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Abstract
The Locus model of search is a non-backtracking,
deterministic search technique in which a beam of near-miss
alternatives around the best path are extended in parallel for
graph searching problems. In this paper we formulate image
interpretation as a giaph searching problem and show bow

the Locus model provides a near-optimal minimal effort
solution. The structure of the model is illustrated using a
detailed example. The relationship of the present approach

to earlier attempts at image interpretation are discussed

Introduction

The central problem in image understanding is the
representation and use of all the available sources of
knowledge in the interpretation and description of an image.
The problem of representation is complicated by the diversity
of the sources of Knowledge. Converting knowledge into
effective algorithms in the presence of error and uncertainty
further complicates the issue. In this paper we present a
specific framework for representation and use of knowledge
which appears to be both sufficient and efficient for a wide
variety of image interpretation tasks.

The framework for image interpretation presented here
is based on the Locus model successfully used in speed)
understanding research (Lowerre and Reddy, 1977). The
Locus model is a non-backtracking, non-iterative,
deterministic search technique in which a beam of near-miss
alternatives around the best path are extended to determine
the near-optimal description of the image.

This technique is being applied to several tasks which
together exhibit a wide range of image source variability,
sensor characteristics, and noise characteristics. The three
tasks currently under exploration are: interpretation of
uncontrived arbitrary images representing different views of
downtown Pittsburgh (3-D world); location of a landmark or
identification of an image from satellite and aerial images of
the Washington, D.C. area (2-D world); detection of changes in
an image using symbolic techniques. The downtown
Pittsburgh task involves several interesting subtasks: scene-
type identification (indoor, outdoor, office, ...), camera position
identification (scale, location and orientation aspects of the

image); image structure understanding (relative positions of
buildings); and image detail understanding (detect cars, bushes,
people walking after the larger context of a "road" is

established).

In the following sections we will outline the structure
of the model, illustrate its use by a simple but detailed
example, and discuss the relationship of the present approach
to earlier attempts at image interpretation. A detailed
description of the model as applied to the image
interpretation task will be given in Rubin (1977). A more
complete discussion of the strengths and limitations of the
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model and its relationship to the other approaches to
knowledge representation and search are given in Reddy
(1977).
Image Understanding as Search
The basic premise underlying the locus model is that

the problem of
problem of search.

image interpretation can be viewed as a

Given a specific knowledge
representation paradigm and a specific signal-to-symbol
transformation paradigm, a highly efficient search can be
used to obtain a near optimal global solution satisfying as
many of the constraints of the world model as possiblele.

The principal requirement of the locus model is in the
area of knowledge representation. Most approaches to image
recognition assume the existence (and availability) of a world
model in terms of some internal symbolic description. The
world model usually consists of Knowledge which defines the
structure and elationship among objects in all scenes that
are interpretable by the world model. By iteratively
redefining higher level structures in terms of simpler objects
one can generate a hierarthieal network (or possibly a
relational semantic network).

The particular Knowledge representation paradigm we
have adopted in locus is to attempt to represent all images
that are admissible by the world model in terms of a graph
structure whose nodes are Primitive Picture Elements (PPLs).
A PRE is chosen so that all pixels belonging to a given PRE
class shaie the same properties in the feature space (or

signal space). Thus a PPL might sometimes represent an
entue object as in the cast' of sky, river, or road, or
represent a small subpart of an object such as a segment
with similar textural properties. As an example, the table
below lists the PPLs that have been identified in a typical
scene of downtown Pittsburgh. Note that the PPLs are
chosen for their structural uniqueness as well as their visual
uniqueness.
Hitton Awning roof Pittsburgh Pror.o plajrn roof

Hilton
Hilton

Awning, side
Man roof

Pittsburgh Prosy plaza side?;
State Office mam tower roof

Hilton Main structure wallt; Stat*? Office main tower walls
Hilton Elevator shaft roof State Office office building roof
Hilton Elevator shaft wells Style Office office building walls

