A COMPUTER SYSTEM FOR VISUAL RECOGNITION
USING ACTIVE KNOWLEDGE*

Eugene C. Freuder+
Computer Science Department
Indiana University
Blooraington, Indiana 47401

This report describes research done at the
Artificial Intelligence Laboratory of the Massa-
chusetts Institute of Technology. Support for
the laboratory's artificial intelligence research
is provided in part by the Advanced Research
Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-75-C-
0643. The report is based upon the author's Ph.D.
dissertation for the Department of Electrical
Engineering and Computer Science, M.I.T., 1975.

'Current address: Department of Mathematics
and Computer Science, University of New Hampshire,
Durham, N.H. 03824.

OVERVIEW

THIS WORK IS CONCERNED WITH VISUAL RECOGNITION,
AND WITH LARGER ISSUES OF DESCRIPTION AND CONTROL
The immediate objective of this work Is a
computer system that will recognize objects in a
visual scene, specifically hammers. The computer
receives an array of light intensities from a de-
vice like a tv camera. It is to locate and iden-
tify the hammer if one is present. The system,
SEER, is directed at the visual variety of unpre-

pared everyday objects, not stylized models.

The computer must produce from the numerical
"sensory data" a symbolic description that cons-
titutes its perception of the scene. Of primary
concern is the control of the recognition process:
what to do, how and when to do it. These deci-
sions should be guided by the partial results ob-
tained on the scene. If a hammer handle is ob-
served this should suggest that the handle is part
of a hammer and advise where to look for the ham-
mer head. The particular knowledge that a handle
has been found combines with general knowledge
about hammers to influence the recognition pro-
cess. This use of knowledge to direct control is
denoted here by the term active knowledge.

A descriptive formalism is presented for
visual knowledge which identifies the relation-
ships relevant to the active use of the knowledge.
A control 'structure is provided which can apply
knowledge organized in this fashion actively to
the processing of a given scene.

VISUAL KNOWLEDGE IS ORGANIZED TO ENCOURAGE ITS
ACTIVE USE

Given a commitment to active knowledge how
do we implement it? When SEER discovers that
"region R is bar shaped" how does it use this
information? General visual knowledge is organ-
ized to respond to these questions.

A data base object exists representing "bar
shaped". This object knows how a bar shape is
useful for acquiring further knowledge of a re-
gion. It knows, for example, that hammer handles
are bar shaped. This knowledge is represented by
a link between data base objects representing

Vision-7:
6

bar shaped and hammer handle:
HANDLE——BAR-SHAPED

ESTABLISHED RESULTS ARE EXPLOITED TO MAKE FURTHER
SUGGESTIONS

When a particular region R is found to be bar
shaped, this knowledge is exploited as follows.
The bar shaped element of general knowledge is
consulted. The link to hammer handle provides
the suggestion that R is also a hammer handle.
This suggestion becomes an object in the partic-
ular knowledge data base. It begins as a "con-
jecture", but eventually may become a "success"
or a "failure". (The fact that R is bar shaped
is a successful particular knowledge object.) A
link is placed between BAR-SHAPED R and HANDLE R
corresponding to the general knowledge link be-
tween BAR-SHAPED and HAMMER HANDLE:

HANDLE R——BAR-SHAPED R

BAR-SHAPED is also linked to HEAD in the gen-
eral knowledge: the exploitation of BAR-SHAPED R
will also suggest HEAD R, and the appropriate par-

ticular knowledge conjecture and link will be cre-
ated :
HANDLE R\
BAR-SHAPED R
HEAD R /

GENERAL VISUAL KNOWLEDGE AND PARTICULAR SCENE RE-
SULTS RESTDE IN INTERACTING NETWORKS

We have then two knowledge structures, which
we will abbreviate as the GK (general knowledge)
and the PK Cparticular knowledge) structures.
Both are networks: the nodes represent items of
visual knowledge, objects, properties, relation-
ships, and the links indicate how these items
help establish each other.

The knowledge involved is not very esoteric.
It is based on functional definitions: a hammer
requires a handle to hold and a head with which

to hit; the two should be set at right angles to
transfer a swinging motion into a blow; the head
requires a striking face at one end; it should be

flat to contact the nail easily; and so on. The
concern is with the organization of this knowl-
edge. Standard descriptive networks, where nodes
represent parts and links represent properties
and relationships, are good for passive matching.
SEER's networks facilitate active knowledge.

The GK represents potential programs for re-
cognizing specific instances of the GK concepts.
We write these programs by representing possible
descriptions of the concepts in a network form.
These descriptive nets seem a natural formalism
for the procedural embedding of knowledge [7] In
the domain of visual recognition (as opposed to
theorems, for example). Similarly the PK re-
presents, at any point of processing, the current
state of description of the scene, and the state
of the specific processes chosen to work on it.

