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Abstract 
The Locus model of search is a non-back t rack ing , 

determinist ic search technique in which a beam of near-miss 
a l ternat ives around the best path are extended in paral le l for 
g raph searching problems. In this paper we formulate image 
i n te rp re ta t i on as a g iaph searching problem and show bow 
the Locus model provides a near-opt imal minimal e f fo r t 
so lut ion. The s t ruc ture of the model is i l lust rated using a 
deta i led example. The relat ionship of the present approach 
to ear l ier at tempts at image in te rpre ta t ion are d iscussed 

Introduction 
The centra l problem in image understanding is the 

rep resen ta t ion and use of all the available sources of 
knowledge in the in terpre ta t ion and descr ip t ion of an image. 
The prob lem of representat ion is complicated by the d i ve rs i t y 
of the sources of Knowledge. Conver t ing knowledge into 
e f fec t i ve algorithms in the presence of e r ro r and uncer ta in ty 
f u r t he r complicates the issue. In this paper we present a 
specif ic f ramework for representat ion and use of knowledge 
which appears to be both suff icient and eff ic ient for a wide 
va r i e t y of image in terpre ta t ion tasks. 

The f ramework for image in te rpre ta t ion p resen ted here 
is based on the Locus model successful ly used in speed ) 
unders tand ing research (Lowerre and Reddy, 1977). The 
Locus model is a non-backt rack ing, non - i t e ra t i ve , 
determin is t ic search technique in which a beam of near-miss 
a l ternat ives around the best path are extended to de termine 
the near-opt imal descr ipt ion of the image. 

This technique is being applied to several tasks which 
together exhibi t a wide range of image source var iab i l i t y , 
sensor character is t ics, and noise character ist ics. The th ree 
tasks cu r ren t l y under explorat ion are : i n te rp re ta t ion of 
uncon t r i ved a rb i t ra ry images represent ing d i f ferent v iews of 
d o w n t o w n Pi t tsburgh (3-D wor ld) ; location of a landmark or 
ident i f ica t ion of an image from satel l i te and aerial images of 
the Washington, D.C. area (2-D wor ld) ; detect ion of changes in 
an image using symbolic techniques. The d o w n t o w n 
P i t t sburgh task involves several in terest ing subtasks: scene-
type identif ication ( indoor, outdoor, of f ice, ...), camera posit ion 
identif ication (scale, location and or ientat ion aspects of the 
image); image structure understanding ( re lat ive posi t ions of 
bui ldings); and image detail understanding (detect cars, bushes, 
people walking after the larger context of a " r o a d " is 
establ ished). 

In the fo l lowing sections we wil l out l ine the s t ruc tu re 
of the model, i l lustrate its use by a simple but deta i led 
example, and discuss the relat ionship of the present approach 
to earl ier attempts at image in te rpre ta t ion . A deta i led 
descr ip t ion of the model as applied to the image 
in te rp re ta t i on task wi l l be g iven in Rubin (1977). A more 
complete discussion of the st rengths and l imitat ions of the 

model and its relat ionship to the other approaches to 
knowledge representa t ion and search are g iven in Reddy 
(1977) . 

Image Understanding as Search 
The basic premise under ly ing the locus model is that 

the prob lem of image in terpre ta t ion can be v iewed as a 
p rob lem of search. Given a specific knowledge 
rep resen ta t ion paradigm and a specific s igna l - to -symbo l 
t rans fo rmat ion paradigm, a highly eff ic ient search can be 
used to obtain a near optimal global solut ion sat is fy ing as 
many of the constraints of the wor ld model as possiblele. 

The pr incipal requirement of the locus model is in the 
area of knowledge representat ion. Most approaches to image 
recogni t ion assume the existence (and avai labi l i ty) of a w o r l d 
model in terms of some internal symbolic descr ip t ion. The 
wo r l d model usually consists of Knowledge which def ines the 
s t ruc tu re and elat ionship among objects in all scenes that 
are in te rp re tab le by the wor ld model. By i t e ra t i ve ly 
redef in ing higher level st ructures in terms of simpler ob jec ts 
one can generate a hierarthieal network (or poss ib ly a 
re lat ional semantic network) . 

The part icular Knowledge representat ion paradigm we 
have adopted in locus is to attempt to represent all images 
that are admissible by the wor ld model in terms of a g raph 
s t ruc tu re whose nodes are Primit ive Picture Elements (PPLs). 
A PRE is chosen so that all pixels belonging to a g iven PRE 
class shaie the same proper t ies in the feature space (or 
signal space). Thus a PPL might sometimes represent an 
e n t u e object as in the cast1 of sky, r iver , or road, or 
represent a small subpart of an object such as a segment 
w i th similar textura l proper t ies. As an example, the tab le 
be low lists the PPLs that have been ident i f ied in a typ ica l 
scene of down town Pi t tsburgh. Note that the PPLs are 
chosen for their s t ructura l uniqueness as wel l as their visual 
uniqueness. 