Hilton Conference area roof Allegheny River

Hilton Conference area walls Gateway Towers roof

Gateway 1 man roof Gateway Towers walls

Gateway 1 walls Gateway Towers elevator shaft roof
Gateway 1 ©levator shaft walls Gateway Towers elevator shaft walls
Gateway 2 mam roof Commonwealth Place

Gateway 2 walls Liberty Ave Fnr.t

Gateway ? Olevator shaft walls liberty Ave West

Gateway 3 main roof Rivel of the Allies

Gatoway 3 walls Point Park Rood A

Gateway 3 elevator shaft walls Point Park Road B

Jenkins Arcade walls Point Park A

Homos main arpa roof Point Pork 8

Homes secondary-area walls Point Park C

Hornos tertiary-area roof Point Park D

Homes tertiary-area walls
Homes smoke stack
Pittsburgh Press roof
Pittsburgh Press walls
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The above set of PPEs are primarily intended for use

in the detail understanding sub-task of the downtown
Pittsburgh imago interpretation task. These are by no means
uniqvin and are given here purely to illustrate the type of
detail that can be applied. However, at other levels of
understanding (such as scene understanding or viewpoint
understanding) the numbei of PPLs needed ~can be
substantially smaller, for example, on the scene
understanding task, we plan to use only b PPEs: Sky,

Mountains, Buildings, River, and Park.

We assume that a set of PPEs are available which can
be used to compose any image that is admissible by the
world model, further we assume that most, if not all, of the
constraints about object structure, size, shape, location, and
orientation are expressible in terms of the graph structure
containing only the PPEs. It is obvious that this type of
knowledge representahon is likely to be expensive in terms
of spare fur all except the most trivial problems but it
appears to be whal is needed for an efficient solution. Baker
(197b) and lowerre ( 1976) show how diffeient types of
knowledge and constraints can be combined into a single
gtaphstiiiclure.

Let us consider an example. The task is the labeling of
a 4X2 scene We will assume that Ibis scene consists of three
objects (PPrs; Called A, B, and 0. figure 1 shows the
possible relationships that are allowed between A, B, C, and
the scene edge. The arrows indicate the adjacency
relationships between the objects and the boundaries. Note
that either A or B may be adjacent to the left, top, and
bottom boundaries and that only C is permitted next to the
right boundary.

o

Figure 1 rolationships, between the threo PPEs and the scene edge
Note thnt utate A in optional hpcmuc uUle B may border the top and left
Bides

Legal

The only relationships used in this network are horizontal and
vertical. It is possible to employ more contextual information
such as diagonal relationships, but this simple network is
adequate for our examples

In the absence of any constraints, the optimal
assignment of PPEs to pixels can be obtained by selecting the
best PPE label in each pixel neighborhood. However, given
the semantic, syntactic, structural, and segmental properties
of scenes that are acceptable within the world model, one
wishes to choose, those assignments of PPEs to pixels that
are both globally optimal and consistent with the model.

In our example, each point in the 4x2 scene can be
labeled arbitrarily from the three PPEs, allowing 38 possible
interpretations. Given the network constraints, this reduces
to only 9 possible labelings, shown below in Figure 2:

V?ston-2
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figure 2 lef.nl lahol assi*nmentr* of 3 PPL\, to the 8 scene points of the 4x2
im,ie URIinfi ndwurk constromtr. Note that only 9 of the
pm.mhlo 3% p-thw jirr ipg;.!

from figure 1

These 9 labeling, can be seen graphically in Figure 3 winch
shows the possible network paths that can be traversed
while searching from the initial state to the final state. This

is an unpruned recognition tree. It appears as a graph
because some of Ilie nodes have boon combined to indicate
the independence of the path from the prior context. The

nodes at positions (?, ,"), (?, 3), and {?, 4) have states arriving
from the TOP and EEET. This is the normal case for most
PPt. s in a larger image since the average point is not along,
the top or left side. Note that for real pictures with real
constraints, the complexity of the networks and the number
of legal label assignments is significantly higher.

