
LAMA: A LANGUAGE FOR AUTOMATIC MECHANICAL ASSEMBLY

Tomas Loiano-Perer and Patrick H. Wins ton

ABSTRACT

This paper describes a mechanical assembly system, L A M A ,
that transforms high level assembly descriptions into programs
for a computer controlled manipulator.

0. INTRODUCTION

Our long-range goal is to create machines that do work of
the s o r t tha t t oday r e q u i r e s m a n i p u l a t i v e , v i s u a l , o r
problem-solv ing skill not usually associated wi th assembly
automation. We believe that such machines are needed for
several reasons:
■ To get peop le out of j obs tha t $re d a n g e r o u s or

dehumanizing.
■ To get jobs done that people cannot or will not do.
■ To reve rse the cont inuing t rend t oward excess ive

standardization.
■ To compete.
Considerable progress has been made. In many laborator ies,
robots with sophisticated manipulators assemble devices ranging
from bearings to pumps, often working with tolerances requiring
force feedback to get things mated.

The programs driving such impressive demonstrations have
been straightforward, but tedious to write. The reason is that
high level languages are only now under development for
automatic assembly. Assembly programming is sti l l in the
assembly-language era, so to speak. The programmer is forced
to think in terms of instructions like these:

Move in the direction 6 at speed s until you reach position p.
Exert a force f by moving in the direction d.

It would be bet ter , and certainly cheaper, if the programmer
could th ink instead in terms of suggest ions l ike these for
assembling part of an engine:

Insert the piston pin partway into the piston.
Place the rod's pin end on the piston pin inside the piston.
Push the pin through the rod and the piston.

That is, we would like to tell our robots what to do in terms that
• re comfortable to us, leaving them to fill in the details. Rough
English descr ipt ion, or something close to English but less
ambiguous, is what we have in mind. A mechanical assembly
language that works with-such descriptions is on the critical path
toward economically viable robot systems.

Our short- range goal, then, is to do something about
creating such a language. Indeed, this paper is about L A M A , an
acronym for Language for Automatic Mechanical Assembly. It
consists of a sample of the work described more fully in a new
thesis by the first author [Lozano-Perez] on topics suggested by
the s e c o n d . The t r a n s l a t i o n b e t w e e n what the human
fo reman-programmer descr ibes and what the manipu la tor
controller wants, in our design, is to take place in two steps:
■ First, the human's Assembly Description, with many missing

details, is converted into an Assembly Plan, which has the
gaps filled in, but remains very high level. A very verbose
and careful human's assembly deception would differ only
•lightly or not at all from the assembly plan.

■ Second, the Assembly Plan is converted into a Manipulator
Program, w i t h t h i ngs w o r k e d out to t he l e v e l o f
coord ina tes , t r a j ec to r i es , fo rces , and to rques . This
conversion requires, in part, a pick and place phase and a
feedback strategy phase.

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
The pick and place phase converts the assembly plan into

a program that assumes ideal position information and positioning
accuracy. It must specify the manipulator motions that achieve
the desired relationships between the parts. Both of these
assumptions are untenable. The role of feedback planning is to
expand skeleton programs embodying feedback strategies to
carry out the assembly operations taking into account the
imperfect ion of the data and the positioning er rors in the
manipulator. The resulting program is the desired manipulator
program.

The pick-and-place and feedback-strategy phases have
been examined in detail and prototype programs have been
implemented that do these jobs. In this paper, we will focus on
the phase dealing with feedback strategy.

We begin, however, with a survey of some of the decisions
that must be made when specifying an automatic mechanical
assembly in general, and we also give a more complete overview
of the design of an overall system. We will see that three basic
themes underlie the design:

High level assembly operations can be represented by
program plans (called skeletons) which can be expanded as
required by using facts about the specific task at hand.

The desired effect of the basic manipulator motions can be
descr ibed in terms of a few geometr ica l and spat ia l
relations. We believe that the assembly problem can be
seen as the problem of achieving a ce r ta in set of
geometrical relations between objects while avoiding
unwanted collisions.

