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ABSTRACT 

This paper describes a mechanical assembly system, L A M A , 
that transforms high level assembly descriptions into programs 
for a computer controlled manipulator. 

0. INTRODUCTION 

Our long-range goal is to create machines that do work of 
the s o r t tha t t oday r e q u i r e s m a n i p u l a t i v e , v i s u a l , o r 
problem-solv ing skill not usually associated wi th assembly 
automation. We believe that such machines are needed for 
several reasons: 
■ To get peop le out of j obs tha t $re d a n g e r o u s or 

dehumanizing. 
■ To get jobs done that people cannot or will not do. 
■ To reve rse the cont inuing t rend t oward excess ive 

standardization. 
■ To compete. 
Considerable progress has been made. In many laborator ies, 
robots with sophisticated manipulators assemble devices ranging 
from bearings to pumps, often working with tolerances requiring 
force feedback to get things mated. 

The programs driving such impressive demonstrations have 
been straightforward, but tedious to write. The reason is that 
high level languages are only now under development for 
automatic assembly. Assembly programming is sti l l in the 
assembly-language era, so to speak. The programmer is forced 
to think in terms of instructions like these: 

Move in the direction 6 at speed s until you reach position p. 
Exert a force f by moving in the direction d. 

It would be bet ter , and certainly cheaper, if the programmer 
could th ink instead in terms of suggest ions l ike these for 
assembling part of an engine: 

Insert the piston pin partway into the piston. 
Place the rod's pin end on the piston pin inside the piston. 
Push the pin through the rod and the piston. 

That is, we would like to tell our robots what to do in terms that 
• re comfortable to us, leaving them to fill in the details. Rough 
English descr ipt ion, or something close to English but less 
ambiguous, is what we have in mind. A mechanical assembly 
language that works with-such descriptions is on the critical path 
toward economically viable robot systems. 

Our short- range goal, then, is to do something about 
creating such a language. Indeed, this paper is about L A M A , an 
acronym for Language for Automatic Mechanical Assembly. It 
consists of a sample of the work described more fully in a new 
thesis by the first author [Lozano-Perez] on topics suggested by 
the s e c o n d . The t r a n s l a t i o n b e t w e e n what the human 
fo reman-programmer descr ibes and what the manipu la tor 
controller wants, in our design, is to take place in two steps: 
■ First, the human's Assembly Description, with many missing 

details, is converted into an Assembly Plan, which has the 
gaps filled in, but remains very high level. A very verbose 
and careful human's assembly deception would differ only 
•lightly or not at all from the assembly plan. 

■ Second, the Assembly Plan is converted into a Manipulator 
Program, w i t h t h i ngs w o r k e d out to t he l e v e l o f 
coord ina tes , t r a j ec to r i es , fo rces , and to rques . This 
conversion requires, in part, a pick and place phase and a 
feedback strategy phase. 
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The pick and place phase converts the assembly plan into 

a program that assumes ideal position information and positioning 
accuracy. It must specify the manipulator motions that achieve 
the desired relationships between the parts. Both of these 
assumptions are untenable. The role of feedback planning is to 
expand skeleton programs embodying feedback strategies to 
carry out the assembly operations taking into account the 
imperfect ion of the data and the positioning er rors in the 
manipulator. The resulting program is the desired manipulator 
program. 

The pick-and-place and feedback-strategy phases have 
been examined in detail and prototype programs have been 
implemented that do these jobs. In this paper, we will focus on 
the phase dealing with feedback strategy. 

We begin, however, with a survey of some of the decisions 
that must be made when specifying an automatic mechanical 
assembly in general, and we also give a more complete overview 
of the design of an overall system. We will see that three basic 
themes underlie the design: 

High level assembly operations can be represented by 
program plans (called skeletons) which can be expanded as 
required by using facts about the specific task at hand. 

The desired effect of the basic manipulator motions can be 
descr ibed in terms of a few geometr ica l and spat ia l 
relations. We believe that the assembly problem can be 
seen as the problem of achieving a ce r ta in set of 
geometrical relations between objects while avoiding 
unwanted collisions. 