Sinnal-10-Symbol.Matching

Matching the symbolic elements of the network to the
signal requires a signal-to-symbol transformation technique
by means of winch one can estimate the likelihood that a
given PPE is present at (or around) a pixel location. This
basically requires the availability of a pattern template for
each PPE and a distance metric for matching the unknown
signal with the PPE templates.

Figure 4 shows the values at
sensed image for our example. Our task is to assign a label
(A, U, or C) to each pixel. Suppose the expected value
(templates) of PPt objects are: A-4, B=9, and C=3. Then the
question is which of the 9 possible interpretations given in
Figures 2 and 3 best represent the signal.

each position in the

H 2 4 )
| 353[54
2 8Js|8 5

Figure 4 Sensed datit for each position in the sample image

For simplicity, let us assume that the distance metric is: Aij =

1 - [I-J]/10, yielding the following statistical matches for As,
Bs, and Cs:
: Rubin
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0910609,1.0 0410906105
0608106709 0907038086
1.0 (05| 0808
0510.7]05)0.8

Figure 5 likelihood values of each PPE to the points in the sensod image For
example, the point (1, 1) has a 0.4 likplihood of being PPE B because 8 is
normatty 9 and point (1, 1)is 3 1 - |9-3j/10 - 0A

The Locus Model

Given a PPE graph structure representation of the
world model and a signal-to-symbol transformation technique,
the problem of interpreting an unknown image can be viewed
as finding the optimal path through the graph, ie., finding a
sequence of PPEs which best describe each of the pixel
neighborhoods of the unknown image, subject to constraints
defined by the knowledge sources represented by the graph.
In our example, Figures 2 and 3 provide two different
representations of the constraint and illustrate the power of
knowledge sources in reducing the number of alternatives.

Finding the optimal path through the graph is a
classical search problem with many possible alternative
search strategies (Nilsson, 1971). In this paper we propose
and use a search strategy called Locus which appears to be
effective in perceptual problem solving. Locus is a beam
search heuristic in which all except a beam of near-miss
alternatives around the best path are pruned from the search
tree at each pixel (or segmental) decision point. This contains
the exponential growth of nodes in the path without requiring
backtracking and non-deterministic search.

The Locus search proceeds as follows:
pass calculates path likelihoods and inter-node connections,
and 2) a backtrace uses the inter-node connections to
determine the components of the near-optimal network path.
As the forward pass search progresses through the network,
unpromising alternatives arc pruned and the interconnections
along the beam are saved until the end of the network is
reached. At this point, a backtrace of the connections is
made to select a path through the network. Note that this
path is expected to lie in the beam that was carved out by
the forward pass. By delaying the decision making process
until ail of the network nodes have been examined, Locus
obtains the globally near-optimal path through the network.
This is because the calculation of a node's likelihood hinges
on all previous nodes that led up to it. Thus, during the
backtrace, each node decision is guaranteed against
degeneration because its likelihood is supported by all nodes
before it. This means that the selection of an object label in
one corner of the scene can affect the labeling in the
opposite corner. Consideration of all of the near-miss
alternatives removes the need for backtracking, and thus
removes the problem of whether to search by depth or
breadth.

Before we can define the search strategy for finding
the optimal path we need to define the term path likelihood in
a PPE network. Path likelihood is defined incrementally in
terms of the nodes it traverses and uses three pieces of
information to calculate a likelihood: the statistical match of
the signal to the symbol; the likelihoods of previous network

1) a forward

nodes; and the transition likelihoods of arriving from those
previous network nodes. Formally:
Pi.j - Ai.j X AVEF;AGE [Ma:x (Pk,j A} X Tk,i,d)] {1}
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where Pij : is the likelihood of being in network state i at
position j of the sensed data; Aij is the statistical match of
the PPE symbol represented by state i to the signal at
position j; e)d) is the state adjacency function which offsets
the current state (j) to the previous state (j+d(d)) in direction
d; and Tk,iq is the transition likelihood of traveling from state
k to state i in direction d. For image processing, the position
(j) is an (x, y) vector. The maximum k in the above equation
is saved as the best previous state and identifies the best
path to take during the backtrace. Note that the likelihood
values are not needed during the backtrace: they accumulate
on the forward pass only. The back pointers are calculated
on the forward pass using the likelihood information, so they
reflect all node transitions to that point. The backtrace uses
only the best previous node for each state as it quickly steps
through the network and selects a path. No search is
performed in this pass: it is pure look-up.

