
A PROOF-CHECKER FOR DYNAMIC LOCIC

S.D. Litvintchouk and V.R. Pratt
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

We consider the problem of getting a computer to follow
reasoning conducted in dynamic logic. This is a recently
developed logic of programs that subsumes most existing f irst-
order logics of programs that manipulate their environment,
including Floyd's and Hoare's logics of partial correctness and
Manna and Waldinger's logic of total correctness. Dynamic
logic is more closely related to classical first-order logic than
any other proposed logic of programs. This simplifies the
design of a proof-checker for dynamic logic. Work in
progress on the implementation of such a program is reported
on, and an example machine-checked proof is exhibited.

Introduction

The logical language.

Our objective is to be able to discuss programs with a
computer. The prerequisites are a language for holding the
conversation in, and reliable criteria for following a line of
reasoning expressed in this language. We adopt a simple
language having just four basic constructs. Three of these
constructs come from ordinary logic; they are function
symbols, predicate symbols, and logical connectives. (We lump
constants and variables together with the zeroary function
symbols.) The fourth construct, while not a familiar one in
logic, is nevertheless one that occurs in everyday
conversations about programs; it is the notion of "after
executing program a." For example we may say in ordinary
conversation, "After executing the program is equal to
1."

While these four constructs may not seem very much to
go on, they are in fact sufficient for almost any "first-order"
conversation about the input-output behavior of programs.
They may express such diverse concepts as partial correctness,
termination, equivalence, determinism versus nondeterminism,
total i ty, reversibility of a process, accessibility of states,
weakest antecedents, strongest consequents, weakest and
strongest invariants, and convergents. They also shed new
light on the axioms relevant to quantifiers in f irst-order
predicate calculus by treating them from the programmer's
point of view rather than the logician's.

We abbreviate "after executing program a" so that
the observation of the first paragraph condenses to
(We have found it convenient in conversation to pronounce [a]
as "box a") We shall later find useful the dual concept <a1^
which we write <o>, pronounced "diamond a." The notation

This rtsearch was supported by the Advanced Research
Projects Agency of the Department of Defense under Office
of Naval Rtsearch contract N00014-7S-0643.

is borrowed from modal logic. Dynamic logic is more
intimately connected with modal logic than one might at first
suppose; the connection is discussed in more detail in section
3.2 of [21] . Fischer and Ladner [63 demonstrate the
connection between various restrictions of dynamic logic and
the classical systems K, T, S4 and SS of modal logic. We call
[a] and <a> modalities (respectively box and diamond
modalities), and formulae of the form [a]P and <a>P modal
formulae. We shall call a quantifier-free logic augmented with
such modalities a dynamic logic. Syntactically, modalities
behave exactly like logical negation; they are placed in front
of a formula, and their precedence is such that ? is
parsed would have been parsed

The programming language

In order to understand the meaning of a formula such as
we first need a precise account of We shall

think of programs solely in terms of their effect on the state
of the world. A state is defined by the values taken on by the
function and predicate symbols of the language in some domain.
(A logician would call a state an interpretation.) We call the
set of all possible states (keeping the domain fixed) the
universe. Thus a universe is defined by the available function
and predicate symbols and the choice of domain.

We could restrict our attention to deterministic programs,
permitting us to think of them as functions from states to
states. As we shall see later however, reasoning
nondeterministically about deterministic programs can simplify
the argument. Hence we shall allow for nondeterministic
programs by capturing the effect of a program on a universe as
a binary relation on that universe. This of course means that
we will be able to discuss nondeterministic programs in general.
However, the question of what first-order facts one wants to
assert about nondeterministic programs is presently the subject
of much discussion in the literature (see [S] in particular), and
we shall avoid that issue in this paper beyond observing that
dynamic logic as presented here can express many useful ideas
about nondeterministic programs.

Programming constructs

The programs we want to discuss have five constructs.
These constructs, while not all entirely conventional, have
been chosen primarily for the ease with which one can discuss
programs written using them.