■ Choices for location and motion parameters should be made 
by identifying all the constraints on the solution, finding a 
range of values in which the solution may lie and picking 
an element from that range. 

1. THE NATURE OF THE PROBLEM 

This s e c t i o n t r i e s to h igh l i gh t the d i f f i c u l t i e s o f 
programming assembly operations by examining a part icular 
assembly task in some detail. 

Fig. 1 shows the piston subassembly from a model aircraft 
engine. We will use it to emphasize the number and complexity 
of the decisions to be made in planning an assembly. The 
assembly has been carried out using the Silver roboi manipulator 
at the MIT Art i f ic ial Intelligence Laboratory [Si lver ] . This 
manipulator is not a fully general position and or ientat ion 
generator because it has only five degrees of freedom, not six. 
They ere divided in the following manner: ( I ) em xy table, (2) a 
wrist which can displace and rotate along the z axis and (3) a 
vise which rotates about the x axis (see Fig. 2). The manipulator 
is equipped with • force sensing wrist capable of resolving the 
xyz components of the forces and torques acting on the wrist. 
This allows the manipulator to generate and detect forces. The 
use of force feedback enables the Silver Robot System to 
per form precise assembly tasks whose crit ical clearances are 
below its positional accuracy [Inoue} 

The hard part of this engine subassembly is inserting the 
p i s t o n - p i n th rough the p is ton p in-ho le and th rough the 
piston-rod. The obvious way to do this (for a human) is to line 
up the holes in the piston-rod and the piston and then push the 
piston-pin through both holes. This operation is impossible using 
the manipulator configuration we have described. Recall we only 
have two sets of parallel fingers available; one set is the hand, 
the other the vise. This restr ict ion forces us to break the 
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problem up into three parts. 
First the pin is inserted partway into the piston. Then the 

piston-rod's pin-end can be placed onto the pin inside the piston. 
And finally, the pin pushed through the rod and the piston-hole. 

This description of the piston assembly simply specifies 
three snapshots of the system state. Each state is specified in 
terms of the spatial relations between the parts involved. The 
verbs used in the description (insert, place and push) give some 
information as to the nature of the operation necessary to 
achieve each state. Note that no mention was made of the 
manipulator. The constraint that only one hand and a vise is 
available dictates the nature of the solution, but the manipulator 
motions necessary to carry out the solution are not specified, nor 
are they obvious. 

The assembly can be carried out by first placing the pin in 
the vise such that its main axis is horizontal (Fig. 3a). Then the 
piston can be placed on the pin so that the cavity is facing 
upward. The rod can then be placed on the portion of pin that is 
projecting into the piston's cavity (Fig. 3b). The manipulator can 
then grasp the piston, remove the piston from the vise, and after 
closing the vise, push the part of the pin protruding from the 
piston against the vise (Figs. 3c&d). We call this the assembly 
plan. 

For each operation in the assembly plan, the manipulator 
program must specify the position and orientation of the fingers 
such that they can securely grasp some part of the object to be 
moved. The program must also specify a t ra jectory for the 
manipulator that is not likely to damage the manipulator or 
disturb any of the other parts. 

The assembly description and the assembly plan mention 
only the spatial relationships that must hold between the parts in 
the goal s ta te . These re lat ionships invo lve much g rea te r 
positional accuracy than is directly achievable by the manipulator 
to be used. These relationships can be achieved by employing 
force feedback techniques such as those described in [Inoue]. 

Inoue has developed a program which, dr iven by force 
feedback, does peg-in-hole insertion. Unfortunately, his program 
cannot be used direct ly in the task at hand. Inoue's program 

- assumes that the motions of the hand correspond direct ly to 
mot ions of the hole. The assembly plan descr ibed above 
specifies that the piston-rod be held at the opposite end from 
the point of insertion. This is because the insertion is happening 
inside the piston. Inoue's program must be changed to account 
for this. 

Like most programs, Inoue's has parameters. The length of 
certain motions and the magnitude of some forces are not 
specified. These parameters must be specified for the task at 
hand. 