The interactions within and between these
structures implement active knowledge, and we
have seen a basic example: a PK success consul-
ting GK to suggest further PK conjectures.
CONJECTURES ARE ESTABLISHED BY EXPLORATION

We have seen the basic mechanism for exploi-
ting results, but how do these results get estab-
lished; once a suggestion is made, how is it pur-
sued? The same link that indicates that a bar
shaped region may be a handle, also says that if

Freuder

we wish to establish a region as a handle, we
should see if it is bar shaped. Thus, analogous
to exploitation there is an exploration process.

When the PK conjecture HANDLE R is explored, it
consults the GK object HANDLE, which follows the
link to BAR-SHAPED, providing the suggestion BAR-
SHAPED R, which enters the PK as a conjecture

linked to the HANDLE R conjecture:
HANDLE R——BAR-SHAPED R
The links have a direction: if B helps to es-
tablish A we say that B is "below" A. Exploita-

tion involves
tion downward.
Exploration of HANDLE R also suggests LONG-
AND-THIN R:
HANDLE R LONG-AND-THIN R
\BAR-SHAPED R

Let us say that the two properties, bar shaped an
long-and-thin, are sufficient to define a hammer
handle; the GK knows this. Now if either of the
new conjectures, BAR-SHAPED R or LONG-AND-THIN R,
are established, they will be exploited. We did
observe earlier that exploitation of BAR-SHAPED R

looking upward along links,

explora-

d

involves creation of a new PK object for HANDLE R.

However, obviously this will not be necessary
now, as HANDLE R already exists as a PK conjec-
ture. What will happen rather is that the HANDLE
R conjecture will be found and told that one of
the properties it needs to succeed has been es-
tablished. The GK has told HANDLE R to wait for
two results (it is an "AND gate" if you like);
it will now count one and wait for the other.
When that comes, HANDLE R will in turn succeed
and be exploited.

That is how HANDLE R gets established; but
what about BAR-SHAPED R and LONG-AND-THIN R,
which must be established first? Clearly we can
repeat the exploration process, but also the
process must terminate somewhere. Exploration

of LONG-AND-THIN R leads to three further con-
jectures:
LENGTH R
LONG-AND-THIN R -WIDTH R
LONG-AND-THIN-COMP R
HAMMER R

BAR-SHAPED R
Let us suppose, as might be the case, that
LENGTH R and WIDTH R are already present and

successful in the PK. The exploration of LONG-
AND-THIN R would not duplicate them; they would
be found and linked to, and the new links ex-

ploited by notifying LONG-AND-THIN R that two of
its requirements have been met. (The actual
numerical values of the length and width of R
will have been stored as properties of the cor-
responding PK elements.)

LONG-AND-THIN-COMPUTATION R,
in turn, does not pursue further
but actually compares the length and width with
a threshhold and either succeeds or fails on the
spot. A success will complete the establishment
of LONG-AND-THIN R. All PK trees eventually
lead down to such terminal computation nodes.
GLOBAL MONITOR AND PRIORITY MODULES CHOOSE WHICH
SUGGESTIONS TO EXPLORE

We see by now that there will be a lot of
suggestions floating around, proposed by results

when explored
conjectures,

Vision-7:

672

or pursued by hypotheses. These suggestions form
a "pool" of processing possibilities; this pool
concept is important because it eliminates the
need for suggestions to be taken up or rejected
immediately. Instead they can accumulate and
"compete", as further results improve our ability
to discern the most promising lines of inquiry.
We know how to explore and then exploit the sug-
gestions, but the question remains: when to ex-
plore them, or indeed, which to explore.

Lurking in the background are critical
doubts. Can we choose intelligently, or will the
number of suggestions "blow up" to an unmanageable
number? The suggestion making processes, explor-
ation and exploitation, are basically local oper-
ations, centered around the individual results
and pieces of general knowledge. One can argue
the advantages of such a uniform, modular struc-
ture; but how is chaos avoided: Is some global
regulation imposed?

Basically, we are hoping for something of a
"Waltz convergence effect" [21] on the pool of
suggestions. (However, it should be noted that

this research does not focus on the problems
raised by very large data bases. These will prob-
ably require further means of partitioning our
knowledge, e.g. into frames [12]; SEER's basic
interest is fruitful interaction within our knowl-
edge.) Waltz' program may be viewed as carrying
a large number of line labelling conjectures,
based on partial evidence, forward in parallel.
Since the legitimate combinations of labels,
among parts of the scene, were limited, as pro-
cessing proceeded eventually more possibilities
were ruled out than were added, and only the one
or two complete labelllngs for the scene were
left.