■ Choices for location and motion parameters should be made
by identifying all the constraints on the solution, finding a
range of values in which the solution may lie and picking
an element from that range.

1. THE NATURE OF THE PROBLEM

This s e c t i o n t r i e s to h igh l i gh t the d i f f i c u l t i e s o f
programming assembly operations by examining a part icular
assembly task in some detail.

Fig. 1 shows the piston subassembly from a model aircraft
engine. We will use it to emphasize the number and complexity
of the decisions to be made in planning an assembly. The
assembly has been carried out using the Silver roboi manipulator
at the MIT Art i f ic ial Intelligence Laboratory [Si lver] . This
manipulator is not a fully general position and or ientat ion
generator because it has only five degrees of freedom, not six.
They ere divided in the following manner: (I) em xy table, (2) a
wrist which can displace and rotate along the z axis and (3) a
vise which rotates about the x axis (see Fig. 2). The manipulator
is equipped with • force sensing wrist capable of resolving the
xyz components of the forces and torques acting on the wrist.
This allows the manipulator to generate and detect forces. The
use of force feedback enables the Silver Robot System to
per form precise assembly tasks whose crit ical clearances are
below its positional accuracy [Inoue}

The hard part of this engine subassembly is inserting the
p i s t o n - p i n th rough the p is ton p in-ho le and th rough the
piston-rod. The obvious way to do this (for a human) is to line
up the holes in the piston-rod and the piston and then push the
piston-pin through both holes. This operation is impossible using
the manipulator configuration we have described. Recall we only
have two sets of parallel fingers available; one set is the hand,
the other the vise. This restr ict ion forces us to break the

Robot I c s - 1 : Lozano-Perez
710

problem up into three parts.
First the pin is inserted partway into the piston. Then the

piston-rod's pin-end can be placed onto the pin inside the piston.
And finally, the pin pushed through the rod and the piston-hole.

This description of the piston assembly simply specifies
three snapshots of the system state. Each state is specified in
terms of the spatial relations between the parts involved. The
verbs used in the description (insert, place and push) give some
information as to the nature of the operation necessary to
achieve each state. Note that no mention was made of the
manipulator. The constraint that only one hand and a vise is
available dictates the nature of the solution, but the manipulator
motions necessary to carry out the solution are not specified, nor
are they obvious.

The assembly can be carried out by first placing the pin in
the vise such that its main axis is horizontal (Fig. 3a). Then the
piston can be placed on the pin so that the cavity is facing
upward. The rod can then be placed on the portion of pin that is
projecting into the piston's cavity (Fig. 3b). The manipulator can
then grasp the piston, remove the piston from the vise, and after
closing the vise, push the part of the pin protruding from the
piston against the vise (Figs. 3c&d). We call this the assembly
plan.

For each operation in the assembly plan, the manipulator
program must specify the position and orientation of the fingers
such that they can securely grasp some part of the object to be
moved. The program must also specify a t ra jectory for the
manipulator that is not likely to damage the manipulator or
disturb any of the other parts.

The assembly description and the assembly plan mention
only the spatial relationships that must hold between the parts in
the goal s ta te . These re lat ionships invo lve much g rea te r
positional accuracy than is directly achievable by the manipulator
to be used. These relationships can be achieved by employing
force feedback techniques such as those described in [Inoue].

Inoue has developed a program which, dr iven by force
feedback, does peg-in-hole insertion. Unfortunately, his program
cannot be used direct ly in the task at hand. Inoue's program

- assumes that the motions of the hand correspond direct ly to
mot ions of the hole. The assembly plan descr ibed above
specifies that the piston-rod be held at the opposite end from
the point of insertion. This is because the insertion is happening
inside the piston. Inoue's program must be changed to account
for this.

Like most programs, Inoue's has parameters. The length of
certain motions and the magnitude of some forces are not
specified. These parameters must be specified for the task at
hand.