This work was suppor ted by the Defense Advanced 
Research Projects Agency ( F 4 4 6 2 0 - 7 3 - C - 0 0 7 4 ) and is 
moni tored by the Air Force Office of Scientif ic Research. 
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Hitton Awning roof 
Hilton Awning, side 
Hilton Man roof 
Hilton Main structure wallt; 
Hilton Elevator shaft roof 
Hilton Elevator shaft wells 
Hilton Conference area roof 
Hilton Conference area walls 
Gateway 1 man roof 
Gateway 1 walls 

Pittsburgh Pror.o plajrn roof 
Pittsburgh Prosy plaza side?; 
State Office mam tower roof 
Stat*? Office main tower walls 
State Office office building roof 
Style Office office building walls 
Allegheny River 
Gateway Towers roof 
Gateway Towers walls 
Gateway Towers elevator shaft roof 
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Gateway 1 ©levator shaft walls Gateway Towers elevator shaft walls 
Gateway 2 mam roof Commonwealth Place 
Gateway 2 walls Liberty Ave Fnr.t 
Gateway ? ©levator shaft walls l iberty Ave West 
Gateway 3 main roof Rlvcl of the Allies 
Gatoway 3 walls Point Park Rood A 
Gateway 3 elevator shaft walls Point Park Road B 
Jenkins Arcade walls Point Park A 
Homos main arpa roof Point Pork 8 
Homes secondary-area walls Point Park C 
Hornos tertiary-area roof Point Park D 
Homes tertiary-area walls Liberty Ave Island A 
Homes smoke stack l ibor ty Ave Island B 
Pittsburgh Press roof Mountains to north of city 
Pittsburgh Press walls Sky 
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The above set of PPEs are pr imar i ly intended for use 
in the detail understanding sub-task of the d o w n t o w n 
P i t tsburgh imago in terpre ta t ion task. These are by no means 
uniqvin and are given here purely to i l lustrate the t ype of 
detai l that can be applied. However, at other levels of 
understanding (such as scene understanding or v iewpoint 
understanding) the numbei of PPL s needed can be 
substant ia l ly smaller, f o r example, on the scene 
understanding task, we plan to use only b PPEs: Sky, 
Mountains, Buildings, River, and Park. 

We assume that a set of PPEs are available which can 
be used to compose any image that is admissible by the 
wo r l d model, f u r t h e r we assume that most, if not all, of the 
const ra in ts about object s t ructure, size, shape, locat ion, and 
o r ien ta t ion are expressible in terms of the graph s t ruc tu re 
contain ing only the PPEs. It is obvious that this t ype of 
knowledge representahon is likely to be expensive in terms 
of spare fur all except the most t r iv ia l problems but it 
appears to be whal is needed for an eff icient solut ion. Baker 
(197b) and l o w e r r e ( 1976) show how d i f fe ien t types of 
knowledge and constraints can be combined into a single 
gt aph st i i ic I ure. 

Let us consider an example. The task is the label ing of 
a 4X2 scene We will assume that Ibis scene consists of th ree 
ob jec ts (PPrs ; Called A, B, and 0. f i gu re 1 shows the 
possible relat ionships that are allowed between A, B, C, and 
the scene edge. The arrows indicate the adjacency 
re lat ionships between the objects and the boundaries. Note 
that e i ther A or B may be adjacent to the left , top, and 
bo t tom boundaries and that only C is permi t ted next to the 
r ight boundary. 

Figure 1 Legal rolationships, between the threo PPEs and the scene edge 
Note thnt utate A in optional hpcmuc uUle B may border the top and left 
Bides 

f igure 2 lef.nl lahol assi^nmentr* of 3 PPL\, to the 8 scene points of the 4x2 
im,i(;e URinfi ndwurk constromtr. from figure 1 Note that only 9 of the 
pm.mhlo 38 p.-ithw jirr ipg;.! 

These 9 labe l ing , can be seen graphical ly in Figure 3 w inch 
shows the possible network paths that can be t r ave rsed 
whi le searching from the initial state to the final state. This 
is an unpruned recogni t ion t ree. It appears as a g raph 
because some of I lie nodes have boon combined to indicate 
the independence of the path from the prior context . The 
nodes at posit ions (?, ,''), (?, 3), and {?, 4) have states a r r i v ing 
f rom the TOP and EEET. This is the normal case for most 
PPt. s in a larger image since the average point is not along, 
the top or left side. Note that for real p ictures w i th real 
const ra in ts , the complexity of the networks and the number 
of legal label assignments is signif icantly higher. 

Si nn a I -1 o - Sym b o I . Match i ng 
Matching the symbolic elements of the ne twork to the 

signal requi res a s ignal - to-symbol t ransformat ion technique 
by means of winch one can estimate the l ikel ihood that a 
g iven PPE is present at (or around) a pixel location. This 
basical ly requires the avai labi l i ty of a pa t te rn template for 
each PPE and a distance metric for matching the unknown 
signal w i th the PPE templates. 

