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ABSTRACT

The Hough transformation can detect
straight lines in an edge-enhanced pic-
ture; however, its extension to recover
ellipses requires too much computing
time. This paper proposes a modified
method which utilizes two properties of
an ellipse in such a way that it itera-
tively searches for clusters in two dif-
ferent parameter spaces to find visible
ellipses, then evaluates their parameters
by the least means squares method.

INTRODUCTION

Analysis of a scene containing many
complicated-shaped objects is a current
problem of computer vision. Since the
usual line finders fail to extract a
reliable line drawing from the scene,
Falk and Griffith have proposed methods
which identify each object in a blocks
world by utilizing input data and ex-
ternal constraints so as to suggest and
test hypotheses on the scene [Falk 72],
[Griffith 73]. In order for a computer
vision system to analyze more complex
pictures containing real objects such as
telephones, cups, or industrial parts,
their heuristics have been modified as
follows: (1) search for simple familiar
patterns such as polygons and ellipses
in strong feature points in the pictures,
(2) select models of objects whose fea-
tures contain these patterns, (3) test
the validity of the models by examining
whether weak feature points around the
patterns satisfy the proposed models
[Tsuji 75].

Line finding methods utilizing the
Hough transformation are useful to find
polygons, especially partly occuluded
ones, because they utilize global pro-
perties of edge points [Hough 62],[Duda
72],[Griffith 73],[O'Gorman 76]. Duda and
Hart also discussed possibilities of ex-
tending their methods to find curves in
the picture [Duda 72], and Shapiro ana-
lyzed the performance of the transfor-
mation method to detect curves in noisy
pictures [Shapiro 75]. Direct applica-
tion of the parameterization, however,
is limited to curves with a small number
of parameters, say two or three at most,
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since necessary memory space and com-
puting time grow exponentially with the
number of parameters. For example, de-
tection of circles requires a three-

dimensional array of accumulators, and a
modification of the algorithm is neces-
sary to recover the circular arcs in a

reasonable time [Kimme 75].

This paper describes how we can modi-
fy the paramerization technique so as to
recover both linear and elliptic edges,
which are important cues for analyzing
scenes containing artificially con-
structed objects. We can easily detect
and erase long straight lines in an edge-
enhanced picture; then the problem is how
to efficiently detect ellipses (each of
which has five unknown parameters) in a
set of feature points on curved or short
linear segments. Instead of utilizing
a five-dimensional array of accumulators,
we sequentially search for clusters in
two different parameter spaces; one for
finding the approximate positions of
centers of ellipses and selecting candi-
date feature points for an easily detect-
able ellipse, and the other for testing
whether the candidates are exactly on the
ellipses or not. There exist interac-
tions between different patterns when one
maps edge points into the parameter spaces.
As the result, ellipses with many edge
elements sometimes mask weak clusters cor-
responding to other ellipses. Therefore,
the computer vision system iteratively
searches for an easily visible ellipse in
a set of feature points in an edge-en-
hanced picture from which edge points of
the recovered long straight lines and el-
lipses have been erased.

DETECTION OF ELLIPSES

The direct application of the Hough
transformation to the detection of ellip-
tic objects in a digitized picture re-
quires a five-dimensional array of accumu-

lators; the array is indexed by five para-
meters specifying the location, shape,
and orientation of an ellipse. Its usuage,

however, is impractical because of ex-
cessing computing time. An idea for over-
coming the difficulty is as follows:
instead of the time consuming process of
mapping each edge point in the picture
into the five-dimensional parameter space,
we sequentially examine clusters in both
a two-dimensional and a one-dimensional
space, by utilizing two well known pro-
perties of an ellipse, and efficiently
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select a small number of candidate edge
points for an easily visible ellipse.
Next, the five unknown parameters of the
best fitting ellipse to the candidates
are evaluated by the least mean squares
method.
Erasing Long Straight Lines in Edge-
Enhanced Picture

We preprocess a digitized input pic-
ture to find edge points by applying a
simple gradient operator to every point
in the picture and thresholding it, and
we thus obtain an edge-enhanced picture E
in which each edge element is character-
ized by its location (x,y) and quantized
direction 9 which ranges between 0° and
360° (the distinctness of the edge point
is not used in the following process).
Next, the edge points are arranged in a
set {e } of edge lists: the edge list eg
is a collection of edge points of a
direction 6. Now the line finding method
[0'Gorman 76] detects sets of collinear
edge points in E and registers them in a
list of straight lines, however some of
themm may belong to ellipses. Straight
lines longer than a threshold are con-
sidered not to be parts of the elliptic
arcs, and their edge points are erased
from E and {e } in order to simplify the
following algorithm for detecting el-
lipses.