(i) Assignments. X:=l is an instance of an assignment, as is
In general an assignment is a pair

of terms (respectively the left-hand and right-hand sides of the
assignment) of our logical language. (A term is an expression

Theorem P r o v l n j - 3 : L i t v i n t c h o u k

Theorem P r o v i n g - 3 : Litvintchouk
553

With these five constructs we can express any flowchart
program that has decision boxes and manipulates arrays. This
can be done without introducing additional variables. This
follows from the fact that state transition diagrams can always
be translated into equivalent regular expressions. This is not
possible with assignments, sequencing, if-then-else and while-
do C2], the difference having to do with the determinism of the
latter.

Truth-value Semantics of Dynamic logic

Now that we have settled on the programming language, we
can return to the question of what -[CX:=l]false means, or more
generally what any formula containing [a]P means. It is
important here to realize the distinction between truth and
validity. What we are about to define is the truth value of a
formula of dynamic logic in a single state. This is to be
contrasted with, say, Hoare's notion of "P{a}Q," whose truth
is not defined on a state-by-state basis but rather is defined
for the whole universe, and so corresponds to the usual notion
in logic of validity.

We may now show how dynamic logic may be used to
express a variety of concepts.

Expressive power of dynamic logic

Quasi-programming constructs

In addition to the five constructs for our programming
language, we shall find two more constructs of interest, not in
writing programs but in talking about them.

Theorem P r o v i n g - 3 : L I t v i n t c h o u k
554

We could at this point proceed with the discussion of our
ultimate objective, the construction of a proof-checking
program that would check proofs expressed in the above axiom
system. Unfortunately the above system is too weak to permit
reasonably succinct proofs; for example, it appears that 6 lines
are needed to prove <X:=1>X=1 from the assumption 1=1 using
the above system. In this section we explore a derived rule
with an eye on strengthening the axioms and rules. In this
respect we are emulating J.A. Robinson [22], who prescribed a
new rule to facilitate the construction of automatic theorem-
provers. The constraints on a proof-checker are somewhat
different from those of a theorem-prover, and the arguments
for Robinson's resolution rule are not sufficiently compelling
for us. In particular, the convenience of having a clause as the
unit of information, which helps an automatic theorem prover
organize the proof, may be more hindrance than help in a
proof-checker because the user may not have conceived his
proof in terms of clauses that are disjunctions of literals. This
is not to say that we shall not make use of unification; indeed,
unification is a most valuable tool in automated logic.

We now give the details of the rule, which we call the

Interestingly (but fairly obviously, as demonstrated in
[213), the axiom system with these four new axioms remains
sound, complete and effective. (It is possible to give further
axioms to handle the converse operation, still preserving
soundness, completeness and effectiveness. However we shall
not make use of this in the following.)

A derived rule

The second inference rule (really the rule of necessitation
of modal logic) can be considered as an upper bound on the
power of programs, which cannot falsify theorems. If P is a
theorem then P is true in every state, whence in particular it
must be true after executing a. In our system it is
straightforward to prove as theorems the axioms of, say,
Mendelson's system K C183 (p. S7), and it should be clear that
the second rule subsumes the rule of generalization; in fact, if
the only modalities allowed are those with values of the form
X:=? then the rule of necessitation is the rule of
generalization, and the theorems of this system coincide with
the theorems of K. It is interesting to note that Mendelson
manages to express as one axiom what we take two to express,
namely our Axiom M and the second quantification axiom. The
advantage of our decomposition of this axiom is that we get
two axioms about quantifiers that serve respectively as a
lower and an upper bound on what the binary relation X:=?
may be.

So far we have only given axioms for random assignments.
Now let us axiomatize the four loop-free programming
constructs.