Figure 4 shows the values at each posi t ion in the 
sensed image for our example. Our task is to assign a label 
(A, U, or C) to each pixel. Suppose the expected value 
( templates) of PPt objects are: A - 4 , B=9, and C=3. Then the 
quest ion is which of the 9 possible in terpre ta t ions g iven in 
Figures 2 and 3 best represent the signal. 

The only relat ionships used in this network are hor izonta l and 
ver t i ca l . It is possible to employ more contextual in fo rmat ion 
such as diagonal relat ionships, but this simple ne two rk is 
adequate for our examples 

In the absence of any constraints, the opt imal 
assignment of PPEs to pixels can be obtained by select ing the 
best PPE label in each pixel neighborhood. However, g iven 
the semantic, syntact ic, s t ruc tura l , and segmental p rope r t i es 
of scenes that are acceptable wi th in the wor ld model, one 
wishes to choose, those assignments of PPEs to pixels that 
are bo th global ly optimal and consistent w i th the model. 

In our example, each point in the 4x2 scene can be 
labeled arb i t ra r i l y f rom the three PPEs, al lowing 38 possible 
in te rp re ta t ions . Given the network constra ints, this reduces 
to only 9 possible labelings, shown below in Figure 2: 
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Figure 4 Sensed datit for each position in the sample image 

For s impl ic i ty , let us assume that the distance metric is: Aij = 
1 - | I - J | / 1 0 , y ielding the fo l lowing statist ical matches for As, 
Bs, and Cs: 
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Figure 5 likelihood values of each PPE to the points in the sensod image For 
example, the point (1 , 1) has a 0.4 likplihood of being PPE B because 8 is 
normatty 9 and point (1, 1) is 3 1 - |9-3j/10 - 0 A 

The Locus Model 
Given a PPE graph structure representat ion of the 

wo r l d model and a signal-to-symbol transformation technique, 
the problem of interpret ing an unknown image can be v iewed 
as f inding the optimal path through the graph, i.e., f inding a 
sequence of PPEs which best describe each of the pixel 
neighborhoods of the unknown image, subject to constraints 
def ined by the knowledge sources represented by the graph. 
In our example, Figures 2 and 3 provide two d i f ferent 
representat ions of the constraint and i l lustrate the power of 
knowledge sources in reducing the number of al ternat ives. 

Finding the optimal path through the graph is a 
classical search problem wi th many possible al ternat ive 
search strategies (Nilsson, 1971). In this paper we propose 
and use a search strategy called Locus which appears to be 
ef fect ive in perceptual problem solving. Locus is a beam 
search heuristic in which all except a beam of near-miss 
al ternat ives around the best path are pruned from the search 
t ree at each pixel (or segmental) decision point. This contains 
the exponential g rowth of nodes in the path wi thout requir ing 
backtracking and non-deterministic search. 

The Locus search proceeds as fol lows: 1) a f o rward 
pass calculates path likelihoods and inter-node connections, 
and 2) a backtrace uses the inter-node connections to 
determine the components of the near-optimal network path. 
As the fo rward pass search progresses through the network , 
unpromising alternatives arc pruned and the interconnect ions 
along the beam are saved until the end of the network is 
reached. At this point, a backtrace of the connections is 
made to select a path through the network. Note that this 
path is expected to lie in the beam that was carved out by 
the fo rward pass. By delaying the decision making process 
unti l ail of the network nodes have been examined, Locus 
obtains the globally near-optimal path through the network . 
This is because the calculation of a node's l ikelihood hinges 
on all previous nodes that led up to it. Thus, dur ing the 
backtrace, each node decision is guaranteed against 
degenerat ion because its likelihood is supported by all nodes 
before it. This means that the selection of an object label in 
one corner of the scene can affect the labeling in the 
opposi te corner. Consideration of all of the near-miss 
alternat ives removes the need for backtracking, and thus 
removes the problem of whether to search by depth or 
breadth. 

Before we can define the search st rategy for f inding 
the optimal path we need to define the term path l ikel ihood in 
a PPE network. Path likelihood is defined incremental ly in 
terms of the nodes it t raverses and uses three pieces of 
information to calculate a l ikelihood: the statistical match of 
the signal to the symbol; the likelihoods of previous ne twork 
nodes; and the transit ion likelihoods of arr iv ing f rom those 
previous network nodes. Formally: 

where Pij : is the likelihood of being in network state i at 
posi t ion j of the sensed data; Aij is the statistical match of 
the PPE symbol represented by state i to the signal at 
posi t ion j; e)(d) is the state adjacency function which of fsets 
the current state (j) to the previous state (j+d(d)) in d i rect ion 
d; and TK, i ,d is the transit ion likelihood of t ravel ing f rom state 
k to state i in direct ion d. For image processing, the posi t ion 
(j) is an (x, y) vector. The maximum k in the above equat ion 
is saved as the best previous state and identif ies the best 
path to take during the backtrace. Note that the l ikel ihood 
values are not needed during the backtrace: they accumulate 
on the fo rward pass only. The back pointers are calculated 
on the fo rward pass using the likelihood information, so they 
ref lect all node transitions to that point. The backtrace uses 
only the best previous node for each state as it quickly steps 
through the network and selects a path. No search is 
per fo rmed in this pass: it is pure look-up. 