Inoue's program also lacks error detection capabil i t ies.
When the manipulator is told to move in a given direction until a
force above some threshold is felt , no posit ion bounds are
specified. This can give rise to severe errors.

These considerat ions point to one, ve r y impo r t an t ,
conclusion: Inoue's program is not so much a general u t i l i ty
program as a specification of an assembly strategy to be adapted
to many different geometric environments. This is true of most
manipu la tor programs because of the i r dependence on
assumptions about the geometry of the task.

Let us summarize the problems to be faced in specifying an
assembly operation.
■ Describe the objects to be assembled.
■ Specify a plan for the assembly. The details of the plan will

depend on the manipulator configuration available and on
the capabilities of the assembly system.

■ Determine the grasping position and or ientat ion for the
objects involved in each operation.

■ Determine a collision free path between the or ig in and
destination of all motions. '

■ Tailor the assembly strategies to fit the particular geometric

R o b o t i c s - 1

environment. This involves providing parameters to the
strategies.

■ Examine the strategies for likely errors and determine the
actions to be taken in case of failure.

2. THE NATURE OF THE APPROACH

The current implementation of L A M A has focused on a
subset of the problems outlined in the previous section. The
most important are grasping, tailoring assembly strategies and
error prediction. This section briefly outlines our approach to
these problems.

Computing a grasp point on an object from a description of
the object and its surrounding environment is a very dif f icult
computational problem. The basic mechanism needed to solve the
problem is the ability to detect that attempting to grasp some
part of the object will cause a collision. This involves computing
the geometr ic in te rsec t ion of the solids making up the
manipulator description with the object to be grasped and with
any nearby object. A non-null intersection indicates a collision.
A simple approach to solving this problem would be to guess a
grasp point and then test whether it is safe. Typically there is
an infinite number of possibilities and the challenge is to choose
a grasp point with some confidence that it is a good choice. Trial
and error methods are unsatisfactory in this context because not
only do they have very poor worst-case behavior but once a
result is found, it is very difficult to evaluate it without knowing
the alternatives. Our approach to grasping, briefly described in
section 3, relies on describing the range of possible grasp points
as a few sets of parameterized grasp positions which can be
evaluated and compared as units.

In s e c t i o n 1, we p o i n t e d out the d e p e n d e n c e of
manipulator programs on the particular geometry they were
designed for. A useful mechanical assembly system must have
some means of representing assembly strategies that does not
make too many assumptions about the environment where they
are to be used. Our approach to making the strategies as
general as possible is to have each of the steps in the strategy
be essentially a goal statement. Each operation is decribed in
terms of the geometric relations it is meant to achieve in a
coordinate system specified by the strategy. The assembly
strategies can then be adapted to a particular situation by
computing the parameters needed to achieve the goal of the
individual steps of the strategy.

Once we have available a description of the goal of each
step, then some errors can be predicted by simulating the
operations, taking into account some of the uncertainty in the
posit ions of objects. These error predictions can be used to
solicit corrective actions from the user.

Section 3 will describe in more detail how the assembly
strategies are used.

3 AN OVERVIEW OF THE LAMA SYSTEM

This section describes how we believe the piston assembly
will be processed by L A M A when it is completely implemented.
Prototype programs currently exist to do parts description, the
Pick and Place phase and a simple Feedback Strategy phase. No
program exists to do the Assembly Planning.

The parts to be assembled must first be described to the
system. The user uses the system interactively to define models
of the parts. Complex objects are described as unions of a few
kinds of primitive object types. The primitive objects currently
available in implemented parts of L A M A are a cuboid and a
cylinder (both as solids and holes).

Fig. 4 shows a schematic description of the models for the
parts in the piston assembly. Note that the parts are arranged
hierarchically. This allows a convenient treatment of subparts of
objects. Any desired subparts can be represented as nodes in

: Lozano-Perez
711

the part model trees. Each node has information regarding the
size, type and relative position of the subpart. All the subparts,
including the holes, are approximated as rectangular or octagonal
right prisms. This provides a uniform internal representation for
all the object types. This representation simplifies the definitions
of the spatial modelling operations. By generalizing to polyhedra
the desired volumes can be approximated to any requi red
accuracy.