All of the above concepts can be stated in a second order
logic that permits explicit manipulation of states and/or
programs as individuals, as in C3] where states can be quantified
over, or [10] where programs are terms. The interest in
dynamic logic is that it achieves its expressive power using
only first-order language. The advantage of keeping the
language restricted in this way is that it is easier to completely
axiomatize parts of the logic, though loops present an
insurmountable obstacle to completeness as demonstrated in
Theorem 16 of [211

An axiom system for dynamic logic

Let us now exhibit a sound complete effective axiom
system for first-order logic. (By effective we mean one whose
axioms form a recursive set and whose inference rules are
recursive relations on formulae.) The theorems of the
following system are exactly the valid formulae of first order
logic. A novelty of this system is that it separates into logical
and non-logical components what are usually taken to be
entirely logical rules and axioms, on the principle that facts
about X:=? are program-specific facts.

The reader wishing to pursue these concepts further is
referred to [91 Some simple statements expressible in dynamic
logic that do not fall into any of the above categories, and are
not expressible in Hoare's partial correctness formalism or the
total correctness formalism of Manna and Waldinger [17], are:

Show Rule for lack of a more descriptive term. A proof step
using it looks like

For the moment ignore the items inside braces { }. Ideally,
we would like this rule to apply whenever the formulae TO, T l ,
T2,... logically entail the formula S, a semantic characterization
of the rule. Unfortunately that would lead to a non-effective
proof-checker, since logical entailment is not even partially
decidable for our language [9 1 Instead we resort to an
effective syntactic characterization. This is where the items in
braces enter the picture. The braces enclose "templates"
which contain the propositional content of the proof step, in
the sense that each template is a propositional "approximation"
to the formula it follows. For example, we might say

The template pAq refers to the result of expanding
and then to

1 > 0 A 2 > 0 . It should be clear that the two uses of p in the
templates refer to the same formula, 1>0, and similarly for the
two uses of q. More generally, we shall require only that
multiple occurrences of the same letter refer to unifiable
formulae.

We check this proof step in two phases, which can be done
independently and in either order (or in parallel by two
processors). One phase, called IDENTIFY, is to check that
repetitions of the same letter can be justified. We do this by
attempting to unify corresponding formulae. The other phase,
called VERIFY, is to see whether the templates alone
constitute a sound argument in modal propositional logic. In
this example all modalities were eliminated so that we were
left with the argument

Show pAq u s i n g p, q

which is in fact a sound argument of non-modal propositional
logic. A situation where modal logic would help is:

Shou

Here we are dealing with "uninterpreted" programs U and V, a
situation that arises when we are given a program about which
we have previously proved some useful properties and whose
code we no longer wish to be bothered with. (This situation
arises frequently in the extended example of the next section
but one.) In this case, knowing nothing about the programs U
and V beyond the facts given, we could not expand them in the
way we did with CX:=13, so they carry over to the templates.
Here the argument of modal logic is:

This argument can readily be seen to follow if we apply
Necessitation to and hence

. The rest is propositional reasoning.

The IDENTIFY phase begins by determining what

subformula each occurrence of a template letter refers to.
This is done by systematically expanding the formula associated
with the template containing the given letter until the formula
can be matched to the template. Thus will match

directly with a matched to U;V, b to W and p
However will not match [a][B]p directly but must
first be expanded as will not match pAq
directly but must first be expanded as I :0. Once
the fo rmu la matches the template, the subformula
corresponding to each letter can immediately be determined.
Then all the subformulae corresponding to occurrences of the
same letter are checked for whether they can be unified. This
may require further expansion; for example, attempting to
unify I and W>0 involves eliminating the assignment
modality to give 1>0, and instantiating W as 1, this latter step
being performed by a unification algorithm. All instantiations
necessary must be compatible with each other.

Any formulae that fail to unify are put to one side while
the remainder of the proof step is checked. When that is done,
then the failed pairs are expressed as an equivalence and tested
by a routine that checks for validity of quanti f ier- free
Presburger arithmetic, in the hope that the formulae turn out
to be equivalent on arithmetic grounds. (This together with
the Rule of Convergence described in the next section is the
only concession to domain-dependencies in the system.)