Going back to our example, Figure 6 shows the states 
that were examined in the forward pass. Note that this is 
simply a pruned version of the recognit ion t ree in Figure 3. 
The numbers above each node arc the likelihoods calculated 
for that point on the forward pass. The f irst number is the 
forward pass likelihood winch is calculated for each node at a 
given posit ion. The second number is the normalized f o rwa rd 
pass l ikelihood which is calculated after each node at the 
posi t ion has been examined. The normalization is necessary 
to keep the likelihoods from degenerating as the network is 
t raversed (discussed below). Note that nodes are pruned 
f rom the beam when their un-normalized likelihood drops to 
0.5 or below. 

Let us look at the likelihood calculations for the point 
(2, 3) in Figure 6 (the two squares in the th i rd column). The 
bottom point is a C, and it is on the path which selects 
labelings number 6 through 9 (see Figure 2). There are two 
paths from the top and left that contr ibute to the l ikel ihood 
calculations. Tor simplicity, the transit ion likelihoods in this 
example will always be 1.0 when legal. Thus, if a t ransi t ion 
appears in Figure 3, it's likelihood is 1.0. Looking at the left 
context, the point at (?, 2) has a normalized l ikelihood value 
of 1.0. Since this is the only node in that direct ion, it is the 
maximum node in that direction (see equation 1) and so the 
l ikel ihood from the left is 1.0. From the top, the l ikel ihood of 
being at point ( 1 , 3) is also 1.0. Taking the average gives 1.0 
and mult iplying this by 0.5 (the statistical from Figure 5) 
match yields an un-normalized likelihood of 0.5 for this state. 

The other node at position (2, 3) is a B on the path 
which includes labelings 1 through 5. The statistical match of 
that point to PPE B is 0.6. Since there are two prev ious 
nodes to the left, calculation of the likelihood f rom the left 
involves f inding the best previous node in that d i rect ion. In 
this case, the B in posit ion (2, 2) is stronger wi th a l ikel ihood 
of 1.0. Since the likelihood from the top is 0.75, the average 
l ikel ihood for that state is 0.87. When mult ipl ied by the 
statist ical match for that PPE, the un-normalized l ikel ihood of 
that node becomes 0.79. 

Once all node likelihoods are calculated, they are 
normalized so that the largest likelihood becomes 1 and the 
others increase proport ionately. For this reason, the top 
node expands to 1.0. The PPE for C at posit ion (2, 3) is 
pruned because it's un-normalized likelihood is 0.5. Note that 
the back-pointers which are saved here tell which previous 
node is the best. The back-pointer for the top node at point 
(2, 3) selects the B at point ( 1 , 3 ) from the top and the B at 
posi t ion (2, 2) from the left. The selection of the node to the 
left is done because that node had the greatest prev ious 
node l ikelihood. 
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The calculation of node likelihoods proceeds in a raster and Fu, 1976). The approach presented in this paper 
manner. This means that the order of calculation is (1,1), pr incipal ly di f fers from the above in how the ne twork 
(J,?), (1,3), (1,4), (2,1), (2,2), (? 3), (2,4). When all of the representat ion is to he used. It rejects the notion that image 
likelihoods have been calculated on the fo rward pass, the 
backtrace makes a quick pass of the back-pointers to 
determine the global path. This backtrace proceeds in a 
reverse raster manner and follows the back-pointers left by 
the fo rward pass. Rc?fering to Figure 6 again, you can see 
that the 0 at point (2, 4) is the first point chosen for the 
global path. From there, two points are suggested to the top 
and lef t : the C at ( 1 , 4) and the B at (2, 3). The next point in 
the backtrace is the B at (2, 3) which was indicated f rom the 
C to its r ight. It indicates the B in ( 1 , 3) and the B in (2, 2). 
The backtrace looks very simple but occasionally runs into 
snags. In this example, there is a conflict of back-pointers at 
posit ion ( 1 , 3). The state to its right is a C and indicates that 
( 1 , 3) should be a C. The state below it is a B and indicates 
that ( 1 , 3 ) should be a 13. Although conflict resolut ion is ve ry 
diff icult and not fully solved, the solution here is obvious. 
The network does not allow a C at ( 1 , 3) to exist above a D 
at (2, 3) and the B has already been chosen. Therefore the B 
al (1, 3) is chosen because it docs not contradict any network 
constraints. Once the B at ( 1 , 3) is selected, the rest of the 
backtrace proceeds smoothly and path 4 is identi f ied as the 
correct labeling. 

