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Abstract machine vision, however, cannot be met by
extension of programs dedicated and optimized in
A scheme used in building models of three - their performance to specific domains. In  this,
dimensional objects through binocular and motion generality and flexibility will be essential
parallax analyses is presented. Some preliminary ingredients.
results in using the models for recognition are
described, and a discussion of the major A system, to show competence in visual
objectives summarizes the rationale of the work. processing, must, among other things, be able to
The principal emphasis throughout the paper will both use and construct fully descriptive (and this
be that effective vision requires flexible, means three - dimensional) models of the objects
domain-free, three-dimensional modelling. in its environment. It must be able to look out
on a scene and build models of whatever is there
(hands, people, cars, etc.), and then be able to
manipulate these models, comparing them with other
Introduction descriptions it may build in analyzing some later
viewed scene. Regarded in this way, the program's
Object recognition and scene analysis role will be seen to be quite passive - it will
research systems may be categorized bv the use not be acting .as. the models, but as an intelligent
they make of models. The 'hard-wired' approach so interface between those in its memory and the
common in areas such as chromosome classification, presented visual data. Only in this way, with
and typical 'blocks world' analysis places them in specific domain dependent knowledge removed from
the lower rank of modelling varieties. The the processing can the wanted extensibility be
descriptive primitives and their inter sought.
relationships which determine classifications are
embedded implicitly in the operation of these Note that the model building reguired of such
schemes, and accommodation to other domains is out a system is, in a way, complementary to
of the question. Increased flexibility can be recognition. While recognition is a process of
attained through the more modular approach of taking descriptions from memory and using them in
supplying the system with certain pre-defined the analysis of presented visual images, modelling
feature primitives from which it can compose is the process of analyzing such visual images to
appropriate object descriptions. This  technique build descriptions of the objects from the present

can be seen in the two-dimensional vision works of

Roberts, Barrow, Widrow, and Turner, and has a
very significant presence in many Computer-
Aided-Design schemes ([Braid], [Voelcker]) and the
three-dimensional work of Popplestone et al.
However, even in the vision work here the
dependence on a particular domain is very heavy.
No general shape descriptive mechanism is
available, and each form to be recognized must be
anticipated and encoded (or programmed)
beforehand. With the static nature of their

feature sets and their limited descriptive range,
these systems have only cosmetic advantage over
the 'hard-wired' approach.

in well defined,
problems to introduce such
insight-driven program tailoring
lead to more direct and efficient

It is
task-oriented
domain-specific,
whenever it will

common practice

solutions. In these cases, purist attitudes,
arguing for generality and flexibility, should
rightly be abandoned. The long term prospects of
*where the author is currently in a PhD program
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environment. Since recognizing is associating the
experiences of the present with those of the past,
it is only appropriate that a recognition scheme
also be a modelling scheme.. it needs to keep a
record of its past experience.

of the reason for the
domain-specific vision research
inherent in the way sensors
have been used. Typically, an entire analysis is
based upon a single television image. This may
seem to be a reasonable compromise, as it does
appear to allow the feeling and flavour of vision
without the complications of three - dimensional
or time analysis. Unfortunately such a process
has a striking resemblance to a stationary,
one-eyed fly's single-shot vision, and provides
too weak a paradigm when the ever-present
comparison is with that of our own human sight. A
machine vision system, as the human system it
tries to simulate, must be able to increase and
refine the understanding it has of its environment

A large part
proliferation of
may lie in the myopia

- working in a domain of three-dimensional
objects, its representation must encompass that
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three - dimensionality, yet a single (note single)
projected image of some unknown object can reveal
very little of its 3-D nature. Consider the task
of trying to extract sufficient information from a
television image not Just to recognize some
object, but to <create a description that will
enable that object to be recognized whenever it is
seen again, in any orientation, and under any
viewing conditions. This weakness of the single -
view approach has been a re-enforcement for
pre-analyzing two - dimensional projections, and

thus imposing on the processing a domain of
expectation. An escape from this domain
dependence trap calls for a different,

considerably stronger paradigm.