Going back to our example, Figure 6 shows the states
that were examined in the forward pass. Note that this is
simply a pruned version of the recognition tree in Figure 3.
The numbers above each node arc the likelihoods calculated
for that point on the forward pass. The first number is the
forward pass likelihood winch is calculated for each node at a
given position. The second number is the normalized forward
pass likelihood which is calculated after each node at the
position has been examined. The normalization is necessary
to keep the likelihoods from degenerating as the network is
traversed (discussed below). Note that nodes are pruned
from the beam when their un-normalized likelihood drops to
0.5 or below.

Let us look at the likelihood calculations for the point
(2, 3) in Figure 6 (the two squares in the third column). The
bottom point is a C, and it is on the path which selects
labelings number 6 through 9 (see Figure 2). There are two
paths from the top and left that contribute to the likelihood
calculations. Tor simplicity, the transition likelihoods in this
example will always be 1.0 when legal. Thus, if a transition
appears in Figure 3, it's likelihood is 1.0. Looking at the left
context, the point at (?, 2) has a normalized likelihood value
of 1.0. Since this is the only node in that direction, it is the
maximum node in that direction (see equation 1) and so the
likelihood from the left is 1.0. From the top, the likelihood of
being at point (1, 3) is also 1.0. Taking the average gives 1.0
and multiplying this by 0.5 (the statistical from Figure 5)
match yields an un-normalized likelihood of 0.5 for this state.

The other node at position (2, 3) is a B on the path
which includes labelings 1 through 5. The statistical match of
that point to PPE B is 0.6. Since there are two previous
nodes to the left, calculation of the likelihood from the left
involves finding the best previous node in that direction. In
this case, the B in position (2, 2) is stronger with a likelihood
of 1.0. Since the likelihood from the top is 0.75, the average
likelihood for that state is 0.87. When multiplied by the
statistical match for that PPE, the un-normalized likelihood of
that node becomes 0.79.

Once all node likelihoods are calculated,
normalized so that the largest likelihood becomes 1
others increase proportionately. For this reason,
node expands to 1.0. The PPE for C at position (2, 3) is
pruned because it's un-normalized likelihood is 0.5. Note that
the back-pointers which are saved here tell which previous
node is the best. The back-pointer for the top node at point
(2, 3) selects the B at point (1,3) from the top and the B at
position (2, 2) from the left. The selection of the node to the
left is done because that node had the greatest previous
node likelihood.

they are
and the
the top
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The calculation of node likelihoods proceeds in a raster
manner. This means that the order of calculation is (1,1),
J,?), (1,3), (1,4), (2,1), (2,2), (? 3), (2,4). When all of the

likelihoods have been calculated on the forward pass, the
backtrace makes a quick pass of the back-pointers to
determine the global path. This backtrace proceeds in a

reverse raster manner and follows the back-pointers left by
the forward pass. Rc?fering to Figure 6 again, you can see
that the 0 at point (2, 4) is the first point chosen for the
global path. From there, two points are suggested to the top
and left: the C at (1, 4) and the B at (2, 3). The next point in
the backtrace is the B at (2, 3) which was indicated from the

C to its right. It indicates the B in (1, 3) and the B in (2, 2).
The backtrace looks very simple but occasionally runs into
snags. In this example, there is a conflict of back-pointers at

position (1, 3). The state to its right is a C and indicates that
(1, 3) should be a C. The state below it is a B and indicates
that (1,3) should be a 13 Although conflict resolution is very
difficult and not fully solved, the solution here is obvious.
The network does not allow a C at (1, 3) to exist above a D
at (2, 3) and the B has already been chosen. Therefore the B
al (1, 3) is chosen because it docs not contradict any network
constraints. Once the B at (1, 3) is selected, the rest of the
backtrace proceeds smoothly and path 4 is identified as the
correct labeling.