The next step is that of describing the assembly. Ideally,
we wou ld l ike to spec i fy the assembly process by s imply
describing the completed assembly. A more realistic goal is that
of accepting assembly instructions similar to those given to
people, as discussed in the introduction.

The assembly description for the piston assembly is shown
in F ig. 5. The assembly descr ip t ion s-pecifies on ly that
operations, such as insertion, are to be performed on the parts.
The individual operations ara often under-specified. Parame\ers
• r e missing or only weakly constrained, e.g., insert the pin
partway into the piston. No mention is made of the manipulator
or of the strategies to be used to carry out the operat ions.
Merely saying insert is not enough to specify an assembly
operation. The actual motions carried out are sensitive to the
shape and relative sizes of the parts.

The f i rs t step in the transformation from user input to
manipulator program is to completely specify the assembly
description. This is the task of the Assembly Planner. It must
f i rs t introduce into the description those operations that wi l l
achieve the p re requ is i tes of the operat ions in the in i t i a l
descr ipt ion. This requires specification of sOme high level
manipulator commands such as GRASP, UNGRASP and PLACE. Then
the operations must be completely specified and strategy choices
made for them. The end result of this process is an assembly
plan. In this plan each operation is ful ly specif ied and the
pos i t ions and or ien ta t ions of the par ts invo lved are we l l
constrained. An important point to note is that the plan still does
not determine the manipulator motions necessary to carry out the
assembly. The assembly plan corresponding to the assembly
description in Fig. 5 is shown in Fig. 6.

The current implementation assumes that the Assembly
Plan is directly available as an input to the system. We can then
focus on the process of transforming an assembly plan into a
manipulator program.

Once the assembly plan has been fully specified, a detailed
pick and place computat ion can be ca r r ied out . This w i l l
determine precisely where the objects are to be grasped and
what paths they must follow to avoid collisions. Unfortunately,
the Pick and Place computation is not independent of the nature
of the assembly strategies. Where the object is grasped and
where It is placed prior to an operation depends on the details of
the operation. The solution is to do the grasp computation at the
initial position of the object to be moved, before the operation is
instantiated. This determines the range of possible grasp points.
After this, the assembly step is expanded. The instant iat ion
process places additional constraints on both the initial position
of the part and its grasp point. Then, an exact grasp point is
chosen and the path computed after the operat ion has been
expanded.

The pick and place computation exercises most of the
spatial expert ise of the system. The basic operat ion in both
grasping and collision avoidance is detecting the possibility of a
coll ision by intersect ing volumes. In f inding a col l is ion-free
trajectory we are interested in whether the volume swept out,
by the manipulator and the object it carries, collides with other
ob jec ts in the workspace. Simi lar ly , in grasp ing we are
interested in the locations on the object where the hand can be
placed such that no collisions will result. Since there are a whole
range of grasping positions for a given object, this amounts to
intersecting the volume of the hand, swept out over the possible
grasping positions, with the workspace.

We have characterized the types of grasping positions for
the primitive objects as a series of grasp sets. Grasp sets are
parameterized ranges of hand positions over a surface of the
object. Fig. 7 shows a graphical representation of the grasp
sets for cuboids and cylinders. Complex objects are analyzed by
considering how to grasp each of their component objects while
taking into account the interactions with other parts of the object
as well as with the rest of the environment.

Fig. 8 shows the system's rep resen ta t i on for the
peg-in-hoU insertion strategy. It is very similar to the program
presented in [Inoue]. The Feedback Strategy phase simulates
this skeleton program, predicts contacts and estimates the
direction and magnitude of the forces that will be produced.