It was my intention in this work to explore
the possibilities of machine vision in an
unrestricted domain of objects, with viewing

conditions as near those in which the human system
operates as practicable (this excluded lasers, and
other such direct ranging devices). The necessity
of having a three-dimensional representation led
me to consider ways of representing surface shape,
and, in turn, three-dimensional object structure,
and the need to obtain this structure through a
television camera led me to the problem of
determining means of  making such three -
dimensional measures.

Humans use binocular and motion parallax (as
well as other innate and learned techniques) in
distinguishing depths, and | determined to
concentrate on seeing how an analysis of this
binocular and motion parallax, as obtained through

a mobile television camera, could reveal three -
dimensional shape and relationships. (Similar
approaches can be seen in the work of [Baumgart],

which started earlier and ran concurrently with
this work, and the later work of [Burr].)

It is important not to build into a vision
system any specific knowledge of shapes. This
means we must exclude from consideration any
process that takes regions from an image, infers
their orientation from an analysis of shape (i.e.,
a circle may appear as an ellipse), and uses these
inferred shapes as primitives in its model
description. It is only after we determine a
context, based on experience, that we can do this
in our vision, and a virgin modelling system,

having no experience, and knowing nothing of the
context that experience teaches, should similarly
have no preconceptions of  shape or shape

implications.

Curvature. Irregularities and Building, Motels

What | have done in this work in an attempt

to keep shape preconceptions out of the
processing is to chose a very low-level
descriptive primitive, hopefully without a domain

bias, and wuse this in specifying shape. The
description is formed by locating particular
second order irregularities in projected images,

tracking them over a series of views, and building
up a meshed network whose nodes are these
irregularities (in 3 space), and whose arcs are
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the surface curvatures joining them. The model of
a surface's shape, then, is this meshing of
vectors and curvature descriptors - to be
visualized perhaps as a wire-meshed exoskeleton.
An object whole, which may consist of many
surfaces, is defined in a similar manner, with
vectors locating and orienting its constituent
surfaces. Figure 1 shows a single-surfaced object
defined in this way.

The primitives of these shape  descriptions
are points of curvature irregularity - those
positions in the image where constant curvature

arcs, fitted to the contours (or edges),
terminate. These occur most prevalently where
shape irregularity is densest, and, being local

measures, allow the analysis to be much less
susceptible to projective anomolies and occlusions
(the total surface shape, being a complex of local
shape, only loses definition at the occlusion).
They are psychologically interesting, being
measures of the most discriminative aspect of
shape, its smoothness and irregularity (remember
Attneave's cat), and their use as a metric puts no
constraints on the type of shapes to be dealt with
(any projected shape can be closely approximated
with circular arcs, even polyhedral edges).

'ectoral model from left Model from front
(surface arcs drawn as straight edges)

Object studied from left
Figure 1

Object from front

The implementation forced several compromises
in the professed intentions. Clearly, cluttered
scenes were not allowed in the modelling phase.
Objects studied were rigid, single-coloured,
opaque solids (although earlier work was done with
a multi-coloured object). A fixed camera frame
made it necessary to rotate the objects, rather
than the camera (for most purposes, these are
equivalent).

The task of obtaining object descriptions of
this form is implemented through two processes

(programmed in Macro on a PDP-10). The first
analyzes individual images of a scene, extracting
Raker



contour descriptions based upon the
measure. The second takes sequential pairs of
such descriptions, correlates them (that s,
correlates their irregularities), and constructs
the meshed networks representing their shapes.

irregularity

The protocol for the low level analysis is
the following. An object, mounted on a spit, is
photographed, the image analyzed, and the results
of the analysis are passed to the correlation
process. The object is then rotated on the spit
(through a known angle) to a new orientation,
where it is photographed, and the analysis
repeated.  Further rotations are made, each being
followed by the image acquisition, analysis, and
transmission to the correlator.

Each analysis first involves scanning the
intensity array to find picture points that
(probably) lie on region boundaries, a Drocess
which requires two passes over the array with a 2
by 1 pixel operator. The first pass locates the
horizontal edges, the second the vertical
(figure 2a). There is little of special

significance in this aspect of the processing.,
the edge points, or intensity discontinuities, are

positioned  where the intensity gradient is
greatest in an area bounded by either
near-homogeneous areas (typically the middle of

image regions), or intensity gradient inflections.