This example shows an interesting property of the
Locus search: error correcting without backtracking. Notice
that the strongest path, from the start, is the one which leads

to labeling 7. This is based on the weak assumption that the
point (1, 3) is a C. In truth, it could be any PPE, but the
network rules out A. Of the remaining choices, C s

statistically better than B, so the forward pass prefers C. On
a global basis, however, B is better because path 4 is more
globally consistent with the sensed data. This is because the
point (2, 3) is strongly favored to he a B over a C, and it is
not until the global pat!) is assembled from the back-pointers
that the mistake is corrected. If this data were run through a
backtracking system which employed a best-first search, the
incorrect path would be selected because of the search
technique's inability to bring global context to bear on local
labeling. If some way of detecting the error were found, the
system would have to back up before continuing. In this
example, Locus provides a better solution in the same amount
of time while in other cases, we can reduce the search time
without sacrificing accuracy.

Discussion
The model presented in this paper has been used to
interpret OhlanderV, city scene, demonstrating the initial

validity and usefulness of the model. We plan to use the
model to interpret arbitrary views of downtown Pittsburgh (a

3-D world), and different satellite views of the Washington,
D.C. area (a 2-D world). Representation of the knowledge
about 3-D and 2-D world models in terms PPE graph

structure requires the development of several preprocessing

programs (the PPE graph for Ohlander's city scene was
generated manually). In this section we will discuss the
relationship of this model to other approaches in image

recognition research, and our present views of the strengths
and limitations of this approach.

The graph structure representation proposed here is a
natural outgrowth of work in languages (Aho and Ullman,

1977?), graph representations (Harlow, 1972), and syntax
directedpattern recognition (Narasimhan, 1966; Clowes, 1969;

and Fu, 1976). The approach presented in this paper
principally differs from the above in how the network
representation is to he used. It rejects the notion that image
recognition is best viewed as a problem in parsing. Given the
error and uncertainty associated with the decisions, the
problem tends to be not one of deciding whether a given
pattern is parsahl'e but rather one of search, ie. deciding
which of the many acceptable alternalivc paths represents
the near-optimal interpretation.

The view that the problem of image recognition is one
of constraint satisfying search has been gaining increasing
acceptance (Waltz, 1975; Tenenbaum and Barrow, 1976;
Rosenfeld, Hummel and Zucker, 1976). This paper also
subscribes to this viewpoint and differs mainly from the other
efforts in the representation of constraints and the method of
search.

The realization that one needs to introduce some
measure of the degree of uncertainty into the interpretation
process is reflected in the papers by Fischler and Elschlager
(1973), Feldman and Yakimovsky (1975), and the probabilistic
relaxation methods under development at SRI and Maryland.

The method proposed here is able to handle search in the
presence of error and uncertainty in a natural and
straightforward manner provided all knowledge and
constraints are represented in terms of a PPE graph
structure.

Constraint satisfying search in the presence of

uncertainty is also a central problem in other areas of Al, in
particular in speech understanding systems research. Several
techniques developed for use in the speech area such as
representation of knowledge sources as cooperating
independent processes (Roddy et al, 1973; Lesser et al.,
1975; Erman et al., 1977), island driven search (Woods et al.,
1977; Erman et al., 1977), and network representations of
knowledge (Baker, 1975; l.owerre, 1976) also appear to be
relevant to other knowledge based systems research,
including vision. The Locus model presented here was first
developed for use in the Harpy connected speech recognition
system. Though the basic ideas remain the same, the model
had to be revised substantially to make it useful in image
recognition.

The best-first search given by the A* algorithm
(Nilsson, 1971) and the breadth-first graph search of the
dynamic programming algorithms (Levine, 1977; Bellman,
1962) provide alternative approaches to optimal graph search
problems. The beam search technique of the Locus model
provides a minimal effort near-optimal solution and appears
to be effective in cases where the evaluation function is a
function of an external signal source and where a large
number of decisions arc related to each other in that they
are all attempting to provide alternative interpretations of
the same signal segment.