Note that each step in the skeleton program is annotated
by the geometric relations it generates between the manipulated
parts. This information can be used in two ways:
■ To genera te numerical values for parameters in the

programs. For example, the size of the shift in the y
direction in the DROP-INTO operation can be determined
by examining the geometrical relations it is meant to
achieve.

■ To generate tests for likely failure situations given the
particular execution environment. A good example of this
is the opera t ion of moving the p i s t o n - r o d near the
piston-pin for the insertion of the rod's pin-end onto the
pin inside the piston. By examining the clearance between
the tip of the pin and the piston wall given the errors in
grasping and positioning, we can predict that sometimes
the rod will contact either the pin or the piston. A test for
this situation can be generated and instructions as to
corrective action could be solicited from the user.

4. THE FEEDBACK STRATEGY PHASE

The result of the operation of the Feedback Strategy
phase is a manipulator program. This section considers the
operation of the Feedback Strategy phase during the expansion
of the PEG-IN-HOLE operation in which the piston-rod is to be
inserted onto the piston-pin, while the pin is inside the piston. A
preliminary implementation currently exists of the program that
does the simple code generation shown here.

The assembly plan (Fig. 6) has the following entries for
the operation of inserting the piston-rod on the piston-pin:

(GRASP OBJ : [PISTON-ROD]
SUCH-THAT : (FACING* ([ROD-BAR] TOP) UP))

(INSERT 0BJ1 : [PISTON-PIN]
0BJ2 : [PISTON-ROD PIN-END-HOLE])

(UNGRASP OBJ : [PISTON-ROD])
We must first find a grasp point on the piston-rod. There are
two possible grasp positions on the rod; one along the sides of
the piston-rod's pin-end, the other on the flat ends. The choice
will depend on several factors: (1) flat surfaces are preferred to
curved surfaces and (2) possible collisions. Collisions are
predicted by simulating the assembly operations while assuming
the hand can be at both of the legal grasp posit ions. The
Feedback Strategy phase can then consider the effects on each
of the grasp ranges simultaneously.

The f i rst task in expanding an assembly st rategy is to
setup the local reference system. The REFERENCE statement in
PEG-IN-HOLE indicates that the reference frame's x axis is
ALIGNED&CENTERED with the HOLE'S front face. This leaves one
rotational degree of freedom unspecified. The current system
always tr ies to line up unspecified degrees of freedom in the
reference wi th global axes, tn this case, the reference's z is
aligned to the global r.

The IN IT IAL statement specifies the constraints on the
initial position of the parts. In PEG-IN-HOLE it specifies that the
HOLE and the PEG be ALIGNED&CENTERED and IN-FRONT-OF
each other. Fig. 9a shows a top view of the interaction volume

R o b o t i e s - 1 : Lozano-Perez
712

of the piston-rod's pin end and indicates the intersection of that
volume w i th that of the piston. The intersection divides the
range of legal positions into two ranges on either side of the
piston wall. The current system chooses to use the range where
the objects are closer to each other as the range of legal
positions of the piston-rod.

The f i rst step in the DROP-INTO strategy calls for the
object in the hand to be rotated 0.1 radians. The Feedback
Strategy phase must establish that this rotation will not have any
bad effects. This is done by simulating the motion. In this case,
contacts w i th the pin and/or the piston are possible. These
accidental contacts determine that the force parameter be
"dtttct"contact" and that an error should be generated if the
termination condition indicates a contact. The code that does this
is shown here:

(CHANGE R BY 0 . 1 WHILE (RFORCE < "defect-contact"))
(COND ((CONTACT? R 0.0 0 . 1) (ERROR)))

At th is po int the user is asked about the l i ke l ihood and
seriousness of the predicted error . The user can choose to
ignore the error condition.