This example shows an interesting proper ty of the 
Locus search: error correct ing without backtracking. Notice 
that the strongest path, from the start, is the one which leads 
to labeling 7. This is based on the weak assumption that the 
point ( 1 , 3) is a C. In t ruth, it could be any PPE, but the 
ne twork rules out A. Of the remaining choices, C is 
stat ist ical ly better than B, so the forward pass prefers C. On 
a global basis, however, B is better because path 4 is more 
global ly consistent wi th the sensed data. This is because the 
point (2, 3) is strongly favored to he a B over a C, and it is 
not unti l the global pat!) is assembled from the back-pointers 
that the mistake is corrected. If this data were run through a 
backtracking system which employed a best- f i rs t search, the 
incorrect path would be selected because of the search 
technique's inabil i ty to bring global context to bear on local 
labeling. If some way of detecting the error were found, the 
system would have to back up before continuing. In this 
example, Locus provides a better solution in the same amount 
of time while in other cases, we can reduce the search time 
without sacrif icing accuracy. 

recognit ion is best v iewed as a problem in parsing. Given the 
er ro r and uncertainty associated with the decisions, the 
problem tends to be not one of deciding whether a g iven 
pat tern is parsahl'e but rather one of search, i.e., deciding 
which of the many acceptable alternal ivc paths represents 
the near-opt imal interpretat ion. 

The view that the problem of image recognit ion is one 
of constraint satisfying search has been gaining increasing 
acceptance (Waltz, 1975; Tenenbaum and Barrow, 1976; 
Rosenfeld, Hummel and Zucker, 1976). This paper also 
subscribes to this viewpoint and differs mainly from the other 
e f for ts in the representat ion of constraints and the method of 
search. 

The realization that one needs to introduce some 
measure of the degree of uncertainty into the in terpre ta t ion 
process is ref lected in the papers by Fischler and Elschlager 
(1973), Feldman and Yakimovsky (1975), and the probabi l ist ic 
relaxat ion methods under development at SRI and Maryland. 
The method proposed here is able to handle search in the 
presence of er ror and uncertainty in a natural and 
s t ra igh t fo rward manner provided all knowledge and 
constraints are represented in terms of a PPE graph 
s t ructure. 

Constraint satisfying search in the presence of 
uncerta inty is also a central problem in other areas of A l , in 
part icular in speech understanding systems research. Several 
techniques developed for use in the speech area such as 
representat ion of knowledge sources as cooperat ing 
independent processes (Roddy et al, 1973; Lesser et al., 
1975; Erman et al., 1977), island dr iven search (Woods et al., 
1977; Erman et al., 1977), and network representat ions of 
knowledge (Baker, 1975; l .owerre, 1976) also appear to be 
relevant to other knowledge based systems research, 
including vision. The Locus model presented here was f i rst 
developed for use in the Harpy connected speech recogni t ion 
system. Though the basic ideas remain the same, the model 
had to be revised substantially to make it useful in image 
recognit ion. 

The best- f i rs t search given by the A* algori thm 
(Nilsson, 1971) and the breadth-f i rst graph search of the 
dynamic programming algorithms (Levine, 1977; Bellman, 
1962) provide alternative approaches to optimal graph search 
problems. The beam search technique of the Locus model 
provides a minimal effort near-optimal solution and appears 
to be ef fect ive in cases where the evaluation funct ion is a 
funct ion of an external signal source and where a large 
number of decisions arc related to each other in that they 
are all attempting to provide alternative in terpretat ions of 
the same signal segment. 

Occasionally, the heuristics associated w i th the beam 
search lead to the elimination of the optimal path. This need 
not be cause for major concern because a good path wi l l 
always be chosen. Since the match likelihoods are less than 
accurate, attempting to f ind the optimal path at great cost 
and e f fo r t leads to l itt le or no improvement in per formance. 

The success of beam searching is highly dependent on 
the choice of the "near miss" threshold that defines the w id th 
of the beam. If the threshold is too small, the resu l t ing 
narrow beam of alternatives could lead to the prun ing of the 
correct path. On the other hand, many unproduct ive paths 
wi l l be examined if the threshold is too large. In our present 

d i r e c t e d p a t t e r n recognit ion (Narasimhan, 1966; Clowes, 1969; system, the threshold is chosen large enough so as to maKe it 

Rubin 

Discussion 
The model presented in this paper has been used to 

in te rpre t OhlanderV, city scene, demonstrating the init ial 
val id i ty and usefulness of the model. We plan to use the 
model to in terpret arbi t rary views of downtown Pi t tsburgh (a 
3-D world) , and dif ferent satellite views of the Washington, 
D.C. area (a 2-D world). Representation of the knowledge 
about 3-D and 2-D wor ld models in terms PPE graph 
s t ruc ture requires the development of several preprocessing 
programs (the PPE graph for Ohlander's city scene was 
generated manually). In this section we will discuss the 
relat ionship of this model to other approaches in image 
recogni t ion research, and our present views of the st rengths 
and l imitations of this approach. 

The graph structure representat ion proposed here is a 
natural ou tg rowth of work in languages (Aho and Ullman, 
197?), graph representations (Harlow, 1972), and syntax 
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immune to local e r rors in the assignment of l ikel ihood values 
to symbols horn the signal. 