Occasionally, the heuristics associated with the beam
search lead to the elimination of the optimal path. This need
not be cause for major concern because a good path will
always be chosen. Since the match likelihoods are less than
accurate, attempting to find the optimal path at great cost
and effort leads to little or no improvement in performance.

The success of beam searching is highly dependent on
the choice of the "near miss" threshold that defines the width
of the beam. If the threshold is too small, the resulting
narrow beam of alternatives could lead to the pruning of the
correct path. On the other hand, many unproductive paths
will be examined if the threshold is too large. In our present
system, the threshold is chosen large enough so as to maKe it
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immune to local errors in the assignment of likelihood values
to symbols horn the signal.

A significant featuie of the Locus model of search is its
linearity. Because Locus prunes all but a narrow beam of
alternatives, its search time is linear with respect to the size
of the input signal and is essentially independent of the
symbol space size. Thus, Locus searching controls the
combinatorial explosion that occurs in most graph searching
techniques. Note, however, that the size of the beam
expands and contracts during the search as the connectivity
between symbols in the graph increases and with the degree
of uncertainty of the decisions.

The order of search in Locus is a subtle issue that
appears to be a problem but upon closer inspection turns out
to be unimportant. When using Locus in speech
understanding, there is one independent dimension of time
which can be used to order the search. In image processing
with static pictures, there are two dimensions, so a raster
scan is used. This might appear to cause continuity problems
especially at the end of a scan line. However, Locus requires
only the local context for a point and it propagates the global
context regardless of search ordor. Thus, any search pattern
can be used as long as it is reversed on the backtrace. Note
also that the raster scan has the advantage of allowing the
use of context for horizontally, vertically, and diagonally
adjacent states.

A main concern with the finite state networks is that
not all relational constraints are easily representable within
that framework. We have not found this to be a problem in
the 3-1) and ? D worlds we have considered so far, although
the representations tend to be expensive in terms of the
space (memory) required. We expect to use a post-pass to
apply constraints that are not easily incorporated into the
network.

Knowledge such as shape, size, orientation, and location
of objects is different from spectral properties of objects

such as color and texture information. This type of
knowledge cannot be included directly as part of the signal-
to-symbol match. Such supra-segmental knowledge can
however be incorporated into the network in several

different ways (Rubin, 1977).

The example given in this paper shows how the Locus
model can be used in the interpretation of the image on a
pixel by pixel basis. The technique is equally useful with
pre-segmented data. In fact, segmentation improves accuracy
and leads to substantial speedup in matching and search.
While extra segments do not cause any problem, missing
segments cannot be accomodated within the present scheme
without additional'computational effort. This is because the
graph representation permits self-transitions in the PPE
network but does not (at present) permit skipping PPE nodes.

Conclusion
This paper provides a framework for knowledge
representation and search for image recognition tasks,

leading to an easily implementable total systems framework
within which one can explore the relative merits of different
types of knowledge. One still has to decide what knowledge
is available, how to acquire and define it, how to select an
adequate set of primitive picture elements (PPE) for a given
task, and how to match symbols (PPEs) to the signal.
However, each of these subtasks look much more manageable
to us than the original image interpretation task.

Vfsfon-2:
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Appondix: .A Roal Example
This appendix shows the Locus model as it has actually
been programmed at Carnegie-Mellon University. The
program which uses Locus is called ARGOS and this example
is direct output from the system. The scene that we are
using is the downtown Pittsburgh image shown in Figure 7:
the most complex image used by Ohlandcr (1975). The image
was broken down into 15 PPEs shown below:

Shy

Mouniame
Galewny Towers
Hilion

Sinle Offren
Pittaburgh Preas
dwnihing Arcade
Herpps

Hornos Eximamion
Gatewny 3
Gatewny 2
Gatawny |
ﬂlv.r

Park

Raard

CETTACSTOTMOOT >

labelings that were generated for the
picture in Figure 7. the letters correspond to the PPE letters
in the above list. Although this is not a perfect labeling by
any means, it is an improvement over un-guided labeling and
shows that Locus is effective for image interpretation.