Inoue's program also lacks error detection capabil i t ies. 
When the manipulator is told to move in a given direction until a 
force above some threshold is felt , no posit ion bounds are 
specified. This can give rise to severe errors. 

These considerat ions point to one, ve r y impo r t an t , 
conclusion: Inoue's program is not so much a general u t i l i ty 
program as a specification of an assembly strategy to be adapted 
to many different geometric environments. This is true of most 
manipu la tor programs because of the i r dependence on 
assumptions about the geometry of the task. 

Let us summarize the problems to be faced in specifying an 
assembly operation. 
■ Describe the objects to be assembled. 
■ Specify a plan for the assembly. The details of the plan will 

depend on the manipulator configuration available and on 
the capabilities of the assembly system. 

■ Determine the grasping position and or ientat ion for the 
objects involved in each operation. 

■ Determine a collision free path between the or ig in and 
destination of all motions. ' 

■ Tailor the assembly strategies to fit the particular geometric 
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environment. This involves providing parameters to the 
strategies. 

■ Examine the strategies for likely errors and determine the 
actions to be taken in case of failure. 

2. THE NATURE OF THE APPROACH 

The current implementation of L A M A has focused on a 
subset of the problems outlined in the previous section. The 
most important are grasping, tailoring assembly strategies and 
error prediction. This section briefly outlines our approach to 
these problems. 

Computing a grasp point on an object from a description of 
the object and its surrounding environment is a very dif f icult 
computational problem. The basic mechanism needed to solve the 
problem is the ability to detect that attempting to grasp some 
part of the object will cause a collision. This involves computing 
the geometr ic in te rsec t ion of the solids making up the 
manipulator description with the object to be grasped and with 
any nearby object. A non-null intersection indicates a collision. 
A simple approach to solving this problem would be to guess a 
grasp point and then test whether it is safe. Typically there is 
an infinite number of possibilities and the challenge is to choose 
a grasp point with some confidence that it is a good choice. Trial 
and error methods are unsatisfactory in this context because not 
only do they have very poor worst-case behavior but once a 
result is found, it is very difficult to evaluate it without knowing 
the alternatives. Our approach to grasping, briefly described in 
section 3, relies on describing the range of possible grasp points 
as a few sets of parameterized grasp positions which can be 
evaluated and compared as units. 

In s e c t i o n 1, we p o i n t e d out the d e p e n d e n c e of 
manipulator programs on the particular geometry they were 
designed for. A useful mechanical assembly system must have 
some means of representing assembly strategies that does not 
make too many assumptions about the environment where they 
are to be used. Our approach to making the strategies as 
general as possible is to have each of the steps in the strategy 
be essentially a goal statement. Each operation is decribed in 
terms of the geometric relations it is meant to achieve in a 
coordinate system specified by the strategy. The assembly 
strategies can then be adapted to a particular situation by 
computing the parameters needed to achieve the goal of the 
individual steps of the strategy. 

Once we have available a description of the goal of each 
step, then some errors can be predicted by simulating the 
operations, taking into account some of the uncertainty in the 
posit ions of objects. These error predictions can be used to 
solicit corrective actions from the user. 

Section 3 will describe in more detail how the assembly 
strategies are used. 

3 AN OVERVIEW OF THE LAMA SYSTEM 

This section describes how we believe the piston assembly 
will be processed by L A M A when it is completely implemented. 
Prototype programs currently exist to do parts description, the 
Pick and Place phase and a simple Feedback Strategy phase. No 
program exists to do the Assembly Planning. 

The parts to be assembled must first be described to the 
system. The user uses the system interactively to define models 
of the parts. Complex objects are described as unions of a few 
kinds of primitive object types. The primitive objects currently 
available in implemented parts of L A M A are a cuboid and a 
cylinder (both as solids and holes). 