Detection of Centers of Ellipses

Let us consider two parallel tangents
at P and Q to an ellipse (see Fig.l (a)).
A simple property, namely that P and Q
are at equal distance from the center O
of the ellipse, is useful for finding
locations of ellipses in E by a two-
dimensional accumulator array {a }; the
array is indexed two parameters X,y (X,Yy)
specifying the location of an ellipse.
For each pair of edge points (x,,y-) and
(X2,¥2) in an edge list e (a collection
of edge points having an orientation e),
an accumulator at ((x,+x2)/2,(y +y )/2)
is incremented by one. After™all pairs
of the set {eq> are processed in this way,
the array is locally averaged by using
a 3x3 neighborhood. Thus, the accumulator
corresponding to the center of a complete
ellipse has a count approximately pro-
portional to the length of its circum-

ference.
Now, we search for the accumulator
a with the highest count, whose in-

dices specify the location of the center
of an easily visible ellipse (or concen-
tric ellipses), and then select all pairs
of edge elements which increased a in
the above-mentioned process, as can-
didates for the ellipse. The process of
erasing long straight lines is necessary
before applying this center-finding al-

gorithm because two parallel lines gene-
rate a mountain ridge, considerably dis-

(a)

» (b}

Fig.l Two properties of an ellipse.

(a) CP=O(% if two _tangents are parallel.
(b) (VOP?)+(1/0Q?*)=I/R*=constant, if
/POQ=90°

turbing the peak-finding process, in the

array.

Testing Candidates for the Ellipse and
Evaluation of Its Parameters

Let C be the set of the selected can-
didates for the ellipse. The above-men-
tioned center-finding procedure simply
collects edge points such that they are
on symmetrical curved or linear segments
to the point (m,n) in E; therefore a mem
ber in C is not always on an ellipse.
Application of the least mean squares me-
thod to fitting an ellipse to C is likely
to give an unsatisfiable result, espe-
cially when there exist concentric el-
lipses, because the fitting process is
significantly disturbed by the symmetri-
cal patterns not on one ellipse. Thus
we must select from the candidates the
edge points which lie exactly on an el-
lipse by utilizing a property of an el-
lipse, and then apply the fitting process
for evaluating accurate parameters.

Consider two points P and Q on an el-
lipse such that /POQ=90°, where O is the
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center of the ellipse
It is easy to prove

(see Fig,1(b)).
the property that

D SR S
op? on? R2

= constant

(1)

for an ellipse.

Now, a one-dimensional accumulator
array { a. } is used to test the candi-
dates. ' We assume that 0 is located
at (m,n) obtained by the center-finding
algorithm. If any two points P and Q

in C satisfy /POQ=90°+ 6 ( 6 is a thres-
hold value), then the" accumulator cor-
responding to R evaluated by (1) is
incremented by one. After processing
all members in C in this way, we obtain
a histogram of R, which gives us valu-
able information on ellipses in C ; mul-
tiple prominent peaks in it suggest the
existence of concentric ellipses in C
(however the number of the ellipses is
less than that of the peaks in most

cases), or we would decide that there is
no visible ellipse in C , if the histo-
gram contains only low hills.

Mutual interactions between edge
points on the concentric ellipses gene-
rate significant false peaks in the
histogram, sometimes higher than the
peaks corresponding to true ellipses.
The smallest ellipse in C is examined
first, because the count in the accumu-
lator corresponding to it is less sensi-
tive to this interference. We select
all pairs of edge points, contributing
to the leftmost peak in the histogram,
and then evaluate five parameters of
the best fitting ellipse to these edge
points by the least mean squares method.
The fitting process is judged to be a
failure if the edge points in E cover
only a small fraction of this ellipse.
Otherwise, it is considered a success,
and the edge points on the recovered
ellipse are excluded from E, C and {e )
in order to eliminate their interaction
with other ellipses. The candidate-
testing process is iterated by calcu-
lating a new histogam of R in updated C
and examining the leftmost peak in it,
until the histogram does not contain
any prominent peak.