Circular arcs are then fitted through these
points. The endpoints, or Junctions of these arcs
are the curvature irregularities wused in the

correlation (figure 2b).
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Ares drawn as atraight edges
Vertices are curvature irrsgularities
Figure 2b
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viewed from 90° to left viewed from front
Edges running between end points of 3-D vectors
determined by the correlation of the vertices of
the 2 view descriptions of Figure 2b.
(gaps occur when 2 adjacent irregularities
do not have correlates)
Figure 3a
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viewed from the left viewed from the front
Next correlation vectors

Fieure 3b

0

Composite description from 3a and 3b
formed by superimposing the 2 descriptions
and binding them together with the tracked

'depth' arcs.
Figure 3c

The correlation process operates on the
output of two sequential low level analyses. It
begins by finding corresponding regions in the two
views (using as measures distance apart, size, and
average intensity). Once these are established,
it selects corresponding curvature irregularities
and, correlating them, determines the three -
dimensional vector they imply (figure 3a). The
measures used in selecting corresponding curvature
irregularities include the concavity or convexity,
both at the junctions and in the arcs on either
side (these are topological tests), and the
magnitude of their separation and the direction of
their vertex bisectors (positional tests). To
determine the vector, the correlation process must
know the equation of the rotational axis (the
spit) lying in the plane of projection, its
distance from the camera, and the rotational angle
change, as well as the two - dimensional
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coordinates of the irregularities in the two views fact depth arcs are just inferred from the

(the vector at point X in figure 3a was derived tracking of vectors as the object rotates (this is
from the correlation of vertices 1 and 2 in figure the motion component of the analysis). An ongoing
2b). Figure 3b shows the positions of vectors clustering process collapses these 'depth' arcs
from the next correlation, and figure 3c shows the when the irregularities they separate are within
composite description after these 2 correlations. the digitization error of each other, and creates
others when new irregularities approach earlier
It isn't obvious, but this correlation works ones (the description is wrapping back around on
equally well for 'real' edge irregularities, such itself).

as the vertices of a cube, as it does for those on
'pseudo’ edges, three-dimensional contours. With

pagr ' ' oare
r r ‘dept

the former (figure 4a), the vector will actually

locate the vertex (within the digitization error), laft rirht \

while in the latter case, the vector will indicate 'br‘eadt readth

a point near the surface |lying between the are

irregularities seen in the two projected views are front

(f|gur§ Mb). Thls may  seem to be a flaw in the "deptht

modelling, but is actually quite the opposite - arc

the distance above the surface is proportional to Surface

the angle of rotation and the convexity of the vector

surface, and is not large - the arcs connecting Centre of . .

these vectors (termed 'depth' arcs) literally hold Rererencc {neighbouring

the model together. T ame vectors)
Projections ™~ 4 possible surface descriptor arcs

Vector . "] Figure 5

These vectors and arcs, then, are the basis
for surface shape description. Since an object
may consist of many surfaces, each is specified as
a composite of its surface vectoral descriptions.
(As mentioned earlier, the objects modelled were
almost exclusively single-surfaced.) Figure 7
shows the progression of the modelling through a
sequence of ten views (in 20 degree increments)

Tyerr

with the object of figure 6. Part 'a' is the
Real vertex individual regions as found in the intensity
Figure da arrays, part 'b' shows the 'breadth' arcs formed

from the correlations (viewed from 90°to the left,
and from the front), while part 'c' indicates the
composite descriptions as they are formed
(successive 'breadth' arcs joined with their
tracked 'depth' arcs), again viewed from 90°to the
left, and from the front.