Fig. 4 shows a schematic description of the models for the 
parts in the piston assembly. Note that the parts are arranged 
hierarchically. This allows a convenient treatment of subparts of 
objects. Any desired subparts can be represented as nodes in 
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the part model trees. Each node has information regarding the 
size, type and relative position of the subpart. All the subparts, 
including the holes, are approximated as rectangular or octagonal 
right prisms. This provides a uniform internal representation for 
all the object types. This representation simplifies the definitions 
of the spatial modelling operations. By generalizing to polyhedra 
the desired volumes can be approximated to any requi red 
accuracy. 

The next step is that of describing the assembly. Ideally, 
we wou ld l ike to spec i fy the assembly process by s imply 
describing the completed assembly. A more realistic goal is that 
of accepting assembly instructions similar to those given to 
people, as discussed in the introduction. 

The assembly description for the piston assembly is shown 
in F ig. 5. The assembly descr ip t ion s-pecifies on ly that 
operations, such as insertion, are to be performed on the parts. 
The individual operations ara often under-specified. Parame\ers 
• r e missing or only weakly constrained, e.g., insert the pin 
partway into the piston. No mention is made of the manipulator 
or of the strategies to be used to carry out the operat ions. 
Merely saying insert is not enough to specify an assembly 
operation. The actual motions carried out are sensitive to the 
shape and relative sizes of the parts. 

The f i rs t step in the transformation from user input to 
manipulator program is to completely specify the assembly 
description. This is the task of the Assembly Planner. It must 
f i rs t introduce into the description those operations that wi l l 
achieve the p re requ is i tes of the operat ions in the in i t i a l 
descr ipt ion. This requires specification of sOme high level 
manipulator commands such as GRASP, UNGRASP and PLACE. Then 
the operations must be completely specified and strategy choices 
made for them. The end result of this process is an assembly 
plan. In this plan each operation is ful ly specif ied and the 
pos i t ions and or ien ta t ions of the par ts invo lved are we l l 
constrained. An important point to note is that the plan still does 
not determine the manipulator motions necessary to carry out the 
assembly. The assembly plan corresponding to the assembly 
description in Fig. 5 is shown in Fig. 6. 

The current implementation assumes that the Assembly 
Plan is directly available as an input to the system. We can then 
focus on the process of transforming an assembly plan into a 
manipulator program. 

Once the assembly plan has been fully specified, a detailed 
pick and place computat ion can be ca r r ied out . This w i l l 
determine precisely where the objects are to be grasped and 
what paths they must follow to avoid collisions. Unfortunately, 
the Pick and Place computation is not independent of the nature 
of the assembly strategies. Where the object is grasped and 
where It is placed prior to an operation depends on the details of 
the operation. The solution is to do the grasp computation at the 
initial position of the object to be moved, before the operation is 
instantiated. This determines the range of possible grasp points. 
After this, the assembly step is expanded. The instant iat ion 
process places additional constraints on both the initial position 
of the part and its grasp point. Then, an exact grasp point is 
chosen and the path computed after the operat ion has been 
expanded. 

The pick and place computation exercises most of the 
spatial expert ise of the system. The basic operat ion in both 
grasping and collision avoidance is detecting the possibility of a 
coll ision by intersect ing volumes. In f inding a col l is ion-free 
trajectory we are interested in whether the volume swept out, 
by the manipulator and the object it carries, collides with other 
ob jec ts in the workspace. Simi lar ly , in grasp ing we are 
interested in the locations on the object where the hand can be 
placed such that no collisions will result. Since there are a whole 
range of grasping positions for a given object, this amounts to 
intersecting the volume of the hand, swept out over the possible 
grasping positions, with the workspace. 

We have characterized the types of grasping positions for 
the primitive objects as a series of grasp sets. Grasp sets are 
parameterized ranges of hand positions over a surface of the 
object. Fig. 7 shows a graphical representation of the grasp 
sets for cuboids and cylinders. Complex objects are analyzed by 
considering how to grasp each of their component objects while 
taking into account the interactions with other parts of the object 
as well as with the rest of the environment. 

Fig. 8 shows the system's rep resen ta t i on for the 
peg-in-hoU insertion strategy. It is very similar to the program 
presented in [Inoue]. The Feedback Strategy phase simulates 
this skeleton program, predicts contacts and estimates the 
direction and magnitude of the forces that will be produced. 