In SEER a number of conjectures are also
carried forward in parallel. Here too new re-
sults can contradict old conjectures. However,
we emphasize more the positive effect that new
results can have in encouraging previous con-
jectures, directing our attention to the most
promising and the most efficient suggestions.
priority system is employed for this purpose.
monitor uses the priority information to deter-
mine the order in which suggestions will be ex-
plored. These are the global elements of the
system, which evaluate the local activity.

The priority of a PK conjecture is basically
a cost/benefit analysis. The likelihood of a
conjecture holding true is compared with the ex-
pected difficulty in establishing it. These fig-
ures can change as results accrue. The conjecture

A
A

that R Is a hammer is initially difficult and not
too likely (though its high "interest" for us can
also be taken into account). When R is found to

have a hammer handle, the difficulty of the hammer

conjecture goes down while its likelihood goes up,
thus its overall priority increases. (It is,
again, the exploitation of the hammer handle

success which induces that change in priority.)
To the monitor the PK looks something like a

mountain range. The peaks represent those nodes
which have as yet nothing above them in the link
structure. Below each peak are linked nodes, and
nodes linked to them in turn, continuing until we

reach as yet unexplored nodes, with no further

links below them. This structure of nodes below
the peak represents the state of the investiga-
tion of the peak node. These structures blend
into one another, especially in the "foothills",
e.g. CONVEX R is likely to appear in several in-
vestigations. The monitor must first decide
which investigation is most promising, then which
suggestion within that investigation to explore
next. It chooses to further investigate the peak
node of highest priority. Choosing the next sug-
gestion to explore is not quite so simple, but
basically we want to explore the easiest, least
likely suggestion first, in order to resolve the
investigation most quickly.

PROCESSING CYCLES THROUGH SUCCESSIVE PK STATES

After the initial passive stage, in which re-
gions of potential interest are found, an initial
PK state is established with a few "seed sugges-
tions" about prominent regions. These are "prim-
itive" conjectures like CONVEX R. CONVEX is
primitive in the sense that there Is essentially
nothing below it in the GK network except proper-
ties like area and boundary which always can be
established. From this point on, processing en-
tails active knowledge, use of previous results
and general knowledge.

Processing consists of a sequence of cycles,
which carry us from one state of the PK to the
next. Each cycle begins with the exploration of
a suggestion chosen by the monitor. There may
follow one or more exploitations if successful re-
sults are obtained. (A similar process makes use
of failures.) Exploration and exploitation will
change the PK: new conjectures may be added, new
links, priorities may change, conjectures may be-
come successes or failures. At the conclusion of
the cycle, control returns to the monitor to be-
gin the next cycle.

Thus we have continual review of local inter-
actions by the global mechanisms. SEER cannot
continue blindly down one avenue, but must evalu-

ate the impact of results in a wider context. Al-
so while activity within a cycle is local in the
sense that it is centered on individual nodes,
this activity is not at all parochial. There is
not, for example, the usual "master/slave" rela-
tionship between processes. A result does not
report only to the calling process, but is a gre-
garious fellow who happily tells anyone who might
be interested, to whom he might be useful, of his
good fortune. Even a success in one investiga-
tion, may when exploited have a greater effect on
another investigation; the monitor can observe
this and switch its attention to the second in-
vestigation. In any case, as investigations
succeed, they in turn spawn larger investigations,
until eventually we reach a satisfactory level of
recognition, e.g. find the hammer.

METHODS ADVISE HOWV TO ESTABLISH RESULTS

We now have an idea of SEER's approach to what
to do and when to do it. There remains the im-
portant question of how to do it. SEER makes
suggestions about what to do, it also gives ad-
vice on how to do it. Actually the primary Im-
plementation of advice is as a form of suggestion.
SEER suggests methods for establishing results.

A method is also a node in the GK or PK
structure. The discussion up until now may have

Vision-7:

673

given the impression that these structures are
intertwined trees of AND gates. Actually they
involve AND/OR trees. An AND node links to a set
of subnodes which together define or establish
the node, a set of properties or parts; we have
seen examples. An OR node links down to a set of
subnodes each of which Is an alternative method
for establishing the node. Thus HANDLE may ac-
tually link to HANDLE-METHOD-1, HANDLE-METHOD-2,
etc. HANDLE-METHOD-1, for example, may involve
finding the handle when we already have the head
to advise us where to look. When the head is
found the exploitation of that result will suggest
HANDLE-METHOD-1. This approach to advice is very
explicit; advice on how to do something is a sug-
gestion of a specific method for doing it.

