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Abstract 

We consider the problem of getting a computer to follow 
reasoning conducted in dynamic logic. This is a recently 
developed logic of programs that subsumes most existing f irst-
order logics of programs that manipulate their environment, 
including Floyd's and Hoare's logics of partial correctness and 
Manna and Waldinger's logic of total correctness. Dynamic 
logic is more closely related to classical first-order logic than 
any other proposed logic of programs. This simplifies the 
design of a proof-checker for dynamic logic. Work in 
progress on the implementation of such a program is reported 
on, and an example machine-checked proof is exhibited. 

Introduction 

The logical language. 

Our objective is to be able to discuss programs with a 
computer. The prerequisites are a language for holding the 
conversation in, and reliable criteria for following a line of 
reasoning expressed in this language. We adopt a simple 
language having just four basic constructs. Three of these 
constructs come from ordinary logic; they are function 
symbols, predicate symbols, and logical connectives. (We lump 
constants and variables together with the zeroary function 
symbols.) The fourth construct, while not a familiar one in 
logic, is nevertheless one that occurs in everyday 
conversations about programs; it is the notion of "after 
executing program a." For example we may say in ordinary 
conversation, "After executing the program is equal to 
1." 

While these four constructs may not seem very much to 
go on, they are in fact sufficient for almost any "first-order" 
conversation about the input-output behavior of programs. 
They may express such diverse concepts as partial correctness, 
termination, equivalence, determinism versus nondeterminism, 
total i ty, reversibility of a process, accessibility of states, 
weakest antecedents, strongest consequents, weakest and 
strongest invariants, and convergents. They also shed new 
light on the axioms relevant to quantifiers in f irst-order 
predicate calculus by treating them from the programmer's 
point of view rather than the logician's. 

We abbreviate "after executing program a" so that 
the observation of the first paragraph condenses to 
(We have found it convenient in conversation to pronounce [ a ] 
as "box a") We shall later find useful the dual concept <a1^ 
which we write <o>, pronounced "diamond a." The notation 
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is borrowed from modal logic. Dynamic logic is more 
intimately connected with modal logic than one might at first 
suppose; the connection is discussed in more detail in section 
3.2 of [21 ] . Fischer and Ladner [63 demonstrate the 
connection between various restrictions of dynamic logic and 
the classical systems K, T, S4 and SS of modal logic. We call 
[a] and <a> modalities (respectively box and diamond 
modalities), and formulae of the form [a]P and <a>P modal 
formulae. We shall call a quantifier-free logic augmented with 
such modalities a dynamic logic. Syntactically, modalities 
behave exactly like logical negation; they are placed in front 
of a formula, and their precedence is such that ? is 
parsed would have been parsed 

The programming language 

In order to understand the meaning of a formula such as 
we first need a precise account of We shall 

think of programs solely in terms of their effect on the state 
of the world. A state is defined by the values taken on by the 
function and predicate symbols of the language in some domain. 
(A logician would call a state an interpretation.) We call the 
set of all possible states (keeping the domain fixed) the 
universe. Thus a universe is defined by the available function 
and predicate symbols and the choice of domain. 

We could restrict our attention to deterministic programs, 
permitting us to think of them as functions from states to 
states. As we shall see later however, reasoning 
nondeterministically about deterministic programs can simplify 
the argument. Hence we shall allow for nondeterministic 
programs by capturing the effect of a program on a universe as 
a binary relation on that universe. This of course means that 
we will be able to discuss nondeterministic programs in general. 
However, the question of what first-order facts one wants to 
assert about nondeterministic programs is presently the subject 
of much discussion in the literature (see [S] in particular), and 
we shall avoid that issue in this paper beyond observing that 
dynamic logic as presented here can express many useful ideas 
about nondeterministic programs. 

Programming constructs 

The programs we want to discuss have five constructs. 
These constructs, while not all entirely conventional, have 
been chosen primarily for the ease with which one can discuss 
programs written using them. 