Note that each step in the skeleton program is annotated 
by the geometric relations it generates between the manipulated 
parts. This information can be used in two ways: 
■ To genera te numerical values for parameters in the 

programs. For example, the size of the shift in the y 
direction in the DROP-INTO operation can be determined 
by examining the geometrical relations it is meant to 
achieve. 

■ To generate tests for likely failure situations given the 
particular execution environment. A good example of this 
is the opera t ion of moving the p i s t o n - r o d near the 
piston-pin for the insertion of the rod's pin-end onto the 
pin inside the piston. By examining the clearance between 
the tip of the pin and the piston wall given the errors in 
grasping and positioning, we can predict that sometimes 
the rod will contact either the pin or the piston. A test for 
this situation can be generated and instructions as to 
corrective action could be solicited from the user. 

4. THE FEEDBACK STRATEGY PHASE 

The result of the operation of the Feedback Strategy 
phase is a manipulator program. This section considers the 
operation of the Feedback Strategy phase during the expansion 
of the PEG-IN-HOLE operation in which the piston-rod is to be 
inserted onto the piston-pin, while the pin is inside the piston. A 
preliminary implementation currently exists of the program that 
does the simple code generation shown here. 

The assembly plan (Fig. 6) has the following entries for 
the operation of inserting the piston-rod on the piston-pin: 

(GRASP OBJ : [PISTON-ROD] 
SUCH-THAT : (FACING* ([ROD-BAR] TOP) UP)) 

(INSERT 0BJ1 : [PISTON-PIN] 
0BJ2 : [PISTON-ROD PIN-END-HOLE]) 

(UNGRASP OBJ : [PISTON-ROD]) 
We must first find a grasp point on the piston-rod. There are 
two possible grasp positions on the rod; one along the sides of 
the piston-rod's pin-end, the other on the flat ends. The choice 
will depend on several factors: (1) flat surfaces are preferred to 
curved surfaces and (2) possible collisions. Collisions are 
predicted by simulating the assembly operations while assuming 
the hand can be at both of the legal grasp posit ions. The 
Feedback Strategy phase can then consider the effects on each 
of the grasp ranges simultaneously. 

The f i rst task in expanding an assembly st rategy is to 
setup the local reference system. The REFERENCE statement in 
PEG-IN-HOLE indicates that the reference frame's x axis is 
ALIGNED&CENTERED with the HOLE'S front face. This leaves one 
rotational degree of freedom unspecified. The current system 
always tr ies to line up unspecified degrees of freedom in the 
reference wi th global axes, tn this case, the reference's z is 
aligned to the global r. 

The IN IT IAL statement specifies the constraints on the 
initial position of the parts. In PEG-IN-HOLE it specifies that the 
HOLE and the PEG be ALIGNED&CENTERED and IN-FRONT-OF 
each other. Fig. 9a shows a top view of the interaction volume 
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of the piston-rod's pin end and indicates the intersection of that 
volume w i th that of the piston. The intersection divides the 
range of legal positions into two ranges on either side of the 
piston wall. The current system chooses to use the range where 
the objects are closer to each other as the range of legal 
positions of the piston-rod. 

The f i rst step in the DROP-INTO strategy calls for the 
object in the hand to be rotated 0.1 radians. The Feedback 
Strategy phase must establish that this rotation will not have any 
bad effects. This is done by simulating the motion. In this case, 
contacts w i th the pin and/or the piston are possible. These 
accidental contacts determine that the force parameter be 
"dtttct"contact" and that an error should be generated if the 
termination condition indicates a contact. The code that does this 
is shown here: 

(CHANGE R BY 0 . 1 WHILE (RFORCE < "defect-contact")) 
(COND ((CONTACT? R 0.0 0 . 1 ) (ERROR))) 

At th is po int the user is asked about the l i ke l ihood and 
seriousness of the predicted error . The user can choose to 
ignore the error condition. 