EXAMPLE
AN EXAMPLE WILL ILLUSTRATE MORE OF SEER IN
OPERATION
As in the AND/OR business, this discussion

was begun by simplifying SEER's structure and
operation as much as possible, and the picture-
has only been complicated as absolutely nec-
essary. For example, we eventually observed that
exploitation involved updating priorities as well
as creating new conjectures; however, we avoided
the fact that priority activities are carried out
by following a set of priority links which are
distinct from the links that indicate how items
define one another. (Most often, these two link
types will occur together; however, they do re-
present distinct relationships which have been
extracted from the basic concept of "relevance"
between pieces of visual knowledge.) This is
not the place for full detail; however, an ex-
ample of SEER's operation is in order which will
provide a feeling for the types of problems and
solutions which arise.
AN AFFINITY PASS PROVIDES AN INITIAL SET OF
REGIONS

Consider a scene consisting of a ball peen
hammer on a wooden work bench. First SEER makes
a region growing pass over the scene using what
we term an affinity process [5]. Briefly, rather
than seeking absolute uniformity, which may not
be present in the surfaces of a realistic object,
the process attempts to find regions which are
relatively homogeneous, whose pieces seem to hang
together more than they seem to belong with other
neighboring pieces of the scene. Rather than
finding one division of the scene, the process
builds up a tree of potentially interesting re-
gions. Below each region in the tree are the
subregions which were merged to form it. The
merging process works upwards from a initial divi-
sion of the scene into small cells, forming suc-
cessively larger regions.
SEER CHOOSES A PROCESSING SEQUENCE, BASED ON THE
GK STRUCTURE AND DEVELOPING RESULTS IN THE SCENE:
SEER "ZIGZAGS" GRADUALLY UPWARD FROM THE SEED
SUGGESTION THAT REGION 196 IS CONVEX, TO A CON-
JECTURE THAT THE REGION IS A HAVMER HEAD

The regions that "stand out" in the scene will
be found near the top of the tree, and so we be-
gin by making primitive conjectures about these.
In this case the initial PK will consist of seed

Frender

conjectures for regions R196, R191, R185, R140.
SEER explores the conjecture CONVEX R196, region
196 is convex. Fig. 1 shows this region super-
imposed on the scene.

FIG. I.

Region 196.

| MAGE £ 1 E(76, 611,31 871.7794.) POINTS H
SELECTED WINDOW I8 (153. 616.) (4gb. 670.)]
RESOLUTION 15: 4.8

The exploration of CONVEX R196 leads to the PK
structure:

/ CONVEX-NEEDS R196

CONVEX R196
Y} CONVEX-COMPUTATION R196
CONVEXNEEDS represents the Items needed to

perform the computation CONVEX-COMPUTATION which
will judge convexity. The computation cannot be
made until these items are found, so the GK node
CONVEX, and this PK instance, CONVEX R196, are
"serial" nodes. This means that the process of
choosing which suggestion to explore next is cons-
trained at this point. If SEER wishes to further
investigate CONVEX R196, it must establish CONVEX-
NEEDS R196 before it can explore CONVEX-COMPUTA-
TION R196. CONVEXNEEDS is explored in the next
cycle and the PK investigation of CONVEX R196
expands:

/CONVEX-RULL R196
/CONVEX-NEEDS R196
/ \AREA R196
CONVEX R196
k!
\CONVEX-COMPUTATION R196

Both AREA and CONVEX-HULL must be found in
order to satisfy the AND node CONVEXNEEDS RI96;
however, either may be found first in this case.
In writing up this portion of the GK, we do not
need to specify a serial order, but can program

in parallel, in some sense. Neither do we need to
consider explicitly all the different possible
execution time conditions that might influence the
decision on which to explore first: "if A has

been found, do B, however if C..." The relevant
conditions will be reflected in the state of the
PK, and the ad hoc local decisions we might make
have been generalized and given to SEER's priority
and monitor modules. These can take a global
view, based on the state of processing at decision
time.

If AREA R196 has been established already,
attention will automatically focus on CONVEX-HULL
R196. Perhaps neither is yet a success, but CON-
VEX-HULL R196 has been partially established, a

Vision-7:
67

subnode has succeeded. The exploitation of that
subnode will have improved the priority of CONVEX-
HULL R196. This may influence the monitor to
choose to explore CONVEX-HULL R196 before AREA
R196. Of course, in this example no results have
yet been obtained, and SEER chooses which node to
explore based on initial priorities found in the
GK. After SEER begins developing one branch, how-
ever, it is not locked into that direction. Per-
haps an easy method for obtaining the convex hull
fails, priorities shift, and the monitor can shift
attention to finding the area. As it happens,
finding the area and convex hull are rather
straightforward, and R196 is in fact determined

to be convex.