The above-mentioned procedure for
testing candidates is iteratively ap-
plied to all prominent clusters in the
two-dimensional accumulator array to re-
cover all visible ellipses in the pic-
ture. Finally, we test whether each
short line in the list of straight lines
belongs to the recovered ellipses or
not. Since the edge points on these el-
lipses have been excluded from the up-

dated edge-enhanced picture E , we dis-
card the line from the list if the edge
points still remaining in E are not or
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other-
line.

sparsely distributed on the
wise it qualifies for

line;
a straight

EXPERIMENTAL RESULTS

The following example shows some of
the features of the ellipse-finding al-
gorithm. Fig.2 (a) shows a 128x128 digi-
tized picture with 64 gray levels, which
contains three parts of a gasoline engine;
two cylindrical parts and a rod. A
simple gradient operator using a 3x3 win-
dow [0'Gorman 76] with a noise threshold
of 30 is applied to obtain an edge-en-
hanced picture. Fig.2 (b) shows the re-
sult, which contains 2643 edge points.

(b)
Input picture.
A 128 by 128 digitized picture,

Fig.2
(a)

(b)
Setting the quantization step of 8 at 6°,

containing three industrial parts.
An edge-enhanced picture of (a).

we classify the edge points into 30
groups (edge lists). At this point, the
line finding algorithm is applied, and

all linear segments are detected.
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Now let us consider how we can select

the threshold for discriminating long
straight lines from flat portions of el-
lipses. The maximum length L of a flat

portion of an ellipse described by
(x/a)? + (y/b)? =1 is

Lm = 2(aVb) (m/180°) (6°/2)

= (al/b)(al/10) (2)
Considering the size of the picture is
128 by 128, we expect a<50. Therefore,
not highly concentric ellipses (a<b) do
not include linear segments longer than
20. Thus we register longer segments
than 20 in the list of straight lines,
and erase their edge points. The edge

list and E now contain 1993 edge elements.

Next, the ellipse-finding algorithm
is applied. After all pairs of the edge
points in every edge list are mapped into
the two-dimensional (128x128) array of
accumulators, the array is locally ave-
raged using a 3x3 neighborhood. The con-
tents of these accumulators are displayed
in Fig.3; there exist two prominent

clusters higher than a noise threshold of
100.

Fig.3 Contents of the two-dimensional
array of accumulators after mapping
pairs of parallel edge points.
There are two prominent peaks.

After all pairs of edge points, which
contributed to the highest (left) peak in
Fig.3, are selected as candidates for

ellipses, we apply to them the candidate-
testing algorithm, whose first step is
to calculate the*histogram of R of the
candidates. The result is illustrated
Fig.4 (a). Since the number of edge

points on an ellipse depends on the size

in

of the ellipse, it seems reasonable to
use a threshold function which is propor-
tional to R, for suppressing noises in
the histogram, and 15R is used in this

experiment. After
threshold function,
the single prominent peak
and then the
can easily fits elliptic arcs

application of this
a peak finder detects
in Fig.4 (a),
least mean squares method
to the edge
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{a)

{b)

I
HiRIETS

{c)

Fig.4 Contents of the one-dimensional
array of accumulators.

(a) Histogram of R for the cluster of
the left peak in Fig.3.

(b) Histogram of R for the cluster of
the right peak in Fig.3.

(c) Histogram of R after erasing the
edge points on the ellipse corres-
ponding to the leftmost peak in
(b).
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points of the peak. Selection of another
threshold function with a smaller coef-
ficient does not influence the finally
obtained ellipses, but much computing
time is wasted by processing low peaks and
rejecting them as noise.

Fig.4 (b) shows another histogram of
R, obtained for the second peak in Fig.3,
in which we can observe three prominent
peaks and a medium peak. Edge points
contributing to the left peak are selected
as qualified members for the smallest el-
lipse in C, and then the least mean
squares method fits an ellipse to them,
which corresponds to the inner ellipse on
the cylindrical part at the right side in
the input picture. Erasing the edge
points on that ellipse from the set C of
candidates, we again calculate a new his-
togram of R. The result (Fig.4(c)) im-
plies that the second peak in Fig.4 (b)
is a false one, generated by the interac-
tion of the recovered ellipse with the
other, because the peak disappears as a
result of erasing the edge points contri-
buting to the adjacent peak. Since the
left peak in the new histogram happens to
be lower than the threshold function of
15R, we examine the right peak and detect
the outer ellipse on the right part. If
a lower threshold function, say 10R, is
used, then the left peak which corresponds
to the elliptic arcs between the two el-
lipses is examined, but the peak is judged
to be a false one because the edge points
in E cover only a small fraction of el-
lipses evaluated by the least mean squares
method. Finally, the linear segments,
which are judged as parts of the recovered
ellipses, are discarded from the list of
lines, and we obtain the result displayed
in Fig.5.