The next step involves a shift in the y position of the rod 
so as to place the hole to the left of the pm. The motion is 
constrained as follows: 
(1) Hole's center LEFT-OF Peg's center: This restriction is placed 
on the displacement operation itself. Fig. 9b shows (in dashed 
lines) the volume taken up by the piston-rod over the range of 
positions consistent with this relation. 
(2) Hole CONTACT Peg: This restriction is imposed by the next 
operat ion in which the rod is moved along x unti l contact is 
achieved. Thus the rod's position for the shift in y is also 
constrained so as to allow the contact to happen. This is 
equivalent to constraining the position of the rod's pin-end-hole 
to OVERLAP in y that of the piston-pin's front face. Fig. 9b 
shows (in solid lines) the volume of the rod over the range of 
positions consistent with this relation. 

A posit ion consistent with both of these relat ions is 
obtained by computing the range of values of the posi t ion 
parameters that satisfy each one and then intersect ing the 

" ranges. Fig. 9b shows a graphical representation of the ranges 
and their intersection. 

A simulation of the motions shows that the rod can come in 
contact with the pin and with the inside of the piston (Fig. 9c). 
These contacts cannot always be avoided by adjusting the 
starting position of the piston-rod and so they must be expected 
to h a p p e n . This d i c t a t e s tha t the f o r c e t h r e s h o l d be 
"detect-contact". The distance parameter of the motion is chosen 
as the midpoint of the range of legal displacements (indicated by 
"y"). This choice is quite arbitrary. The conditional statement 
after the motion merely tests whether the contact occurred. The 
user is again given the option to ignore the contact if it happens. 
In this case that is the best course. The code generated is: 

(CHANGE Y BY "y" WHILE (YFORCE < "detect-contact")) 
(COND ((CONTACT? Y 0.0 "y") (ERROR))) 

After the shift operation, the landing step is simulated. A contact 
can always be achieved, but there is a region of uncerta inty 
where contact with the inside of the piston is possible before 
contact w i th the pin. The contact is ambiguous, so the e r ro r 
cannot be detected by using the location of the contact. The 
code generated simply makes sure that the contact is in fact 
d e t e c t e d . The d i sp lacement used in the m o t i o n is t he 
displacement necessary to go past the last possible contact with 
the piston-pin and collide unambiguously with the piston wall. 

(CHANGE X BY V WHILE (XFORCE < "detect-contact")) 
(COND ((CONTACT? X 0.0 V ) ) (T (ERROR))) 

This completes the DROP-INTO operation. The complete program 
can be seen in Fig. 10. 

The next step is to compute a path from the posi t ion 
where the piston-rod is first grasped to that where the INSERT 
is to happen. A straight line path to this position is not possible 

since it implies going through the piston. The collision avoidance 
routine generates a path that goes above the piston and moves 
down to the desired position. 

5. RELATION TO OTHER WORK 

The problem of construction planning has been very 
important in the study of problem solving. During the last three 
or four years several programs have been developed to do 
construct ion planning in the Blocks World domain. Fahlman's 
BUILD [Fahlman] is expert in planning Blocks World assemblies. 
The programs of Sussman and Sacerdoti have explored general 
issues of planning and debugging in the context of assembly 
problems. [Sussman] treated assemblies of blocks exclusively 
whi le [Sace rdo t i ] has also considered the assembly (and 
disassembly) of a water pump. 

Of these programs, only BUILD considered the issues of 
s t a b i l i t y , contac t , etc. , which are v i ta l to the process of 
mechanical assembly. But even BUILD, being limited to block 
s t r u c t u r e s could ignore most of the problems of spat ia l 
interactions. BUILD also ignored the manipulation aspect of the 
construction. Sacerdoti's use of NOAH in SRI's Consultant project 
avoids alt these problems because it assumes a human as the 
manipulator. The work on L A M A has focused on the problems 
introduced by more realistic objects and the er rors of a real 
manipulator. 