Projections

-~
Veotor definition Aiew 2

{at mte\r‘sectxon)/

Figure 9 shows the completed model viewed
roughly in the orientations depicted in figure 8.
There are a few aberrant points on this model,
notably in the left figure at the extreme bottom
right and the too Ileft. These arise from the
correlation of irregularities whose local surface
is nearly orthogonal to the rotational axis..

f this error is difficult to avoid when only one
Pseudo-edge vertex axis is used. Two perpendicular axes can be
Figure 4b handled in this modelling scheme, but tests were

only carried out for the case of one axis.
Details of the modelling, just mentioned here, are
Each such vector may have up to four surface available in [Baker]

descriptor arcs leaving it (figure 5). Two of '
these may be to the left and right ('breadth’
arcs), and run to vectors adjacent, and derived
from the same two individual views. The other two
may extend to the front and rear (these are
'depth' arcs.. notice those arcs in figure 3c
which were not present in either figure 3a or 3b).
The left/right arcs carry curvature information,
as their shapes were seen in the two views i
correlated, but the depth arcs have no indication UbJect modelled in Figure 7
of curvature.. their shapes were not seen. |In Figure 6
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Progression of the Modelling
in 20 degree increments
Figure 7
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Models aa seen from orientations in Figure 8
Figure 9

Shape Comparisons

As expressive as these descriptions may seem,
they are surely too verbose to be used alone for
object recognition, and it is at this point that
our interest may turn to the wuse of shape
primitives. However, for freedom from domain
dependence, it is essential that any such
primitives be abstracted only from the shape
models in the modelling scheme's memory. That is,
if it is to use shape feature primitives, they
must be ones which it derives itself over a period
of preliminary operation. Although essential,
this is of course a gargantuan task. A subproblem
here as well is that of being able to compare
parts of such models so that common descriptions
mey be abstracted as shape primitives, to be then
applied to the analysis of subsequently presented
objects. An efficient recognition scheme will
work with these abstracted primitives to partition
models into more symbolic form, but of course this
too requires vectoral comparisons. The comparison
process is thus basic to both recognition and
generalization, and the appropriateness of the
representation will depend upon its ability to be
used in such a model matching scheme.

Figure 10a r.epeats the model constructed for
the object of figure 1. Figure 10b shows another
model of the same object, but constructed from a
different initial orientation (making it very
unlikely that many, if any, of their corresponding
vectors will be coincident). The two models have
between 80 and 100 vertex points (three
dimensional vectors) each, which suggests that the
straightforward approach of comparing all points
in pairs would be impractical. It is also obvious
that there needn't even be a 1 to 1 correspondence
between the points on the two models. Although
the vectors are derived by analyzing shape
irregularities, these are projective measures, and
with two arbitrary initial positioninga, nothing

can be assumed about their relative orientations
or the relative looations of their surface
vectors. If  shape comparison is to  proceed,
something must be found that will allow these

relations to be discovered.
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from front
Model of figure 1
Figure 10a

from below
but analyzed

from front

from left
Model of same object as figure 1,
from a different orientation

Figure 10b

As each model is constructed, it is put in a
pseudo-canonic form ('pseudo’ because it cannot be
guaranteed to be unique)., it is reoriented about
a coordinate frame defined by its greatest
breadth, and two other axes calculated normal to
this. Yet even this does not ensure a unique
orientation, as the views used for the correlation
are discrete projective slices, and an object
having many similar large diameters could
(depending upon the particular views seen) have
any of them chosen as its maximal. To force a bit
more order into the process, | assume that if two
shapes are to be considered similar, then at least
a certain number of their topologically
significant features should correspond (note that
the assumption could run into trouble where there

is severe occlusion or where an object has a
highly symmetric nature). This is implemented by
keeping with each model a list of its 6 most

concave or convex vertioes (these characterize the

local surface shape about a vector, and are
indicated in figures 10a and 10b byO), The figure
6 is arbitrary, but must be at least 3 to enable

the transformation equations to be determined (the
more there are, the better the chance of finding a
match, but equally the longer it may take to
discover it). The problem of finding the possible
relationship between the two shapes is now reduced
to finding similar .triangles in these 2 sets of 6
points (with the additional requirement that
corresponding vertioes be of the same type -
either  concave or convex) (figure 11). The
similarity, rather than congruence, allows objects
of different scale to be compared.