The next step involves a shift in the y position of the rod
so as to place the hole to the left of the pm. The motion is
constrained as follows:
(1) Hole's center LEFT-OF Peg's center: This restriction is placed
on the displacement operation itself. Fig. 9b shows (in dashed
lines) the volume taken up by the piston-rod over the range of
positions consistent with this relation.
(2) Hole CONTACT Peg: This restriction is imposed by the next
operat ion in which the rod is moved along x unti l contact is
achieved. Thus the rod's position for the shift in y is also
constrained so as to allow the contact to happen. This is
equivalent to constraining the position of the rod's pin-end-hole
to OVERLAP in y that of the piston-pin's front face. Fig. 9b
shows (in solid lines) the volume of the rod over the range of
positions consistent with this relation.

A posit ion consistent with both of these relat ions is
obtained by computing the range of values of the posi t ion
parameters that satisfy each one and then intersect ing the

" ranges. Fig. 9b shows a graphical representation of the ranges
and their intersection.

A simulation of the motions shows that the rod can come in
contact with the pin and with the inside of the piston (Fig. 9c).
These contacts cannot always be avoided by adjusting the
starting position of the piston-rod and so they must be expected
to h a p p e n . This d i c t a t e s tha t the f o r c e t h r e s h o l d be
"detect-contact". The distance parameter of the motion is chosen
as the midpoint of the range of legal displacements (indicated by
"y"). This choice is quite arbitrary. The conditional statement
after the motion merely tests whether the contact occurred. The
user is again given the option to ignore the contact if it happens.
In this case that is the best course. The code generated is:

(CHANGE Y BY "y" WHILE (YFORCE < "detect-contact"))
(COND ((CONTACT? Y 0.0 "y") (ERROR)))

After the shift operation, the landing step is simulated. A contact
can always be achieved, but there is a region of uncerta inty
where contact with the inside of the piston is possible before
contact w i th the pin. The contact is ambiguous, so the e r ro r
cannot be detected by using the location of the contact. The
code generated simply makes sure that the contact is in fact
d e t e c t e d . The d i sp lacement used in the m o t i o n is t he
displacement necessary to go past the last possible contact with
the piston-pin and collide unambiguously with the piston wall.

(CHANGE X BY V WHILE (XFORCE < "detect-contact"))
(COND ((CONTACT? X 0.0 V)) (T (ERROR)))

This completes the DROP-INTO operation. The complete program
can be seen in Fig. 10.

The next step is to compute a path from the posi t ion
where the piston-rod is first grasped to that where the INSERT
is to happen. A straight line path to this position is not possible

since it implies going through the piston. The collision avoidance
routine generates a path that goes above the piston and moves
down to the desired position.

5. RELATION TO OTHER WORK

The problem of construction planning has been very
important in the study of problem solving. During the last three
or four years several programs have been developed to do
construct ion planning in the Blocks World domain. Fahlman's
BUILD [Fahlman] is expert in planning Blocks World assemblies.
The programs of Sussman and Sacerdoti have explored general
issues of planning and debugging in the context of assembly
problems. [Sussman] treated assemblies of blocks exclusively
whi le [Sace rdo t i] has also considered the assembly (and
disassembly) of a water pump.

Of these programs, only BUILD considered the issues of
s t a b i l i t y , contac t , etc. , which are v i ta l to the process of
mechanical assembly. But even BUILD, being limited to block
s t r u c t u r e s could ignore most of the problems of spat ia l
interactions. BUILD also ignored the manipulation aspect of the
construction. Sacerdoti's use of NOAH in SRI's Consultant project
avoids alt these problems because it assumes a human as the
manipulator. The work on L A M A has focused on the problems
introduced by more realistic objects and the er rors of a real
manipulator.

The approach taken in L A M A to assembly strategies was
inf luenced principal ly by the work of Sussman [Sussman] and
Goldstein [Goldstein] in debugging programs. They both stressed
the usefulness of having a statement of purpose for each
operat ion in a program. The elegant method of [Ambler &
Popplestone] for computing the position and or ientat ion of
objects given relations such as AGAINST and F ITS- IN provided
some of the key ideas on how to describe the goals of strategy
steps.