SEER now begins a typical "zigzag" upward
flow. Exploiting CONVEX R196 leads to several
suggestions being placed above CONVEX R196 in the
PK. Orne of these is chosen and investigated.
Several cycles of explorations expand the inves-
tigation back downward in the PK. Finally the
investigation succeeds and exploitation again
expands the PK upward. Once again an investiga-
tion is chosen to explore, and so it goes. This
basic flow is, of course, subject to many al-
terations; results within an investigation can
also propose new investigations; most signifi-
cantly SEER can choose to shift attention between
investigations, just as it can between branches
within an investigation.

Notice that the processing flow is neither
strictly "top down" nor "bottom up" but more
"middle out" [8]. A top down control structure
can direct its computations very efficiently. In
the extreme, we know precisely what we are look-
ing for and can employ a sensitive template to
merely verify its presence. A top down system,
however, lacks generality, because it begs the
question of how to choose the starting point in
an environment with multiple possibilities.

SEER attempts a compromise. A result proposes a
higher hypothesis, which can then be used as a
context for proceeding downward. Our view of
knowledge elements as "little men" [17] who know
how to explore and exploit themselves, facili-
tates this middle out model.

SEER soon establishes that region 196 is a

"bar", a basic shape category. This result pro-
poses several interesting suggestions: R196 is a
hammer handle, an occluded hammer handle, a
hammer head. The first two are explored but
quickly lead to failures.
INSTANTIATION FUNCTIONS ARE USED TO GENERATE AR-
GUMENTS FOR SUGGESTIONS: A REGION IS FOUND FOR
THE FACE OF THE HAVMER HEAD, AND THEN ANOTHER IS
CONJECTURED FOR THE HAMMER ITSELF

The GK indicates that to establish that R196
is a hammer head, SEER must establish that R196
has a striking face. Here we are forced to con-
front another major factor which was glossed
over earlier: the generation of arguments. Up

until now we have used the same argument, R196,
in all our PK statements. There has been no
problem in making new suggestions; exploring

CONVEXNEEDS R196, SEER looks at the GK node for
CONVEX-N, finds AREA node below it, and suggests
AREA R196, what else? But IS-A-HEAD R196 cannot
suggest TS-A-HEAD-FACE R196.

Freuder

Actually the GK nodes also have arguments,
variable arguments: CONVEXNEEDS X, AREA Y, IS-
A-HEAD Z. Attached to the links in the GK are
functions, instantiation functions, which indicate
the relationship between the arguments of con-
nected nodes. Very often the instantiation
function is simply the identity function, I. Thus
when SEER explores CONVEXNEEDS R196, it consults
CONVEXNEEDS X in the GK, follows a downward link
to AREA Y, and then applies the instantiation
function | to the value associated with X in the
PK, R196, to obtain a value for Y:I(R196) = R196.
The resulting statement AREA R196, is one of the
suggestions to be made in exploring CONVEXNEEDS
R196.

These instantion functions can be arbitrarily
complex; however, we try to keep most of the work
involved on the system in the nodes. Thus a com-
mon GK structure is generate and test:

/ FOO-GENERATE A

FOO A
\ FOO-TEST A
\ ZOT B
Here the FOO-GENERATE A node computes B and stores
it as a property of the node. The instantiation
function on the GK link from FOO-TEST X to ZOT Y
picks up B from the property list. B is then
tested for the ZOT property.

Often an additional complication is the need
to generate several alternatives for testing. |If
we search for the hammer head face in the original
affinity region tree, for example, we want to
allow for several tries at finding a region with
the right properties. There are various options.
The function on the link between FOO-TEST and ZOT
can be multivalued, for example. Though ZOT Y
only appears once in the GK, several instances of
it may be suggested when we explore a FOO-TEST
node in the PK. (FOO-TEST will be an OR node ob-
viously.)

It is often painful to generate every option
at once, however, and a looping mechanism must be
employed. There are methods of implementing
these in SEER, and one is in fact utilized in
searching for the hammer head face in this case.
However, they are a bit awkward at present, and
such technical details should not delay us here.
Suffice it to say that the face of the hammer is
indeed found in the affinity tree, region 145.
Actually this tree search is just one method for
finding a hammer head face: HAS-A-HEAD-FACE-
METHOD-1 R196 was the successful node. In gen-
eral other, techniques are possible for generating
desired regions. We are about to see one of
these.