Similar
triangles

2=D analogy
Xoarks aignificant consavities/convexities
Figure 11
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If no such pair of similar triangles can be

formed among these points, then the surfaces may
be considered to be different (with the above
noted exceptions to the assumption). If there is

such a pair, then the transformation that maps one
set onto the other should equally map all points
in that model onto the other model (however not
necessarily in a point to point way). Comparing
the shapes is then a matter of reorienting and
translating successive vectors of the one model,
and determining how close each lies to the surface
of the other model. This is done by finding which
'patch' of the other surface each point projects
onto and determining its distance from that
surface (figure 12). A recursive process crawls
about on the two meshmgs, branching along each
arc, and backing up when a node vector lies too
far from its opposing surface.
Surface point,

) b = i

*depth
and
'breadth’
arcs

.. OMPORiNF
surface

. (neighbourine
’ vectore)

. P
', -
Mapping vectors to surfaces
Fizure 12
The theoretical error limit of the
correlation process was about one fifth of an inch
for the 90 by 90 images used (with a 9 inch field

of view at about 5 feet), and the vector to
surface distance allowed in the matching was twice
this value. It would be possible (although it was

not implemented) to look at the cumulative errors

in point to surface mappings, and use these to
adjust the initially inferred transformation
equations. This would be of major advantage

whenever the similar triangle vertices are located
to one side of the surface, where the digitization
and correlation inaccuracies could lead to minimal
error in the transformation for points near the
vertices but significant errors as the distance
from them increases. Figure 13 shows both objects
in the orientation in which they were successfully
matched (80% of the points corresponded, while
only 23% in the left model were successfully
mapped onto the surface of the model in figure 9).

Models of figures 10a and 10b, drawn in
the orientations in which they were found to match
Figure 13
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It is not my intention to suggest from this
preliminary matching success that the memory of
models be used in this way, as the extraction and
use of commonly occurring shapes is critical for a
recognition scheme that hopes to work in anything
resembling real time. But, as stated, this
comparison procedure is an important part of the
generalizing, and it was necessary to show that
the models could be manipulated and compared in
this way.

My objective with this work now is to go back
through much of it and bring it up working with
larger (250 square) images of multi-coloured
objects, then when satisfied with its performance
at this level, to study the shape generalization
problem. A few further, more futuristic, goals -
model modification to contain 'dynamic' structure
information  (making 'working' models of non-rigid
objects), and self-organization of model memory,
to provide efficient, perhaps context-sensitive,
retrieval - indicate the potential for further
development within this modelling framework.

Important Points

This approach, stepping into multiple - view
analysis, marks a significant change from previous
work in machine vision.

It permits a valuable reconsideration of
programming approach. Established vision methods,
where all information available to the analysis is
presented in one single view, force the analysis
to be temporally local with their over-riding
demand for an interpretation, and make the system
particularly sensitive to the destructive
influence of view-point anomolies and image noise.
The analysis of parallax, with its correlating of
many sequential images, allows one to loosen this
dependence on ‘'clean' pictures, and leave the
generalizing over errors or ambiguities of
analysis to the more capable higher level process
that works in time. ('Dirty', or structurally
discontinuous sequences of pictures don't exactly
help, but neither are they catastrophic.)

Different still is its approach to the.
representation of objects and shape. for concise
vet detailed descriptive models. As much as its
uniqueness was underplayed in the discussion of
shape matching, there is truly something canonic,
and even psychologically significant, in the use
of this irregularity-based representation.

But most significant is the step this. takes

towards establishing a mora reasonable kind, of
initial state knowledge in the system, Previous
efforts in computer vision have involved embedding
a great deal of domain-specific knowledge (eg.
the domain of tri-hedral convex polyhedra) into
the workings of the process. In these systems the
initial state knowledge has served to define and
constrain the environment. Instead, this system
is given, through an understanding of parallax,
working knowledge of the behavior of physical
objects in three - space. Having ways of
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manipulating the environment, it is able to
exploit this behavioral knowledge in analyzing the
scene. The contrast, then, lias, in giving. the
system not specific knowledge of the. forms, in its

world, but knowledge specific to its determining
those forms.
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