Figure 8 shows the
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Figure 3. A recognition tree representation of the legal label assignments
shown in Figuro 2 Each nodo in the graph represents one of the contextual
situations possible for that pixel The graph is arranged in columns

corresponding to the columns of the original image The shape of the node
indicates the row number (see key at the top) Arrows indicate the possible
transitions into and out of each state The hexagonal nodes are the Initial and
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Figuro 6 Path of Locus search on reconmtion tree shown in Figure 3

Numbers separated by a slash are the un-normnlized and normalized nodo
likelihoods, respectively The arrown indicate pathr. that were saved for global
path re-construction and the dotted lines indicate alternative paths that were
examined in the forward pess but not selected for the final recognition tree
because of low likelihood values See text for more explanation.
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Figure B Labeling of Downiown Pilisburgh Scene shown in Figure 7. Gow
Appendix for ke istel namow of sach leller.
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STEPS TONARDS THE REPRESENTATION
OF COVPLEX THREE-DIMENSIONAL OBJECTS

Ruzena K. Bajcsy and Barry |. Soroka
Dept of Computer S Information Science
Moore School of Electrical Engineering
University of Pennsylvania D2
Philadelphia PA 19174

INTRODUCTION
We are investigating the description
of complex three-dimensional objects in
terms of three-dimensional primitives and

composition relations between them. Our
input is a description of an arb|trary
three-space in the form -levels
assigned to the points of a CUbIC attice.
Sequential tomograms are one source of
input data, as are serial light and
*electron micrographs.

Our approach is motivated by the

observation that a primitive can give rise
to only a small number of reg|on types on
a plane which cuts it. |nvert|n? the
process we can reason from a region found
on a slice back to the primitives from
which it might have been cut. When the
sliced object is composed from several
primitives, the regions cut by planes will
reflect the joints and containment
relations between the primitives involved.
AN EXAMPLE

Let us Dbriefly consider right
circular cylinders, which are sliced into
circles, ellipses (possibly truncated),
and rectangles. An ellipse suggests two
possible cylinders. The next step in
completing the description of space will
be to determine which of the suggested
cylinders is present (both may bel) and
the length of the cylinder axis. This
would involve looking at another slice
some moderate distance away from the
current one.

DESIGN CONSIDERATIONS

We are constructing (in LISP and

FORTRAN) a processor with three useful

features:

CD Primitives can be added or
changed by altering the function which
maps regions into possible primitives.
Thus, to add "blocks" to the system, we
would add the rules which tell us, for
instance, that a triangular region is cut

from a corner of a block.

(2) The strategy for obtaining a
complete description of space may be
systematically varied. What should the
processor do when it discovers two

disjoint regions on a single slice? Should
it pursue the hypothesised primitives
sequentiaIIP/ or in parallel? Furthermore,
we would like to incorporate a mechanism
which would mimic human abilities to
perceive a Gestalt.

(3) The system should be
interruptible so that at any moment we may
stop the processor and ask questions like:

Vision-2:
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What are
it tell

oint?
hat will

know at this

What do you
to do next?

you going
you?

Our interest in cognitive issues like
(2) and (3) has led wus to reject holistic
approaches = (such as the symmetric axis
transform) in favor of a more heuristic
approach.

NFORMATION FLOW.

If the system hypothesises the
existence of a cylinder, then it may
request a slice somewhere out along the
axis in order to binary-search for the
length of the axis. This request may be
performed immediately or it ma be
enqueued with other requests, depending on
the search strategy selected. In either
case, the outcome of the request must be
returned to the requestin ypothesis for
evaluation. We store eductive pattern
(if-then-else) on the property-list of the
requestor so that the deduction may be
performed as soon as the requested
information becomes available.
slices are a priori

than others. The most
initial slice to examine is one
through the center of space. Similarly,
examining one slice devalues the slices
immediately adjacent to it.
region may affect
hypotheses (those waiting for unanswered
requests). Thus, regions must be able to
index into the set of current hypotheses
and activate those potentially affected.
A hypothesis may be both dormant
active!
CRITERIA FOR EVALUATING PERFORMANCE

We have been unable to find evidence
of experiments into human competence and
erformance on the task our system will
andle. Our system should be able to
mimic  human behavior _in interpreting
slices of three-space. Further, our model
of hypothesis formation should account for
interpolati on given two slices,
moderately separated, what is happening in
the space between them?