When IS-A-HEAD R196 succeeds, it suggests the
presence of an encompassing hammer, and advises a
method for finding the hammer handle.

Actually, there is an intermediary step. [IS-
A-HEAD R196 suggests HAS-A-HEAD DR1, region DR1
has a hammer head as a subregion. This again is
a situation where a new argument is required.
One of the obvious things to do is to generate a
"dummy" argument. DR1, "dummy region one",
stands for the hammer region which SEER hopes to
define by the union of R196 and another region
for the handle, yet to be found. The instantia-
tion function in the GK link between I[S-A-HEAD

Vision-7:
67

and HAS-A-HEAD supplies the argument DR1.
RELATIONSHIPS PROVIDE ADVICE: THE ESTABLISHED HEAD
HELPS FIND THE HANDLE

HAS-A-HEAD DR1 succeeds immediately; normally
a method for establishing HAS-A-HEAD will need to
prove proper relationships hold between the head
and the hammer region (or the handle region).
However, this is obviously not an issue now. When
the handle is found the proper relationships will
be checked. Better yet we will use these rela-
tionships to guide the search for the handle.
Thus the exploitiation of HAS-A-HEAD suggests
HAS-A-HANDLE-METHOD-2, a method which uses the
head to find the handle. Also suggested is IS-A-
HAMMER-METHOD-1 DR1.

Investigating 1S-A-HAMMER-METHOD-1, SEER sug-
gests several methods for finding the handle but
method two obviously has priority at this point:

HAS-A-HEAD DR1

IS-A-HAMMER-METHOD-1 DR1

/HAS-A-HANDLE-METHOD-1 DR1
HAS-A-HANDLE DR1 -HAS-A-HANDLE-METHOD-2 DR1
\HASAHANDLEMETHOD-3 DR1

This method is based on a program developed by
Tomas Lozano-Perez which uses an ATN grammar to
look for regions with specified intensity pro-
files [101. The program requires a starting
point and a direction in which to look, along
with a specification of the type of intensity
profile being sought. SEER uses the head, R196,
which it has already found, and the expected re-
lationship between hammer heads and hammer han-
dles to determine a starting point and direction
to send to Lozano's program, along with the char-
acteristic curved profile of a plot of light in-
tensities across the width of a hammer handle.
Having hypothesized what we are looking for, and
guided in where to look, we are able to use this
specialized technique, and it is successful. A
region NR1, "new region one", not in the original
affinity tree, is returned. A few additional
checks ensure that it will serve for the hammer
handle.

Notice that the basic relationships between
hammer and head do not need to be checked, they
have already been verified in the process of
generating NR1. Contrast this with the distinct
passes of some passive knowledge systems, a des-
criptive phase would find regions and determine
relationships, then a recognition phase would
match these relationships with those in a model.
In SEER description and recognition tend to merge
together. The importance of this merging is one
reason SEER was designed to work directly from
camera input, as opposed to a "hand coded" sym-
bolic description of the scene. We do not wish
to beg the key question of acquiring a perceptual
description from the sensory data; rather we wish
to bring recognition level knowledge to bear on
it. The interaction with raw data keeps us
honest and ensures that our results have a
bearing on real visual problems.

SEER now has the entire hammer and the recog-
nition is complete.

Freuder

EVALUATION

SEER PERMITS A FLEXIBLE RESPONSE TO THE VARIETY IN
REALISTIC SCENES
It should be emphasized

that the above example

does not present the way that SEER recognizes

hammers. One of SEER's aims has been to deal with
realistic scenes and to provide a system with the
flexibility to deal with the variety that realis-

tic scenes hold. (Even a single hammer can be
given many different appearances by varying its
orientation, background, lighting.) SEER's modu-
lar organization allows us to program basic al-
ternatives, then add others incrementally as we
expand SEER's competence. SEER's mode of pro-
cessing, instantiating successive pieces of the
modular GK structure, which is both program and
description, allows it to enter the "hammer pro-
gram" at a variety of points and proceed in a
variety of paths through the structure, exploring
and establishing different subsets of the "hammer
description" in different orders—all in response
to the results being obtained on a given scene.
Thus, in the example we discussed, SEER began
by working up to a head recognition, then moved
back down to find the handle. The handle was

narrow and angled sharply, its wooden texture

blended into the workbench background. It might
have been hard to recognize; it was not found in
the initial affinity pass. (A "finer" pass with

this process might have succeeded, but could be

prohibitively expensive in time and space.) How-
ever, with the advice provided by the previously
found head, the handle was found, and relatively
easily.