The VERIFY phase is a satisfiability tester for modal
propositional logic. It begins by determining what applications
of the Rule of Necessitation are sufficient to make the proof
go through. Boxes are then eliminated from the formula by the
appropriate generalization of the transformation

, which preserves satisfiability for tne intuitively
obvious reason that acts only as a constraint on those
worlds one might construct (in attempting to satisfy <a>?) that
are accessible via a and satisfy P, namely that in any such
world Q must be true. In our present implementation, we first
eliminate all top-level propositional letters by expressing the
formula in conjunctive normal form and applying the Davis-
Putnam algorithm for each of those letters. Then we convert
the resulting formula involving only modalities to disjunctive
normal form and apply the above transformation. Then the
process is repeated on the arguments of the top-level diamond
modalities. Though this approach can be inefficient, in practice
on the kinds of formulae we encounter it is the most efficient
of the methods we have tried. With all boxes eliminated, the
satisfiability of the result no longer depends on the names of
the diamonds; that is, are
equally satisfiable. Indeed, satisfiability of the whole is
preserved if <a>P is replaced by true when P is satisfiable and
false when not. Thus we can proceed recursively, working up
from the lowest diamonds to determine satisf iabil i ty of
progessively larger portions of the formulae.

Axioms for programs with loops

If straight-line programs were all that could be proved
correct in our system, it would find relatively little application.
For programs with loops we have the following axioms and
rules.

Axioms of Intent (one for each n) .

Theorem P r o v l n g - 3 : L i t v l n t c h o u k
555

The following program was devised by Manna and Pnueli
C163 to illustrate the efficacy of their method of proving
termination.

Example proof

We may write this program in the programming language
dynamic logic caters for thus.

arithmetic, using quasi-Gaussian elimination.)

The above proof is not the largest proof we have
successfully checked with our system. A substantial part of a
total correctness proof of the Knuth-Morris-Pratt pattern-
matching algorithm has been machine-checked, and we are in
the process of completing this proof. This extends work on
the partial correctness of this algorithm by Wegbreit [241

Discussion of the proof-checker

We have constructed a system for checking proofs of the
kind exemplified above. In this we are following in the
footsteps of Milner [20,21,26], who is doing for Scott's Logic
of Computable Functions what we are doing for the above
modal extension to first-order logic. Inasmuch as we are
treating programs that manipulate their environments, we are
also continuing a tradition of several years of implementing
systems for proving and checking proofs of properties of
programs [4,8,13,14,23,243. However the greater expressive
power of dynamic logic compared to that of partial correctness
assertions (the language used in almost all such systems) adds
considerably to the interest of our system. This consideration
actually makes Milner's system a closer relative of ours than
the partial correctness systems, due to the greater emphasis on
"expressions as first class citizens" in Milner's system and
ours, resulting in a logic where programs and facts mingle more
freely than say with Hoare's notation. The major difference
between Milner's system and ours is the LCF treatment of
programs (computable functions) as individuals in the underlying
domain versus our treatment of programs as "adverbs,"
analogously to quantifiers. Another system related to ours is
Richard Weyhrauch's [1,253 FOL (First-Order Logic) proof-
checker. A detail in which our program differs from Milner's
and Weyhrauch's (apart from the obvious one of choice of
logical language) is that our program makes less of an effort to
help the user interactively than is done by either LCF or FOL,
but rather is, at least thus far, a system in which the user
prepares his proof exactly as though he were wr i t ing a
program. This means that his proof exists on a file and is read
by the proof-checker just as an interpreter reads a program
from a file. This has permitted us to focus all of our effort on
the proof-checker proper.

The proof-checker is implemented on the PDP-10 computer
at M.I.T.'s Artif icial Intelligence Laboratory. The program
written to date has aproximately 100 LISP functions comprising
a total of 1800 lines of code averaging 4 LISP atoms per line.
The bulk of this code is for formula manipulation. However, a
small amount of it is for book-keeping tasks of a relatively
minor nature associated with keeping track of the structure of
a proof.