(i) Assignments. X:=l is an instance of an assignment, as is 
In general an assignment is a pair 

of terms (respectively the left-hand and right-hand sides of the 
assignment) of our logical language. (A term is an expression 
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With these five constructs we can express any flowchart 
program that has decision boxes and manipulates arrays. This 
can be done without introducing additional variables. This 
follows from the fact that state transition diagrams can always 
be translated into equivalent regular expressions. This is not 
possible with assignments, sequencing, if-then-else and while-
do C2], the difference having to do with the determinism of the 
latter. 

Truth-value Semantics of Dynamic logic 

Now that we have settled on the programming language, we 
can return to the question of what -[CX:=l]false means, or more 
generally what any formula containing [a]P means. It is 
important here to realize the distinction between truth and 
validity. What we are about to define is the truth value of a 
formula of dynamic logic in a single state. This is to be 
contrasted with, say, Hoare's notion of "P{a}Q," whose truth 
is not defined on a state-by-state basis but rather is defined 
for the whole universe, and so corresponds to the usual notion 
in logic of validity. 

We may now show how dynamic logic may be used to 
express a variety of concepts. 

Expressive power of dynamic logic 

Quasi-programming constructs 

In addition to the five constructs for our programming 
language, we shall find two more constructs of interest, not in 
writing programs but in talking about them. 
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We could at this point proceed with the discussion of our 
ultimate objective, the construction of a proof-checking 
program that would check proofs expressed in the above axiom 
system. Unfortunately the above system is too weak to permit 
reasonably succinct proofs; for example, it appears that 6 lines 
are needed to prove <X:=1>X=1 from the assumption 1=1 using 
the above system. In this section we explore a derived rule 
with an eye on strengthening the axioms and rules. In this 
respect we are emulating J.A. Robinson [22], who prescribed a 
new rule to facilitate the construction of automatic theorem-
provers. The constraints on a proof-checker are somewhat 
different from those of a theorem-prover, and the arguments 
for Robinson's resolution rule are not sufficiently compelling 
for us. In particular, the convenience of having a clause as the 
unit of information, which helps an automatic theorem prover 
organize the proof, may be more hindrance than help in a 
proof-checker because the user may not have conceived his 
proof in terms of clauses that are disjunctions of literals. This 
is not to say that we shall not make use of unification; indeed, 
unification is a most valuable tool in automated logic. 

We now give the details of the rule, which we call the 

Interestingly (but fairly obviously, as demonstrated in 
[213), the axiom system with these four new axioms remains 
sound, complete and effective. (It is possible to give further 
axioms to handle the converse operation, still preserving 
soundness, completeness and effectiveness. However we shall 
not make use of this in the following.) 

A derived rule 

The second inference rule (really the rule of necessitation 
of modal logic) can be considered as an upper bound on the 
power of programs, which cannot falsify theorems. If P is a 
theorem then P is true in every state, whence in particular it 
must be true after executing a. In our system it is 
straightforward to prove as theorems the axioms of, say, 
Mendelson's system K C183 (p. S7), and it should be clear that 
the second rule subsumes the rule of generalization; in fact, if 
the only modalities allowed are those with values of the form 
X:=? then the rule of necessitation is the rule of 
generalization, and the theorems of this system coincide with 
the theorems of K. It is interesting to note that Mendelson 
manages to express as one axiom what we take two to express, 
namely our Axiom M and the second quantification axiom. The 
advantage of our decomposition of this axiom is that we get 
two axioms about quantifiers that serve respectively as a 
lower and an upper bound on what the binary relation X:=? 
may be. 

So far we have only given axioms for random assignments. 
Now let us axiomatize the four loop-free programming 
constructs. 