A significant featu ie of the Locus model of search is its 
l inear i ty . Because Locus prunes all but a nar row beam of 
a l ternat ives, its search time is linear wi th respect to the size 
of the input signal and is essential ly independent of the 
symbol space size. Thus, Locus searching contro ls the 
combinator ia l explosion that occurs in most graph searching 
techniques. Note, however, that the size of the beam 
expands and contracts during the search as the connect iv i ty 
be tween symbols in the graph increases and w i th the degree 
of uncer ta in ty of the decisions. 

The order of search in Locus is a subt le issue that 
appears to be a problem but upon closer inspect ion turns out 
to be unimportant. When using Locus in speech 
understanding, there is one independent dimension of t ime 
which can be used to order the search. In image processing 
w i t h static pictures, there are two dimensions, so a raster 
scan is used. This might appear to cause cont inui ty problems 
especial ly at the end of a scan line. However, Locus requ i res 
only the local context for a point and it propagates the global 
context regardless of search or dor. Thus, any search pa t t e rn 
can be used as long as it is reversed on the backtrace. Note 
also that the raster scan has the advantage of al lowing the 
use of context for hor izontal ly, ver t ica l ly , and diagonal ly 
adjacent states. 

A main concern wi th the f inite state networks is that 
not all relat ional constraints are easily representab le w i th in 
that f ramework. We have not found this to be a prob lem in 
the 3-1) and ? D wor lds we have considered so far, a l though 
the representat ions tend to be expensive in terms of the 
space (memory) requi red. We expect to use a post -pass to 
apply constraints that are not easily incorporated into the 
ne twork . 

Knowledge such as shape, size, or ientat ion, and locat ion 
of ob jects is d i f ferent from spectral p roper t ies of ob jec ts 
such as color and texture information. This t ype of 
knowledge cannot be included di rect ly as part of the s igna l -
to -symbo l match. Such supra-segmental knowledge can 
however be incorporated into the ne twork in severa l 
d i f fe ren t ways (Rubin, 1977). 

The example given in this paper shows how the Locus 
model can be used in the in terpreta t ion of the image on a 
pixel by pixel basis. The technique is equally useful w i th 
p re -segmented data. In fact, segmentation improves accuracy 
and leads to substantial speedup in matching and search. 
While ex t ra segments do not cause any prob lem, missing 
segments cannot be accomodated wi th in the present scheme 
wi thout addi t ional 'computat ional e f for t . This is because the 
graph representa t ion permits sel f - t ransi t ions in the PPE 
ne twork but does not (at present) permit skipping PPE nodes. 

Conclusion 
This paper provides a f ramework for knowledge 

representa t ion and search for image recogni t ion tasks, 
leading to an easily implementable total systems f ramework 
w i th in which one can explore the re lat ive merits of d i f fe ren t 
t ypes of knowledge. One sti l l has to decide what knowledge 
is available, how to acquire and def ine it, how to select an 
adequate set of pr imi t ive picture elements (PPE) for a g iven 
task, and how to match symbols (PPEs) to the signal. 
However, each of these subtasks look much more manageable 
to us than the original image in te rpre ta t ion task. 
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Appondix: .A Roal Example 
This appendix shows the Locus model as it has actual ly 

been programmed at Carnegie-Mel lon Univers i ty . The 
p rogram which uses Locus is called ARGOS and this example 
is direct output from the system. The scene that we are 
using is the downtown Pi t tsburgh image shown in Figure 7: 
the most complex image used by Ohlandcr (1975). The image 
was broken down into 15 PPEs shown below: 

Figure 8 shows the labelings that were generated for the 
p ic tu re in Figure 7. the let ters correspond to the PPE le t te rs 
in the above list. Although this is not a per fect label ing by 
any means, it is an improvement over un-guided label ing and 
shows that Locus is ef fect ive for image in te rpre ta t ion . 
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Figuro 6 Path of Locus search on reconmtion tree shown in Figure 3 
Numbers separated by a slash are the un-normnlized and normalized nodo 
likelihoods, respectively The arrown indicate pathr. that were saved for global 
path re-construction and the dotted lines indicate alternative paths that were 
examined in the forward pess but not selected for the final recognition tree 
because of low likelihood values See text for more explanation. 

Figure 3. A recognition tree representation of the legal label assignments 
shown in Figuro 2 Each nodo in the graph represents one of the contextual 
situations possible for that pixel The graph is arranged in columns 
corresponding to the columns of the original image The shape of the node 
indicates the row number (see key at the top) Arrows indicate the possible 
transitions into and out of each state The hexagonal nodes are the Initial and 
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INTRODUCTION 
We are i nves t i ga t i ng the descr ip t ion 

of complex three-dimensional objects in 
terms of three-dimensional p r im i t i ves and 
composition re la t i ons between them. Our 
input is a descr ip t ion of an a r b i t r a r y 
three-space in the form of gray- leve ls 
assigned to the points of a cubic l a t t i c e . 
Sequential tomograms are one source of 
input data, as are s e r i a l l i g h t and 

* e lect ron micrographs. 
Our approach is motivated by the 

observation tha t a p r im i t i ve can give r i se 
to only a small number of region types on 
a plane which cuts i t . By i nve r t i ng the 
process we can reason from a region found 
on a s l i ce back to the p r im i t i ves from 
which it might have been cu t . When the 
s l i ced object is composed from several 
p r i m i t i v e s , the regions cut by planes w i l l 
r e f l e c t the j o i n t s and containment 
re la t i ons between the p r im i t i ves invo lved. 