The procedure is programmed in FORTRAN,

and the total computing time on a mini-
computer PDPS8/E
24kbytes of buffer memory,
is about 13 min 20 sec;

(12kw of core memory,
and 1.8Mw disk

memory) 2 min 10

|

Fig.5 Detected

linear and elliptic edges.
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sec for calculating the gradients and
storing them in the disk, 1 min 40 sec
for detecting the linear segments, and

9 min 30 sec for recovering the ellipses
and evaluating their parameters. This
computing time seems rather long; however,
we pay more attention to the ratio of the
time for recovering the ellipses to that
for recovering the straight lines, since
the computing time depends on the ability
of the computer used. The ratio 6:1 for
our example seems to be acceptable when
we consider the complexity of the shapes
of ellipses.

DISCUSSION

The proposed method seems to be satis-
factory for extracting the global features
of the artificially constructed objects.
Although it can detect some of partially
hidden ellipses, such as the elliptic
arcs on the object at the left side in
Fig.5, there are many counterexamples. A
partially obscured ellipse is not detect-
able if it contains a less number of edge
points symmetrical to the center of the

ellipse than the threshold for finding
peaks in the two-dimensional array.
Setting the threshold at a lower level is

because it can add few el-
result while much computing
time is wasted by examining a large number
of weak clusters in the array. An example
of another class of undetected ellipses

is shown in Fig.6. We can recover a clus-
ter corresponding to the center of the el-
lipse; however, the number of the edge
points which have partners mapped together
in the one-dimensional accumulator array
is very small, so that the method mis-
perceives the elliptic arcs as noise.

Another difficulty arises when we
apply the method to a picture containing
very large or highly concentric ellipses.
Flat portions of the ellipses are erased

not effective,
lipses to the

Fig.6 An example of elliptic arcs con-
taining few pairs of edge points
mapped in the histogram of R.
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from the edge-enhanced picture before
applying the ellipse-finding algorithm,
because they satisfy the conditions for
the long straight lines. However, the
other parts of the ellipses are generally
detected as sets of elliptic arcs, there-
fore we could improve the method by
adding a function for finding straight
lines which connect these elliptic arcs,
and then fitting again an ellipse to the
edge points on them.

Finally, let us briefly study on the
computation required for detecting el-
lipses using the approach of Duda and
Hart, who have shown that the computation
required for obtaining lines increases
with the number of edge points in the pic-
ture [Duda 72]. Suppose that the en-
hanced picture E has n edge points after
erasing the long straight lines from it.
If we detect ellipses by searching the
five-dimensional parameter space for
clusters, then the computation required
for mapping each edge element into the
space is proportional to d", where d is
the number of quantization of a parameter.
Thus, the computation required for de-
tecting ellipses is proportional to nd*

The computing time of the proposed
method is spent in searching the two para-
meter spaces and evaluating parameters of
the ellipses. If the distribution of the
directions of edges is uniform in [0°,180°) ,
then an edge list has n/dgelements, where
de is the number of quantization of 6.
Therefore, n%2dy? pairs of each edge list
are mapped in the two-dimensional array,
and the total number of mapping parallel
edge elements is n2/2d9 In order to
obtain edge elements contributing to the
prominent peaks, this mapping process is
repeated again, thus time t; for the
center-finding process is approximately
proportional to n?/dg On the other hand,
mapping into the one-dimenaional space
and evaluating parameters is done on much
smaller numbers of candidates than n;
thus the ratio of the computing time ¢,
of this process to t; will become very
small for large n.

When we simply compare n®/ds with nd*
superiority of the proposed method over
the direct application of parametrization
is apparent. However, pictures with many
edge points requires too much computing

time, so that we must make n as small as
possible. One idea for decreasing n is
to apply a thinning operator to the edge-
enhanced picture before mapping into the
parameter spaces.
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