We could have discussed another scene in which
the light wooden handle stands out while the rusty
head blends into the dark background. In this
scene SEER identifies the handle first, using a
different method than the one employed here, and
then goes on to find the head.

SEER ANALYZES AND IMPLEMENTS ACTIVE KNOWLEDGE

SEER is a programming language or system that
provides a framework for active knowledge pro-
gramming, in the sense that a language like
PLANNER [7] identifies and implements various

processing methods suitable for problem solving
activity. Some previous vision systems pioneered
by providing examples of active knowledge types of
activity, but were not extensible or general in
their approach. The Wizard line finding system
[23], for example, used lines, as they were found,
to suggest the location of further lines. This
was accomplished basically by assuming a parallel-
ipiped environment and trying to find lines that
completed parallelograms. However Wizard could
not supply ready or direct answers to questions
like: what about wedges; how do | add a facility
for dealing with wedges to the system and inte-
grate it with what is already there? What is the
general nature of the suggestion process; how can
| apply it to another body of knowledge; what kind
of analysis of the knowledge is required; in what
ways can | profit; what are the basic processes
that are required to implement suggestions; how
do | handle advice?

SEER attempts to provide tentative answers to

Vision-7:

676

questions like these. A language, GK, is provided
for programming visual knowledge. The structure
of the GK encourages the user to make use of ac-
tive knowledge, to think in terms of questions
like: if we have x, how does that help us, can
help us get y, is there an easy way to get y
given x? The control structure processes the GK
representation of relevance relationships and
applies them to a scene, implementing active know-
ledge. SEER contains the basic atomic elements,
notably exploitation, that one would want for an
active knowledge based system. | have analyzed
some of the functions, like suggestion and advice,
that such a system should carry out, and provided
a specific implementation as a concrete basis for
further work [4],

In short you should be able to come to this
work with the idea: "l want to attack my problem
with active knowledge." The response should be:
"Fine. Here is how to organize your knowledge;
give the result to a system with the elements of
SEER, and the knowledge will be applied actively."
It is encouraging to note that there is already
in the literature a piece of vision research [18]
which is good enough to give partial credit for
its control principles to an early version of
SEER [3].

SEER'S PRACTICAL ACCOMPLISHMENTS ARE QUITE
LIMITED
In practical terms SEER is quite primitive.

it

It can recognize a hammer in a few scenes. The
system is extensible, but it is still a consider-
able effort to expand its competence. The GK is

an awkward language to program in at present. An
intermediate program is needed to prompt the user
and "compile" simplified input formats, e.g. for
loops, into the proper GK network structure. (An
earlier version of SEER had a primitive input
assistant of this sort.) The state of vision re-
search is such that one still has to design and
debug many basic visual mechanisms as one pro-
ceeds, e.g. for determining surface shape, par-
ticularly where one is looking for methods that
can benefit from advice. Making and investiga-
ting wrong suggestions is painful, and the over-
head of building and maintaining the PK data
structure is significant: efficiency needs to be
increased in many ways. For example, it is con-
venient but often wasteful to search the affinity
tree in generating region arguments; too many use-
less regions can be conjectured about. The search
process may be subject to improvement, some has
already been made; but direct methods for veri-
fying conjectured regions, like the Lozano pro-
gram, should be more efficient, if they can be
made as tolerant of nonuniformity as the affinity
process is. Indeed it may prove that we need to
be more definite about the organization of the
scene into primitives units before beginning to
make conjectures. Of course, given the diffi-
culty of the visual processing problem, and the
non-specialized nature of our computational hard-
ware, we can expect any reasonably general sys-
tem to be rather demanding of time and space.

SEER is limited to hammers at the moment.
viously the basic elements of the system, the
control structures, data structures, region gen-
eration, etc., are quite general, and GK knowledge

Ob-

Freuder

could be added for other objects. The system al-
ready deals with many different objects and prop-
erties, in the parts and features of hammers.
There are issues that would be raised more force-
fully by a more diverse and a larger domain. How-
ever, SEER has chosen to concentrate on those
problems raised by the diversity inherent in dif-
ferent realistic examples of even a single class
of object. SEER was tested on several scenes with
real everyday hammers, with a couple of orienta-
tion, background and lighting combinations, and

a case of occlusion; as opposed, for example, to
several objects, a single stylized model of each,
uniformly painted, and on a single contrasting
background.

SEER EXTENDS AND IMPLEMENTS SEVERAL BASIC A.l.