All of the above concepts can be stated in a second order 
logic that permits explicit manipulation of states and/or 
programs as individuals, as in C3] where states can be quantified 
over, or [10] where programs are terms. The interest in 
dynamic logic is that it achieves its expressive power using 
only first-order language. The advantage of keeping the 
language restricted in this way is that it is easier to completely 
axiomatize parts of the logic, though loops present an 
insurmountable obstacle to completeness as demonstrated in 
Theorem 16 of [211 

An axiom system for dynamic logic 

Let us now exhibit a sound complete effective axiom 
system for first-order logic. (By effective we mean one whose 
axioms form a recursive set and whose inference rules are 
recursive relations on formulae.) The theorems of the 
following system are exactly the valid formulae of first order 
logic. A novelty of this system is that it separates into logical 
and non-logical components what are usually taken to be 
entirely logical rules and axioms, on the principle that facts 
about X:=? are program-specific facts. 

The reader wishing to pursue these concepts further is 
referred to [91 Some simple statements expressible in dynamic 
logic that do not fall into any of the above categories, and are 
not expressible in Hoare's partial correctness formalism or the 
total correctness formalism of Manna and Waldinger [17], are: 



Show Rule for lack of a more descriptive term. A proof step 
using it looks like 

For the moment ignore the items inside braces { }. Ideally, 
we would like this rule to apply whenever the formulae TO, T l , 
T2,... logically entail the formula S, a semantic characterization 
of the rule. Unfortunately that would lead to a non-effective 
proof-checker, since logical entailment is not even partially 
decidable for our language [ 9 1 Instead we resort to an 
effective syntactic characterization. This is where the items in 
braces enter the picture. The braces enclose "templates" 
which contain the propositional content of the proof step, in 
the sense that each template is a propositional "approximation" 
to the formula it follows. For example, we might say 

The template pAq refers to the result of expanding 
and then to 

1 > 0 A 2 > 0 . It should be clear that the two uses of p in the 
templates refer to the same formula, 1>0, and similarly for the 
two uses of q. More generally, we shall require only that 
multiple occurrences of the same letter refer to unifiable 
formulae. 

We check this proof step in two phases, which can be done 
independently and in either order (or in parallel by two 
processors). One phase, called IDENTIFY, is to check that 
repetitions of the same letter can be justified. We do this by 
attempting to unify corresponding formulae. The other phase, 
called VERIFY, is to see whether the templates alone 
constitute a sound argument in modal propositional logic. In 
this example all modalities were eliminated so that we were 
left with the argument 

Show pAq u s i n g p, q 

which is in fact a sound argument of non-modal propositional 
logic. A situation where modal logic would help is: 

Shou 

Here we are dealing with "uninterpreted" programs U and V, a 
situation that arises when we are given a program about which 
we have previously proved some useful properties and whose 
code we no longer wish to be bothered with. (This situation 
arises frequently in the extended example of the next section 
but one.) In this case, knowing nothing about the programs U 
and V beyond the facts given, we could not expand them in the 
way we did with CX:=13, so they carry over to the templates. 
Here the argument of modal logic is: 

This argument can readily be seen to follow if we apply 
Necessitation to and hence 

. The rest is propositional reasoning. 

The IDENTIFY phase begins by determining what 

subformula each occurrence of a template letter refers to. 
This is done by systematically expanding the formula associated 
with the template containing the given letter until the formula 
can be matched to the template. Thus will match 

directly with a matched to U;V, b to W and p 
However will not match [a][B]p directly but must 
first be expanded as will not match pAq 
directly but must first be expanded as I :0. Once 
the fo rmu la matches the template, the subformula 
corresponding to each letter can immediately be determined. 
Then all the subformulae corresponding to occurrences of the 
same letter are checked for whether they can be unified. This 
may require further expansion; for example, attempting to 
unify I and W>0 involves eliminating the assignment 
modality to give 1>0, and instantiating W as 1, this latter step 
being performed by a unification algorithm. All instantiations 
necessary must be compatible with each other. 

Any formulae that fail to unify are put to one side while 
the remainder of the proof step is checked. When that is done, 
then the failed pairs are expressed as an equivalence and tested 
by a routine that checks for validity of quanti f ier- free 
Presburger arithmetic, in the hope that the formulae turn out 
to be equivalent on arithmetic grounds. (This together with 
the Rule of Convergence described in the next section is the 
only concession to domain-dependencies in the system.) 