Directions for further research

Although our immediate goals may not appear to be
particularly ambitious or difficult to achieve, as well as not
being obviously "Artificial Intelligence" research, we admit to
far more ambitious and less plausible objectives on a larger
time scale. Ultimately we see the proof-checker i tself
becoming a component of a variety of very intelligent program-
manipulating programs. This depends on our belief that the

ability to check proofs is a vital part of any program that
pretends to "understand" some domain of discourse where the
discussion is at all involved. Two applications that we would
like to explore when the proof-checker has reached a
satisfactory level of performance are (i) the automatic
production of reliable software and (ii) machine-mediated
reasoning about programs. Our plan of attack for each of these
areas is not presently so crisp that we would feel confident
embarking on either area forthwith, particularly the second, but
we can nevertheless at this early stage present thoughts on
these subjects.

The notion of program reliability through correctness
proofs has gained momentum in the past few years, spurred on
most notably by the axiomatic methods of Floyd [73 and Hoare
[113. As yet there is not a shred of hard evidence to suggest
that this approach supplies the most economical approach to
reliability (where the economics takes into account both the
cost of having unreliable software and the total programming
and maintenance cost). Indeed, it may well turn out that the
bulk of the problems encountered today with unreliable
software may be disposed of by a happy combination of a good
programming language and a clean programming s ty le .
Nevertheless, if the proof-oriented approach can be made to
work and does not put too great a burden on the programmer
and/or the computer, it may provide reliable software at low
cost. We feel it is well worth continuing the experiments that
have been going on in this area in the past few years.
Although these experiments have not thus far demonstrated
the value of correctness proofs, it is still too early to draw
any negative conclusions about the method in general.

From a longer-range viewpoint, the burden of programming
should become progress ive ly more the computer ' s
responsibility, requiring the computer to "understand" better
the programs it executes. This has been the trend since the
first assembler was used, and though the trend is perhaps not
as pronounced as some have hoped, there is no doubt that the
trend continues. As it does, methods of reasoning about
programs will concomitantly become a more essential part of
the computer's repertoire. This raises the question of the
choice of language most appropriate to such reasoning. In view
of the expressive power of dynamic logic we feel that it is
worth developing the methodology of reasoning in this language
with an eye to automating the reasoning as far as possible. A
program like our proof-checker is precisely what is needed in
the way of a "black box" that "accepts" a reasonably sized step
in a discussion about a program. The sort of machine-mediated
discussions we envisage could quite well be cast as proofs,
albeit in the form of a dialogue. If the notion of a dialogue as a
proof seems strange, visualize a conversation - about a program
- punctuated with "I don't see why you need that test there"
and "How do you guarantee that X wil l never become
negative?" Such conversations about programs arise all the
time, and it is clear that the questions are referring to proofs,
probably expressed informally but proofs nonetheless. One
might argue that proof-checking is not understanding, but we
would insist that it is at least a component of understanding.

As humans are taken progressively further out of the loop
(admittedly a very long-range view) the dialogue will become
more of i monologue. However it may still be appropriate for

Theorem P r o v l n * - 3 : LI t v f n t c h o u k
557

the computer to reason about the programs it is contemplating
using a language like dynamic logic. Thus even in this scenario
the basic proof-checking methodology may continue to be used.
We should add that we see nothing strange in the idea of a
computer checking proofs that it generated itself; the best
way to generate proofs may be to propose possibly faulty
proofs and subject them to detailed criticism. This would
require not only the error-detecting capability of our proposed
proof-checker but error-correcting capabilities as well.

Acknowledgments

David Harel and Alber t Meyer made substantial
contributions to the theoretical underpinnings of dynamic logic.
We thank Richard Weyhrauch and Derek Oppen for many
helpful ARPA-net-mediated conversations on proof-checking
and theorem-proving.

Bibliography

CI] Aiello, M. and R. W. Weyhrauch, Checking Proofs in the
Metamathematics of First Order Logic. Computer Science
Dept, Stanford University, August, 1974. (SO pages).

C2] Ashcroft, E. and Z. Manna. The translation of 'go to'
programs to 'while' programs. STAN-CS-71-188, Stanford, CA.
1971.

£3] de Bakker, J.W., and D. Scott. An outline of a theory of
programs. Unpublished manuscript, 1969.

