*z'y] 1 Q2PS
L@, @ Func £, te*)
*ae{a*z) ,*Bc{x:xeque{y:'\:yz:‘z'y}] 1Q2P1
, @, 3 ,Func ¥, (c*l)s"l - (c‘l)eu,

"3: (a’z) ,*3caA'3e{y:'uyc*2‘y} A

lea,

)e*l hd (c*l) €n,

Theorem Proving=2: Rrown

539

o

Q.2 3 Func F, (e* ¥ + (c*))eq, —
sUni
*3e(n*2) ' *3ecr. nify
[* = (a*),* = (c*)] !
1 2 3 1
s
(‘__,__,._
1,7, ,Func f,(c‘l)c*l + e)ea,
* " - w* .
jefla 2).*3c{y.myc ; v} 1Q2PL
- = .
@ .3, ,Func i.(c*l)c*l > (c*liaa.
- aw " w 1% H L")
R U L R >
5 ER T * ok opw 1% * .
L. 2,3 Func f,{ov)e* er,H (e e
- * H b3
€ {a 2) Unify
= = -
[*l (a'z)..*3 {e l)J

Time = 1,494 milliseconds or approximately: lh
seconds on a DECLO computer with a KAlO CPU

Note that two distinct instantiations of formulae
(3) have been used:
Variable Formulae Instantiation Branch of Proof

*1 2, & 01(82)
i2 "f * 8 1 {9 3 }
.3) c 32
“s "‘f %3
"5 W ®

A theorem prover whilch:

(1) immediately skolemized it's formulae and

(2} allowed no more than one instance of each
variable

would not be able to prove this theorem except by

a very lucky accident.

The baslic problem of this proof is at the
start of 8l: and is to declde which of the follow-
ing twe formulas to work on first:

1) anly:vye *2 'yl oev

{2} ‘1 cPa = *la:}" "a

If one begine by splitting on {2} then on each
branch of the search space formulae (1) will reduce
to

Ix x=a N {yzwc*z'y} A XeV

which produces on each branch a distinct* skolem
function {a*_}, (a'*_.}, and this will not lead to a
proof. Thus one mugt begin working on the first
formulae, However, this firet formulae in a few
steps reduced to 1f x in Ca 1s immediately
replaced by a single Unification variable, then
again no proof will be sbtained, for we have seen
that from our proof that two variables *_ and *
bound to distinct skolem functions ¢ and”b ware
needed.

Thus what one must do i3 to start on formulae

*Tt is not obvious that two quantifiers on differ-
ent branches of the search space could be replaced
by the same gensymed skolem function, in a syatem
with unification variables because instantiating
them can cause these skolem functions to appear in
the same seguent.

and

(1).

(1), then switch to formulae (2) and split,
then come back on each branch and instantiate

4. Conclusion

We have described an automatic theorem prover
for the domain of elementary set theory, and have
presented some protocols of its behaviour when
proving some theorems. We wish to stress that
the program is fast and compact. For example,we
have seen that it took less than 2 seconds to

obtain a proof of Cantor's Theorem. It should
be noted that our theorem prover is implemented
in compiled UCI LISP (Bobrow 7119733) and was

executed on a DEC10 with a KA10 CPU.

Acknowledgements

| thank Bernard Meltzer, Robert Kowalski and
Raymond Aubin for many enlightening discussions.
This research was supported by a scholarship
awarded to the author by the University of Edin-

burgh, and is currently supported by a grant BRG
94431 from the Science Research Council.
References

Aubin, R. "Mechanizing Structural Induction",PhD

thesis, Dept. of Artificial Uni-
versity of Edinburgh, 1976.

Bibel, W. and Schreiber, J. "Proof Search in a
Gentzen Like System of First Order Logic", In-
ternational Computing Symposium, 1974, North
Holland Publishing Company.

Bledsoe, WW. "Splitting and Reduction Heuristics
in Automatic Theorem Proving", Artificial In-
telligence, Vol. 2, No. 1., Spring .

Bledsoe, W.W., Boyer, R.S., Henneman, W.H. "Com-
puter Proofs of Limit Theorems", Artificial In-
telligence, Vol. 3, 1972.

Bobrow, R.J. et al. UCI LISP Manual, Technical
Report 21, Dept. of Computer Science, Univers-
ity of Cal., Irvine, 1973.

Boyer, R.S., Moore, J S. "Proving Theorems about
LISP functions", IJCAI3 Proceedings 1973.

Brown, F.M. "Doing Arithmetic without Diagrams",
DAl Research Report No. 16A. Also to appear in
Journal of Artificial Intelligence, 1976.

Lankford, D.S. "Canonical Algebraic Simplification",
Maths Department, Memo AIP-25, The University
of Texas at Austin, May 1975.

McCarthy, J., et al. LISP 1.5 Programmers Manual,
MIT Press, Cambridge, Mass., 1965.

Moore, J S. "Computational Logic: Structure Shar-
ing and Proof of Program Properties, Part 11",
DCL Memo No. 68, 1974.

Intelligence,

Plotkin, G. "Building in Equational Theories"
Machine Intelligence 7, 1972.
Prawitz, D. "An Improved Proof Procedure", Theoria,

Vol.26, pp 102-139, 1960.

Quine, W.V.O. Set Theory and its Logic, revised
edition 1969, Oxford University Press,Library
of Congress Catalogue Card No0.68-14271.

Robinson,J.A. "A Machine Oriented Logic based on
the Resolution Principle",J.ACM,Vo0l.12,p.23-41,
1965.

Siekmann,J. "A Modification of the Unification Al-
gorithm in Automatic Theorem Proving",Masters
thesis,Univ.of Essex,1972.

Wang,H. "Towards Mechanical Mathematics",IBM Jnl.
of Research and Development,Vol.4,pp 2-22,1960.

Theorem Proving-2: Brown

5U0

