THEOREM PROVING IN TYPE THEORY

Peter B. Andrews and Eve Longini Cohen
Mathematics Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

As one aspect of the endeavor to cre-
ate new intellectual tools for mankind,
we wish to enable computers to prove, and
to assist in the proofs of, theorems of
mathematics and (eventually) other disci-
plines which have achieved the requisite
logical precision. For this purpose, a
particularly suitable formal language is
Church's formulation [4] of type theory
with A-conversion. in this language tra-
ditional mathematical notations can be
expressed very directly, and the intui-
tive distinctions between different types
of mathematical entities (such as num-
bers, functions, and sets of functions)
are made syntactically explicit.

The program for proving theorems of
type theory which we discuss is intended
to provide experience relevant to such a
project, and was developed with the aid
of Charles E, Blair and John J.
Grefenstette.

After reducing the negation of the
sentence to be proved to a set of clauses
(basically as in the resolution method),
the program seeks an acceptable mating by
the method outlined in [3]. The unifying
substitutions are found by Huet's algo-
rithm [6], augmented by heuristics to
minimize branching of the search tree,
and a procedure for deleting nodes which
are essentially supersets of other nodes.
The semi-decision procedures which search
for a potentially acceptable mating and
for the associated unifying substitutions
operate in parallel, and interact so that
information acquired by each procedure
limits the other's search. After an
acceptable mating is found, the computer
constructs from it a more traditional
refutation, using substitution, cut
(ground resolution), and simplification
of disjunctions as rules of inference.

The program can be run in automatic
or interactive mode. The interactive sys-
tem embodies a set of logical rules which
is in a certain sense complete [1], but
the user must provide some of the substi-
tutions for predicate variables. (As
shown in [2], even completeness in this
weak sense is not trivial.) The program
in automatic mode is not logically com-
plete for type theory (though it is com-
plete when applied to sentences of first

This research was supported by NSF Grants
DCR71-01953-A04 and MCS76-06087.

Th*or*m ProvIin”?-3:

566

order logic), since no practical method
is known for automatically generating all
required substitutions for predicate var-
iables. This is the fundamental theoreti-
cal problem of automatic theorem-proving
in type theory, and no practical general
solution to it seems imminent, since sub-
stitutions for predicate variables often
express the important concepts in a
mathematical proof.

As noted in [1], for certain purposes
axioms of extensionality, descriptions,
or choice must be taken as hypotheses,
Actually, the introduction of Skolem

functions to eliminate essentially exis-
tential quantifiers involves an implicit
use of the Axiom of Choice (AC) in type

theory, so the system can prove certain
consequences of AC, such as

VY 3z [Ro Y Z] = apwm VY§
. ’ ’

. on i ffn"J
Among the theorems which can be
proved completely automatically are Can-
tor's Theorems that a set has more sub-

sets than members, and that there are
more functions on a non-unit set than
members of the set. (Thus there are un-
countably many functions of natural num-

bers.) Following [5], the Cantor Theorem
for Sets can be expressed by the sentence
~&H VS aj. [H J =S], which as-

OH ol | oil | or

serts that there is no function H from
individuals to sets which has every set S

DR RBOG0r 18, CORPYRE decides to

[AXj. ~H X{X(], which denotes the set
(x|~xeHx), and expresses the key idea in
the classical diagonal argument.
REFERENCES
[1] Peter B. Andrews, "Resolution in Type
Theory", Journal of Symbolic Logic 36
(1971), 414-432.

Peter B. Andrews, "Resolution and the
Consistency of Analysis", Notre Dame
J. of Formal Logic XV (1974), 73-84.
Peter B. Andrews, "Refutations by
Matings", IEEE Transactions on
Computers C-25 (1976), 801-807.
Alonzo Church, "A Formulation of the
Simple Theory of Types", Journal of
Symbolic Logic 5 (1940), 56-68.
Gerard P. Huet, "A Mechanization of
Type Theory", Third International
joint Conference on Artificial Intel-
ligence, Stanford, 1973, 139-146.
Gerard P. Huet, "A Unification
Algorithm for Typed A-Calculus”,
Theoretical Computer Science 1
(1975), 27-57.

D. C. Jensen and T. Pietrzykowski,
"Mechanizing a)- Order Type Theory
Through Unification", Theoretical
Computer Science 3 (1976), 123-171.

(2]

(3]

(4]

(5]

(6]

(7]

Andrews