The approach taken in L A M A to assembly strategies was 
inf luenced principal ly by the work of Sussman [Sussman] and 
Goldstein [Goldstein] in debugging programs. They both stressed 
the usefulness of having a statement of purpose for each 
operat ion in a program. The elegant method of [Ambler & 
Popplestone] for computing the position and or ientat ion of 
objects given relations such as AGAINST and F ITS- IN provided 
some of the key ideas on how to describe the goals of strategy 
steps. 

There are, at least, f ive other projects that have direct 
relevance to the task of building an automatic mechanical system. 
These projects are being conducted by the IBM Thomas J. 
Watson Research Center , the Stanford AI Labo ra to r y , the 
Stanford Research Institute, the University of Edinburgh, and the 
C. S. Draper Laboratory. 

The IBM system design, AUTOPASS [Lieberman & Wesley], 
is closest to L A M A . It is to be imbedded in PL/I and wi l l 
p rov ide the user w i t h a select ion of high leve l assembly 
operations, the most general being a PLACE command in which 
the dest inat ion is specif ied as geometric relations between 
objects. 

The Stanford system, AL [Finkel et. al.), is a complex 
Algol-like language with many new data-structure and control 
pr imi t ives. The design includes a Very High Level Language 
capability. Both AL and AUTOPASS, as well as L A M A , rely to a 
large extent on modeling the effect on the world of the assembly 
operations. 

Russell Tay lor in his d isser ta t ion [ T a y l o r ] deve lops 
mechanisms to predict errors in location values f rom the AL 
planning model and uses this information to generate AL code 
automatically. He also introduces skeleton programs or strategies 
which describe and summarize the coding decisions that have to 
be made. The semantics for the strategies are fixed at system 
creation time. 

The goal of all these systems is to expand a task- leve l 
description into an program for a specific manipulator. L A M A 
shares many of the ideas and the approaches of both AL and 
AUTOPASS. L A M A differs mainly in that it allows user-defined 
assembly strategies to be manipulated by the system. The key 
idea is to allow the specification of strategies to be independent 
from the operations performed by the system. 

The Edinburgh group [Ambler et. al.] has focused on the 
problem of assembling an object whose parts must be visually 
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located and pulled out of a heap. An early speculative paper 
from their group [Popplestone] anticipated many of the ideas and 
approaches adopted in this research, even to the choice of a 
model aircraft engine as the example. 

The Draper Lab [Nevins et. al.] group has focused on 
direct applicability of a mechanical assembly system in the short 
range. This has led to emphasis on the type of capabilities that 
can be made available on a minicomputer. They have also carried 
out ex tens i ve theore t i ca l analysis of the requ i rements of 
assemblies in terms of manipulator design and control as well as 
assembly strategies. 

Work being pursued at the Stanford Research Institute on 
Advanced Automation [Rosen et al] has taken a direction similar 
to that taken by the Draper Lab. SRI has focused on mechanical 
assembly techniques with industrial potential in the short range. 
They also have s igni f icant commitments to the i ndus t r i a l 
applications of computer vision techniques. 
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(GRASP OBJ: [PISTON-PIN]) 
(PLACE-IN-VISE OBJ: [PISTON-PIN] 

SUCH-THAT: 
(PARALLEL [PISTON-PIN] [TABLE])) 

(UNGRASP OBJ: [PISTON-PIN]) 
(GRASP OBJ: [PISTON] 

SUCH-THAT: (FACING+ ([PISTON] TOP) DOWN)) 
(INSERT OBJl: [PISTON-PIN] 

OBJ2: [PISTON PIN-HOLE] 
SUCH-THAT: (PARTLY (FITS-IN OBJl OBJ2) 0.25)) 

(UNGRASP OBJ: [PISTON]) 
(GRASP OBJ: [PISTON-ROD] 

SUCH-THAT: (FACING+ ([ROD-BAR] TOP) UP)) 
(INSERT OBJl: [PISTON-PIN] 

OBJ2: [PISTON-ROD SHALL-END-HOLE]) 
(UNGRASP OBJ: [PISTON-ROD]) 
(GRASP OBJ: [PISTON]) 
(REMOVE-FROH-VISE OBJ: [PISTON]) 
(PUSH-INTO OBJ: [PISTON-PIN] 