The VERIFY phase is a satisfiability tester for modal 
propositional logic. It begins by determining what applications 
of the Rule of Necessitation are sufficient to make the proof 
go through. Boxes are then eliminated from the formula by the 
appropriate generalization of the transformation 

, which preserves satisfiability for tne intuitively 
obvious reason that acts only as a constraint on those 
worlds one might construct (in attempting to satisfy <a>?) that 
are accessible via a and satisfy P, namely that in any such 
world Q must be true. In our present implementation, we first 
eliminate all top-level propositional letters by expressing the 
formula in conjunctive normal form and applying the Davis-
Putnam algorithm for each of those letters. Then we convert 
the resulting formula involving only modalities to disjunctive 
normal form and apply the above transformation. Then the 
process is repeated on the arguments of the top-level diamond 
modalities. Though this approach can be inefficient, in practice 
on the kinds of formulae we encounter it is the most efficient 
of the methods we have tried. With all boxes eliminated, the 
satisfiability of the result no longer depends on the names of 
the diamonds; that is, are 
equally satisfiable. Indeed, satisfiability of the whole is 
preserved if <a>P is replaced by true when P is satisfiable and 
false when not. Thus we can proceed recursively, working up 
from the lowest diamonds to determine satisf iabil i ty of 
progessively larger portions of the formulae. 

Axioms for programs with loops 

If straight-line programs were all that could be proved 
correct in our system, it would find relatively little application. 
For programs with loops we have the following axioms and 
rules. 

Axioms of Intent (one for each n ) . 
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The following program was devised by Manna and Pnueli 
C163 to illustrate the efficacy of their method of proving 
termination. 

Example proof 

We may write this program in the programming language 
dynamic logic caters for thus. 



arithmetic, using quasi-Gaussian elimination.) 

The above proof is not the largest proof we have 
successfully checked with our system. A substantial part of a 
total correctness proof of the Knuth-Morris-Pratt pattern-
matching algorithm has been machine-checked, and we are in 
the process of completing this proof. This extends work on 
the partial correctness of this algorithm by Wegbreit [241 

Discussion of the proof-checker 

We have constructed a system for checking proofs of the 
kind exemplified above. In this we are following in the 
footsteps of Milner [20,21,26], who is doing for Scott's Logic 
of Computable Functions what we are doing for the above 
modal extension to first-order logic. Inasmuch as we are 
treating programs that manipulate their environments, we are 
also continuing a tradition of several years of implementing 
systems for proving and checking proofs of properties of 
programs [4,8,13,14,23,243. However the greater expressive 
power of dynamic logic compared to that of partial correctness 
assertions (the language used in almost all such systems) adds 
considerably to the interest of our system. This consideration 
actually makes Milner's system a closer relative of ours than 
the partial correctness systems, due to the greater emphasis on 
"expressions as first class citizens" in Milner's system and 
ours, resulting in a logic where programs and facts mingle more 
freely than say with Hoare's notation. The major difference 
between Milner's system and ours is the LCF treatment of 
programs (computable functions) as individuals in the underlying 
domain versus our treatment of programs as "adverbs," 
analogously to quantifiers. Another system related to ours is 
Richard Weyhrauch's [1,253 FOL (First-Order Logic) proof-
checker. A detail in which our program differs from Milner's 
and Weyhrauch's (apart from the obvious one of choice of 
logical language) is that our program makes less of an effort to 
help the user interactively than is done by either LCF or FOL, 
but rather is, at least thus far, a system in which the user 
prepares his proof exactly as though he were wr i t ing a 
program. This means that his proof exists on a file and is read 
by the proof-checker just as an interpreter reads a program 
from a file. This has permitted us to focus all of our effort on 
the proof-checker proper. 