CONCLSION

We have raised here some questions
appropriate to the task of developing
descriptions of three-spaces from slices.
We forth design considerations
for a processor currently under
development. Further answers and details
will be presented at the Conference.

REFERENCES
General references for this work are given
in: B.l.Soroka and R.K.Bajcsy, Generalized
cylinders from serial sections. Proc 3rd
Intl Jt Conf PatternRecognition, Coronado
CA, November 1976.
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A "RECOGNITION CONE" PERCEPTUAL SYSTEM:
BRIEF TEST RESULTS*

Leonard Uhr, Robert Douglass,
University of Wisconsin

This paper presents some preliminary testre-
sults of a "recognition cone" vision system. (See
1-3 for fuller descriptions). A recognition cone
uses a parallel-serial layered architecture that
successively reduces the image as each layer
processes it. EAch layer contains a set of
probabilistic "transforms" that combine diverse
sources of contextually related information. Each
transform looks at specified regions of the array
and, if the combined weights of information found
exceed the transform's threshold, then the trans-
form implies a set of names and transforms to
apply.

A number of variant systems have been coded
in Snobol, to explore perception of binocular
images, motion over time, and learning by dis-
covery and induction. The long-term goal is to
develop a relatively general model of living
perceptual systems, one that perceives a variety
of different kinds of scenes. The presentresults
were obtained with a Simula-Fortran program that
made possible tests with large input arrays.

Test Results (see 3)

A 10-layer cone was used to process a 600 by
800 color TV picture (a house screened by trees,
see 4 for the original).

Transforms were iterated throughout each
layer, to assess the following information: Layer
1: averages; 2: hue, saturation, intensity;

3: gradients; 4: short edges, texture; 5: long
edges, compounds; 6: higher-level compounds; 7:
still-higher-level compounds; 8-10 averages.

Figures 1-2 indicate some of the descriptive
labels achieved.

Figure 1 shows the single most highly im-
plied thing output to each cell by Layer 6 (F =

Window, G = Grass, H = House, S = Sky, T = Tree,
W = Wall).
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$ 35 5% 45535 5555555 % %555 3% %% 535545 %55
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$5 535 VT wwww MW a5 ETTHwNHs LSS5 S ES
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*This research was partially supported by the
National Science Foundation (grant MCS76-07333)
and the University of Wisconsin Graduate School.

Figure 2 shows those cells into which House
was most highly implied by Layer 7. Note how
higher-level compounds have turned many of the
local "Wall" and other labels into "Houge,!
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""" A"H'-'-Tayéf-"ééh'é'that contained ‘éssentially a
sub-set of the transforms in layers 3 and 4 was
used to describe 20 by 48 line drawings of place-
settings of forks, knives, spoons and plates,
where objects sometimes touched and overlapped.
The system was also used to recognize letters and
symbols that were severely distorted,by rotations,
rubber sheet stretchings and large gaps.

Discussion

This kind of system can be evaluated only by
far more extensive tests. But the use of many
configurational transforms, each sensitive to
contextually interrelated information,seems
appropriate for handling a variety of unantici-
pated types of scenes. The use of weights means
that parts can be gapped, distorted or missing.
The layering gives speed and efficiency. It
allows hierarchies of transforms to be built
from common simpler transforms, as when edges
build to angles to windows to walls to houses.

These transforms can easily be added, re-
placed, reweighted, adjusted and learned, without
hurting the larger program. So it should be
possible to make continuing improvements. The
transforms are reminiscent of synapsing neurons,
and the serial layering of many parallel processes
reflects the overall structure of living visual
systems.
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