SUCH-THAT: 
(AND (FITS-IN [PISTON-PIN] 

[PISTON PIN-HOLE]) 
(FITS-IN [PISTON-PIN] 

[PISTON-ROD SMALL-END]))) 

(UNGRASP OBJ: [PISTON]) 

Figure 6. - Assembly Plan for the piston assembly 

(INSERT OBJl: [PISTON-PIN] 
OBJ2: [PISTON PIN-HOLE] 
SUCH-THAT: (PARTLY (FITS-IN OBJl OBJ2))) 

(INSERT OBJl: [PISTON-PIN] 
OBJ2: [ROD SHALL-END-HOLE]) 

(PUSH-INTO OBJl: [PISTON-PIN] 
OBJ2: (AND [PISTON PIN-HOLE] 

[PISTON-ROD SMALL-END])) 

Figure 5. - Initial Assembly Description for the piston assembly. 
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(STRATEGY 
PEG-IN-HOLE (PEG HOLE) 
(TYPE (PEG CYL) (HOLE CYL-HOLE)) 
(REFERENCE (ALIGNED&CENTERED (REFERENCE X) 

(HOLE FRONT))) 
(PRE-REQS (CLEARANCE < 0 . 0 1 ) ) 
( I N I T I A L (AND (ALIGNED&CENTERED (PEG FRONT) 

(HOLE FRONT)) 
(IN-FRONT-OF PEG HOLE))) 

(DROP : (DROP-INTO PEG HOLE) 
SUCH-THAT (PARTLY (F ITS- IN PEG HOLE))) 

(HATE : (HATE PEG HOLE) 
SUCH-THAT (ALIGNED- PEG HOLE)) 

(INSERT : (PUSH-INTO PEG HOLE) 
SUCH-THAT (F ITS - IN PEG HOLE))) 

(STRATEGY 
DROP-INTO (PEG HOLE) 
(ROTATE : (CHANGE R BY 0 . 1 ) 

SUCH-THAT (ALMOST (ALIGNED- PEG HOLE) 0 . 1 ) ) 
(SHIFT : (CHANGE Y) 

SUCH-THAT (LEFT-OF (PEG CENTER) (HOLE CENTER))) 
(LANDING : (CHANGE X) 

SUCH-THAT (CONTACT (PEG FRONT) (HOLE FRONT)))) 

(STRATEGY 
MATE (PEG HOLE) 
(EDGE+ : (CHANGE Z) 

SUCH-THAT (AND (ABOVE (PEG CENTER) (HOLE CENTER)) 
(CONTACT PEG (HOLE S I D E ) ) ) ) 

(SAVE1 : (SETQ Zl ZPOS)) 
(EDGE- : (CHANGE Z) 

SUCH-THAT (AND (BELOW (PEG CENTER) (HOLE CENTER)) 
(CONTACT PEG (HOLE S I D E ) ) ) ) 

(SAVEZ : (SETQ Z2 ZPOS)) 
(CENTER : (HOVE Z) 

SUCH-THAT (BETWEEN (PEG CENTER) Zl Z 2 ) ) 
(CONTACT : (CHANGE Y) 

SUCH-THAT (CONTACT PEG (HOLE S IDE) ) ) 
(HATE : (CHANGE R WITH 

(AND (ZFORCE = 0 . ) 
(YFORCE = "NAINTAIN-CONTACT")) 

SUCH-THAT (ALIGNED- PEG HOLE))) 

(STRATEGY 
PUSH-INTO (PEG HOLE) 
(PUSH : (CHANGE X WITH (AND (YFORCE = 0. ) 

(ZFORCE = 0 . ) ) ) 
SUCH-THAT (FITS-IN PEG HOLE))) 

Figure 8. - Peg-in-hole strategy. The representation of Inoue's 
peg-in-hole insertion strategy in LAMA. Figure 10. - DROP-INTO strategy and its expansion into LAMA. 

The text in italics indicates the parts generated by the 
Feedback Strategy phase 
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