There are, at least, f ive other projects that have direct
relevance to the task of building an automatic mechanical system.
These projects are being conducted by the IBM Thomas J.
Watson Research Center , the Stanford AI Labo ra to r y , the
Stanford Research Institute, the University of Edinburgh, and the
C. S. Draper Laboratory.

The IBM system design, AUTOPASS [Lieberman & Wesley],
is closest to L A M A . It is to be imbedded in PL/I and wi l l
p rov ide the user w i t h a select ion of high leve l assembly
operations, the most general being a PLACE command in which
the dest inat ion is specif ied as geometric relations between
objects.

The Stanford system, AL [Finkel et. al.), is a complex
Algol-like language with many new data-structure and control
pr imi t ives. The design includes a Very High Level Language
capability. Both AL and AUTOPASS, as well as L A M A , rely to a
large extent on modeling the effect on the world of the assembly
operations.

Russell Tay lor in his d isser ta t ion [T a y l o r] deve lops
mechanisms to predict errors in location values f rom the AL
planning model and uses this information to generate AL code
automatically. He also introduces skeleton programs or strategies
which describe and summarize the coding decisions that have to
be made. The semantics for the strategies are fixed at system
creation time.

The goal of all these systems is to expand a task- leve l
description into an program for a specific manipulator. L A M A
shares many of the ideas and the approaches of both AL and
AUTOPASS. L A M A differs mainly in that it allows user-defined
assembly strategies to be manipulated by the system. The key
idea is to allow the specification of strategies to be independent
from the operations performed by the system.

The Edinburgh group [Ambler et. al.] has focused on the
problem of assembling an object whose parts must be visually

R o b o t i c s - 1 : Lozano-Perez
713

located and pulled out of a heap. An early speculative paper
from their group [Popplestone] anticipated many of the ideas and
approaches adopted in this research, even to the choice of a
model aircraft engine as the example.

The Draper Lab [Nevins et. al.] group has focused on
direct applicability of a mechanical assembly system in the short
range. This has led to emphasis on the type of capabilities that
can be made available on a minicomputer. They have also carried
out ex tens i ve theore t i ca l analysis of the requ i rements of
assemblies in terms of manipulator design and control as well as
assembly strategies.

Work being pursued at the Stanford Research Institute on
Advanced Automation [Rosen et al] has taken a direction similar
to that taken by the Draper Lab. SRI has focused on mechanical
assembly techniques with industrial potential in the short range.
They also have s igni f icant commitments to the i ndus t r i a l
applications of computer vision techniques.

BIBLIOGRAPHY

[Ambler & Popplestone]
A. P. Ambler and R. J. Popplestone, Inferring the Positions
of Bodies from Specified Spatial Relationships, AISB
Summer Conference, University of Sussex, July 1974.

[Ambler et. al.]
A. P. Ambler, et. al., "A Versatile System for Computer
Controlled Assembly", Artificial Intelligence, Volume 6,
Number 2. 1975.

[Fahlman]
S. E. Fahlman, A Planning System for Robot Construction
Tasks, MIT Artificial Intelligence Laboratory Technical
Report 283, May 1973.

[Finkel, et. al.]
R. Finkel, R. Taylor, R. Bolles, R. Paul and J. Feldman, AL, A
Programming System for Automation, Stanford Artificial
Intelligence Laboratory Memo AIM-177, November 1974.

[Goldstein]
LP. Goldstein, Understanding Simple Picture Programs, MIT
Artificial Intelligence Laboratory Technical Report 294,
September 1974.

[Inoue]
K Inoue, Force Feedback in Precise Assembly Tasks, MIT
Artificial Intelligence Laboratory Memo 308, August 1974.

[Lieberman & Wesley]
L 1. Lieberman and M. A. Wesley, AVTOPASS, A Very
High Level Programming Language for Mechanical
Assembler System, IBM Research Report RC-5599, August
1975.

[Lozano-Perez]
T. Lozano-Perez, The Design of a Mechanical Assembly
System, MIT Artificial Intelligence Laboratory Technical
Report 397, December 1976.