PRINCIPLES

The immediate impetus for SEER was the heter-
archy concept of Minsky and Papert 113, 15, 14,
16], and its implementations in the M.|I.T. "copy
demo" system of Winston, Horn, Binford, Freuder,
et al. [22]. Earlier ideas in domain directed
processing [2, 19] also can be seen in the active
knowledge approach. The basic implementation

mechanisms of exploitation and exploration reflect
the antecedent/consequent distinction most effec-
tively analyzed by Hewitt [7]. The development,

or at least the description, of SEER has been in-
fluenced by several ideas that came to prominence

during the progress of this work. The little man
or actor model (Papert, Hewitt, Kay, etc. [17, 91)
provides a good metaphor for the local activity

centered in the knowledge structure nodes; Min-
sky's frame model [12] can be related to the
larger organization of the knowledge. Related

work on heterarchical and knowledge-based control

structures can be found in vision [11, 24, 20,

6] as well as other fields, notably speech re-

cognition [1].

REFERENCES

[1] L. Erman & V. Lesser, "A multi-level organi-

zation for problem solving using many, diverse,

cooperating sources of knowledge, |JCAI-75, 1975.

[2] H.A. Ernst, "MH-1, a computer-operated mech-

anical hand," D.Sc. Thesis, M.I.T., 1961.

[3] E.C. Freuder, "Active knowledge," WP-53, Al

Lab, M.I.T., MA. 02139, 1973.

[4] E.C. Freuder, "A computer system for visual

recognition using active knowledge," Al TR-345,

Al Lab, M.I.T., MA 02139, 1976.

[5] E.C. Freuder, "Affinity: a relative approach

to region growing," Comp. Graph. & Im. Proc. 5,

254-264, 1976.

[6] T. Garvey, "Perceptual strategies for pur-

posive vision," TN-117, SRI, Menlo Pk, CA, 1976.

[7] C. Hewitt, "Description and theoretical

analysis (using schemata) of PLANNER," Al TR-258,

Al Lab, M.I.T., MA 02139, 1972.

[8] C. Hewitt, P. Bishop & R. Steiger, "A univer-

sal modular ACTOR formalism for artificial in-

telligence," |JCAI-73,235-245, 1973.

[9] C. Hewitt & B. Smith, "Towards a programming

apprentice," I[EEE Trans, on S.E., SE-1, 26-45,1975

[10] T. Lozano-Perez, "Parsing intensity pro-

files," Comp. Graph. & Im. Proc, 6, 43-60, 1977.
Vision-7:

677

[11] D. Milner, "A hierarchical picture interpre-
tation system wutilising contextual information,"
Dept. of Mach. Int. & Perception,U. of Edinburgh,
1970.

[12] M. Minsky, "A framework for representing
knowledge," in P. Winston, Ed., The Psychology of
Computer Vision, McGraw-Hill, NY, 1975.
[13] M. Minsky & S. Papert, "Research on

intelli-

gent automata," in Project MAC Progress Report
IV, M.I.T. Press, MA 02139, 1967.

[14] M. Minsky & S. Papert, "Proposal to ARPA for
research on artificial intelligence at M.I.T.
1970-1971," AIM 185, Al Lab, M.I.T., MA 02139
1970.

[15] M. Minsky & S. Papert, "1968-1969 progress
report," AIM 200, Al Lab, M.I.T, MA 02139, 1970.
[16] M. Minsky & S. Papert, "Progress report,"
AIM 252, Al Lab, M.I.T., MA 02139, 1972.

[17] S. Papert, "Teaching children to be mathe-
maticians versus teaching about mathematics,"
Int. J.Math. Educ. Sci. Technol., 3, 249-262,
1972.

[18] R.J. Popplestone, CM. Brown, A.P. Ambler,

G.F. Crawford,
cylinder

"Forming models of plane-and-
faceted bodies from light stripes,”
IJCAI-75, 664-668, 1975.

[19] H.A. Simon, The Sciences of the Artificial,
M.I.T. Press, M.I.T., MA 02139, 1969.

[20] K. Turner, "Computer perception of curved
objects using a tv camera, Ph.D. Thesis, U. of
Edinburgh, 1974.

[21] D. Waltz, "Generating semantic descriptions
from drawings of scenes with shadows," Al
TR-271, Al Lab, M.I.T., MA 02139, 1972,

[22] P.H. Winston, "The M.|I.T. robot," in B.
Meltzer and D. Mlchie, Eds., Machine Intelli-
gence 7, Wiley, NY, 1972.

[23] P.H. Winston, "Wizard," WP-24, Al
M.I.T., MA 02139, 1972.
[24] Y. Yakimovsky and J.

Lab,

Feldman, "A semantics-

based decision theory region analyzer,"
IJCAI-73, 1973.
Freuder