C4] Deutsch, L.P. An Interactive Program Verifier. Ph. D.
Thesis, Dept. of Computer Sci., U.C. Berkeley, 1973.

[5] Dijkstra, E. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, NJ. 1976.

[6] Fischer, MJ. and R.E. Ladner. Propositional Modal Logic of
Programs. Proc. 9th Ann. ACM Symp. on Theory of
Computing, 286-294, Boulder, Col., May 1977.

C7] F loyd, R.W. Assigning Meanings to Programs. In
Mathematical Aspects of Computer Science (ed. J.T. Schwartz),
19-32,1967.

[8] Cood, D.L, R.L. London and W.W. Bledsoe. "An Interactive
Program Verification System." IEEE Trans. Software Eng., SE-
1,1, 59-67. March 197S.

[9] Harel, D., A.R. Meyer and V.R. Pratt. Computability and
Completeness in Logics of Programs. Proc. 9th Ann. ACM
(SICACT) Symposium on Theory of Computing, Boulder, CO,
1977.

C103 Hitchcock, P. and D. Park. Induction Rules and Termination
Proofs. In Automata, Languages and Programming (ed. Nivat,
M.), IR1A. North-Holland, 1973.

C l l] Hoare, C.A.R. An Axiomatic Basis for Computer
Programming. CACM 12, S76-S80,1969.

[121 Hughes, C.E. and MJ. Cresswell. An Introduction to Modal

Logic. London: Methuen and Co Ltd. 1972.

[13] Joyner, W. H., C. B. Leeman, and W. C. Carter, "Automated
Verification of Microprograms", IBM RCS971, April, 1976. (30
pages)

[14] King, J.C. A program verifier. Proc. IFIP Cong. 71, North-
Holland, Amsterdam, 1971, 23S-249.

[IS] Kripke, S. Semantical considerations on Modal Logic. Acta
Philosophica Fennica, 83-94,1963.

[16] Manna, Z. and A. Pnueli. Axiomatic Approach to Total
Correctness of Programs. Acta Informatica, 3, 2S3-263,1974.

[173 , and R. Waldinger. Is "sometime" sometimes better
than "always"? Intermittent assertions in proving program
correctness. Proc. 2nd Int. Conf. on Software Engineering,
Oct. 1976.

[18] Mendelson, E. Introduction to Mathematical Logic. Van
Nostrand, N.Y. 1964.

[19] Milner, R.C. Implementation and Applications of Scott's
Logic for Computable Functions. Proc. ACM Conf. on Proving
Assertions about Programs, (SICPLAN Notices, 7, 1; SICACT
News, 14), 1-6. Las Cruces, NM, Jan. 1972.

[20] Milner, R., L. Morris and M. Newey, A Logic for
Computable Functions with Reflexive and Polymorphic Types,
University of Edinburgh, LCF Report No. 1, January, 197S. (25
pages).

[213 Pratt, V.R. Semantical Considerations on Floyd-Hoare Logic.
Proc. 17th Ann. IEEE Symp. on Foundations of Comp. Sci.,
109-121.1976.

[22] Robinson, J.A. A Machine-oriented Logic Based on the
Resolution Principle. J. ACM 12,1, 23-41. Jan. 196S.

[23] Sutuki, N., "Automatic Verification of Programs with
Complex Data Structures", Stanford University, AIM-279,
February 1976, (198 pages)

[24] Wegbre i t , B., Construct ive Methods in Program
Verification. IEEE Trans, on Software Engineering, SE-3, 3,
193-209. May 1977.

[25] Weyhrauch, R. W., and A. J. Thomas, FOL: a Proof
Checker for First-order Logic. Computer Science Dept,
Stanford University, AIM-23S, September, 1974. (55 pages).

[26] Weyhrauch, R.t and R. Milner, Program Semantics and
Correctness in a Mechanized Logic. First USA-Japan Computer
Conference, 1972. (9 pages).

Theorem P r o v i n g - 3 : Li tv intchouk
558