AN EXAMPLE 
Let us b r i e f l y consider r i g h t 

c i r c u l a r cy l i nde rs , which are s l i ced i n t o 
c i r c l e s , e l l i pses (possibly t runcated) , 
and rectangles. An e l l i p s e suggests two 
possible cy l i nders . The next step in 
completing the descr ip t ion of space w i l l 
be to determine which of the suggested 
cy l inders is present (both may be!) and 
the length of the cy l inder ax i s . This 
would involve looking at another s l i ce 
some moderate distance away from the 
current one. 

DESIGN CONSIDERATIONS 
We are construct ing ( i n LISP and 

FORTRAN) a processor w i th three usefu l 
features: 

CD Pr imi t i ves can be added or 
changed by a l t e r i n g the func t ion which 
maps regions i n t o possible p r i m i t i v e s . 
Thus, to add "b locks" to the system, we 
would add the ru les which t e l l us, f o r 
instance, tha t a t r i angu la r region is cut 
from a corner of a b lock. 

(2) The strategy fo r obta in ing a 
complete descr ip t ion of space may be 
systemat ica l ly va r ied . What should the 
processor do when it discovers two 
d i s j o i n t regions on a s ingle s l ice? Should 
i t pursue the hypothesised p r im i t i ves 
sequent ia l ly or in pa ra l l e l? Furthermore, 
we would l i k e to incorporate a mechanism 
which would mimic human a b i l i t i e s to 
perceive a Gesta l t . 

(3) The system should be 
i n t e r r u p t i b l e so tha t at any moment we may 
stop the processor and ask questions l i k e : 

What do you know at t h i s point? What are 
you going to do next? What w i l l i t t e l l 
you? 

Our i n te res t in cogni t ive issues l i k e 
(2) and (3) has led us to r e j e c t h o l i s t i c 
approaches (such as the symmetric axis 
transform) in favor of a more h e u r i s t i c 
approach. 

INFORMATION FLOW. 
If the system hypothesises the 

existence of a cy l i nde r , then it may 
request a s l i ce somewhere out along the 
axis in order to binary-search fo r the 
length of the ax i s . This request may be 
performed immediately or it may be 
enqueued w i th other requests, depending on 
the search strategy selected. In e i the r 
case, the outcome of the request must be 
returned to the request ing hypothesis f o r 
eva luat ion. We store a deductive pat tern 
( i f - t hen -e l se ) on the p r o p e r t y - l i s t of the 
requestor so tha t the deduction may be 
performed as soon as the requested 
informat ion becomes ava i l ab le . 

Some s l i ces are a p r i o r i more 
informat ive than others . The most 
reasonable i n i t i a l s l i ce to examine is one 
through the center of space. S i m i l a r l y , 
examining one s l i ce devalues the s l i ces 
immediately adjacent to i t . 

A region may a f fec t dormant 
hypotheses (those wa i t ing fo r unanswered 
requests) . Thus, regions must be able to 
index i n to the set of current hypotheses 
and ac t iva te those p o t e n t i a l l y a f fec ted . 
A hypothesis may be both dormant and 
ac t i ve ! 

CRITERIA FOR EVALUATING PERFORMANCE 
We have been unable to f i n d evidence 

of experiments i n t o human competence and 
performance on the task our system w i l l 
handle. Our system should be able to 
mimic human behavior in i n t e r p r e t i n g 
s l i ces of three-space. Fur ther , our model 
of hypothesis formation should account f o r 
i n t e r p o l a t i on given two s l i c e s , 
moderately separated, what is happening in 
the space between them? 

CONCLSION 
We have ra ised here some questions 

appropriate to the task of developing 
descr ip t ions of three-spaces from s l i c e s . 
We have set f o r t h design considerat ions 
fo r a processor cu r ren t l y under 
development. Further answers and de ta i l s 
w i l l be presented at the Conference. 
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A "RECOGNITION CONE" PERCEPTUAL SYSTEM: 
BRIEF TEST RESULTS* 

Leonard Uhr, Robert Douglass, 
U n i v e r s i t y o f Wisconsin 

This paper presents some p re l im ina r y t e s t r e ­
s u l t s of a " r e c o g n i t i o n cone" v i s i o n system. (See 
1-3 f o r f u l l e r d e s c r i p t i o n s ) . A r e c o g n i t i o n cone 
uses a p a r a l l e l - s e r i a l layered a r c h i t e c t u r e t h a t 
success ive ly reduces the image as each l aye r 
processes i t . EAch l aye r conta ins a set of 
p r o b a b i l i s t i c " t rans fo rms" t h a t combine d iverse 
sources of con tex tua l l y r e l a t e d i n f o r m a t i o n . Each 
t rans form looks a t s p e c i f i e d reg ions o f the ar ray 
and, i f the combined weights o f i n fo rmat ion found 
exceed the t rans fo rm 's t h r e s h o l d , then the t r a n s ­
form imp l ies a set of names and t ransforms to 
app ly . 