The proof-checker is implemented on the PDP-10 computer 
at M.I.T.'s Artif icial Intelligence Laboratory. The program 
written to date has aproximately 100 LISP functions comprising 
a total of 1800 lines of code averaging 4 LISP atoms per line. 
The bulk of this code is for formula manipulation. However, a 
small amount of it is for book-keeping tasks of a relatively 
minor nature associated with keeping track of the structure of 
a proof. 

Directions for further research 

Although our immediate goals may not appear to be 
particularly ambitious or difficult to achieve, as well as not 
being obviously "Artificial Intelligence" research, we admit to 
far more ambitious and less plausible objectives on a larger 
time scale. Ultimately we see the proof-checker i tself 
becoming a component of a variety of very intelligent program-
manipulating programs. This depends on our belief that the 

ability to check proofs is a vital part of any program that 
pretends to "understand" some domain of discourse where the 
discussion is at all involved. Two applications that we would 
like to explore when the proof-checker has reached a 
satisfactory level of performance are (i) the automatic 
production of reliable software and (ii) machine-mediated 
reasoning about programs. Our plan of attack for each of these 
areas is not presently so crisp that we would feel confident 
embarking on either area forthwith, particularly the second, but 
we can nevertheless at this early stage present thoughts on 
these subjects. 

The notion of program reliability through correctness 
proofs has gained momentum in the past few years, spurred on 
most notably by the axiomatic methods of Floyd [73 and Hoare 
[113. As yet there is not a shred of hard evidence to suggest 
that this approach supplies the most economical approach to 
reliability (where the economics takes into account both the 
cost of having unreliable software and the total programming 
and maintenance cost). Indeed, it may well turn out that the 
bulk of the problems encountered today with unreliable 
software may be disposed of by a happy combination of a good 
programming language and a clean programming s ty le . 
Nevertheless, if the proof-oriented approach can be made to 
work and does not put too great a burden on the programmer 
and/or the computer, it may provide reliable software at low 
cost. We feel it is well worth continuing the experiments that 
have been going on in this area in the past few years. 
Although these experiments have not thus far demonstrated 
the value of correctness proofs, it is still too early to draw 
any negative conclusions about the method in general. 

From a longer-range viewpoint, the burden of programming 
should become progress ive ly more the computer ' s 
responsibility, requiring the computer to "understand" better 
the programs it executes. This has been the trend since the 
first assembler was used, and though the trend is perhaps not 
as pronounced as some have hoped, there is no doubt that the 
trend continues. As it does, methods of reasoning about 
programs will concomitantly become a more essential part of 
the computer's repertoire. This raises the question of the 
choice of language most appropriate to such reasoning. In view 
of the expressive power of dynamic logic we feel that it is 
worth developing the methodology of reasoning in this language 
with an eye to automating the reasoning as far as possible. A 
program like our proof-checker is precisely what is needed in 
the way of a "black box" that "accepts" a reasonably sized step 
in a discussion about a program. The sort of machine-mediated 
discussions we envisage could quite well be cast as proofs, 
albeit in the form of a dialogue. If the notion of a dialogue as a 
proof seems strange, visualize a conversation - about a program 
- punctuated with "I don't see why you need that test there" 
and "How do you guarantee that X wil l never become 
negative?" Such conversations about programs arise all the 
time, and it is clear that the questions are referring to proofs, 
probably expressed informally but proofs nonetheless. One 
might argue that proof-checking is not understanding, but we 
would insist that it is at least a component of understanding. 

As humans are taken progressively further out of the loop 
(admittedly a very long-range view) the dialogue will become 
more of i monologue. However it may still be appropriate for 
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the computer to reason about the programs it is contemplating 
using a language like dynamic logic. Thus even in this scenario 
the basic proof-checking methodology may continue to be used. 
We should add that we see nothing strange in the idea of a 
computer checking proofs that it generated itself; the best 
way to generate proofs may be to propose possibly faulty 
proofs and subject them to detailed criticism. This would 
require not only the error-detecting capability of our proposed 
proof-checker but error-correcting capabilities as well. 
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