A number of v a r i a n t systems have been coded 
in Snobol, to explore percept ion o f b inocu la r 
images, motion over t i m e , and l ea rn i ng by d i s ­
covery and i n d u c t i o n . The long- term goal is to 
develop a r e l a t i v e l y genera l model o f l i v i n g 
perceptua l systems, one t ha t perceives a v a r i e t y 
of d i f f e r e n t k inds of scenes. The present r e s u l t s 
were obta ined w i t h a Simula-For t ran program tha t 
made poss ib le t e s t s w i t h la rge inpu t a r rays . 

Test Resul ts (see 3) 

A 10- layer cone was used to process a 600 by 
800 co lo r TV p i c t u r e (a house screened by t r e e s , 
see 4 f o r the o r i g i n a l ) . 

Transforms were i t e r a t e d throughout each 
l a y e r , to assess the f o l l o w i n g i n f o r m a t i o n : Layer 
1 : averages; 2 : hue, s a t u r a t i o n , i n t e n s i t y ; 
3: g r a d i e n t s ; 4: shor t edges, t e x t u r e ; 5: long 
edges, compounds; 6: h i g h e r - l e v e l compounds; 7: 
s t i l l - h i g h e r - l e v e l compounds; 8-10 averages. 

Figures 1-2 i n d i c a t e some of the d e s c r i p t i v e 
l abe l s achieved. 

Figure 1 shows the s i ng le most h i gh l y im­
p l i e d t h i n g output to each c e l l by Layer 6 (F = 
Window, G = Grass, H = House, S = Sky, T = Tree, 
W = W a l l ) . 

*Th is research was p a r t i a l l y supported by the 
Na t i ona l Science Foundation (grant MCS76-07333) 
and the U n i v e r s i t y of Wisconsin Graduate School. 

References 

l . U h r , L . , Layered ' r e c o g n i t i o n cone' networks 
t h a t preprocess, c l a s s i f y and descr ibe . IEEE 
Trans. Computers, 1972, 2 1 , pp. 758-768. 
2. Uhr, L . , A model of form percept ion and scene 
d e s c r i p t i o n . Comp. S c i . Dept. Tech. Rept. 2 3 1 , 
Univ. of Wisconsin 1974. 
3 . U h r , L . , and R. Douglass, A p a r a l l e l - s e r i a l 
" r e c o g n i t i o n cone" system f o r p e r c e p t i o n ; SOME 
t e s t r e s u l t s . Comp. Sc i .Dept . Tech. Rept. 292 , 
U n i v e r s i t y of Wisconsin, 1977. 
4. Ohlander, R. B . , Analys is of Na tu ra l Scenes, 
Unpubl. PH.D. D i s s . , Carnegie-Mel lon U n i v . , 
P i t t s b u r g h , 1975. 

Discussion 

This k ind of system can be evaluated only by 
f a r more extens ive t e s t s . But the use of many 
c o n f i g u r a t i o n a l t rans fo rms , each s e n s i t i v e to 
c o n t e x t u a l l y i n t e r r e l a t e d information,seems 
appropr ia te f o r hand l ing a v a r i e t y o f u n a n t i c i ­
pated types of scenes. The use of weights means 
t ha t pa r t s can be gapped, d i s t o r t e d or m iss ing . 
The l a y e r i n g g ives speed and e f f i c i e n c y . I t 
a l lows h i e ra r ch i es o f t ransforms to be b u i l t 
from common s impler t rans fo rms , as when edges 
b u i l d to angles to windows to wa l l s to houses. 

These t ransforms can e a s i l y be added, r e ­
p laced , rewe igh ted , ad jus ted and lea rned , w i thout 
h u r t i n g the l a r g e r program. So i t should be 
poss ib le to make con t inu ing improvements. The 
t ransforms are remin iscent of synapsing neurons, 
and the s e r i a l l a y e r i n g of many p a r a l l e l processes 
r e f l e c t s the o v e r a l l s t r u c t u r e o f l i v i n g v i s u a l 
systems. 

sub-set of the t ransforms in l aye rs 3 and 4 was 
used to descr ibe 20 by 48 l i n e drawings of p lace -
s e t t i n g s o f f o r k s , k n i v e s , spoons and p l a t e s , 
where ob jec ts sometimes touched and over lapped. 
The system was a lso used to recognize l e t t e r s and 
symbols t h a t were severe ly d i s t o r t ed ,by r o t a t i o n s , 
rubber sheet s t r e t c h i n g s and l a rge gaps. 

F igure 2 shows those c e l l s i n t o which House 
was most h i gh l y imp l ied by Layer 7. Note how 
h i g h e r - l e v e l compounds have turned many of the 