[Nevins et. al.]
J. L. Nevins, et. al., Exploratory Research in Industrial
Modular Assembly, Charles Stark Draper Laboratory, NSF
Report covering December 1974 to August 1975.

[Popplestone]
R. J. Popplestone, Now Could FREDDY Put Things
Together, Dept. of Machine Intelligence and Perception,
University of Edinburgh, Memo MIP-R-88, May 1971.

[Rosen, et. al.]
C. Rosen, et. al., Exploratory Research In Advanced
Automation, Stanford Research Institute, NSF Report,
January 1976.

[Sacerdoti]
E. D. Sacerdoti, A Structure for Plan and Behavior,
Stanford Research Institute Artificial Intelligence Center
Technical Note 109, August 1975.

[Silver]
0. Silver, The Little Robot System, MIT Artificial Intelligence
Laboratory Memo 273, January 1973.

[Sussman]
G. J. Sussman, A Computer Model of Skill Acquisition, MIT
Artificial Intelligence Laboratory Technical Report 297,
August 1973.

[Taylor]
R. K Taylor, A Synthesis of Manipulator Control Programs
From Task-Level Specifications, Stanford Artif icial
Intelligence Laboratory Memo AIM-282, July 1976.

F ig . 2 - Diagram of L i t t l e Robot System,
see (S i l v e r) .

Rohot?cs« 1: Lozano-Pen»z
714

(GRASP OBJ: [PISTON-PIN])
(PLACE-IN-VISE OBJ: [PISTON-PIN]

SUCH-THAT:
(PARALLEL [PISTON-PIN] [TABLE]))

(UNGRASP OBJ: [PISTON-PIN])
(GRASP OBJ: [PISTON]

SUCH-THAT: (FACING+ ([PISTON] TOP) DOWN))
(INSERT OBJl: [PISTON-PIN]

OBJ2: [PISTON PIN-HOLE]
SUCH-THAT: (PARTLY (FITS-IN OBJl OBJ2) 0.25))

(UNGRASP OBJ: [PISTON])
(GRASP OBJ: [PISTON-ROD]

SUCH-THAT: (FACING+ ([ROD-BAR] TOP) UP))
(INSERT OBJl: [PISTON-PIN]

OBJ2: [PISTON-ROD SHALL-END-HOLE])
(UNGRASP OBJ: [PISTON-ROD])
(GRASP OBJ: [PISTON])
(REMOVE-FROH-VISE OBJ: [PISTON])
(PUSH-INTO OBJ: [PISTON-PIN]

SUCH-THAT:
(AND (FITS-IN [PISTON-PIN]

[PISTON PIN-HOLE])
(FITS-IN [PISTON-PIN]

[PISTON-ROD SMALL-END])))

(UNGRASP OBJ: [PISTON])

Figure 6. - Assembly Plan for the piston assembly

(INSERT OBJl: [PISTON-PIN]
OBJ2: [PISTON PIN-HOLE]
SUCH-THAT: (PARTLY (FITS-IN OBJl OBJ2)))

(INSERT OBJl: [PISTON-PIN]
OBJ2: [ROD SHALL-END-HOLE])

(PUSH-INTO OBJl: [PISTON-PIN]
OBJ2: (AND [PISTON PIN-HOLE]

[PISTON-ROD SMALL-END]))

Figure 5. - Initial Assembly Description for the piston assembly.

R o b o t f c s - 1 : Lozano-Perez
715

(STRATEGY
PEG-IN-HOLE (PEG HOLE)
(TYPE (PEG CYL) (HOLE CYL-HOLE))
(REFERENCE (ALIGNED&CENTERED (REFERENCE X)

(HOLE FRONT)))
(PRE-REQS (CLEARANCE < 0 . 0 1))
(I N I T I A L (AND (ALIGNED&CENTERED (PEG FRONT)

(HOLE FRONT))
(IN-FRONT-OF PEG HOLE)))

(DROP : (DROP-INTO PEG HOLE)
SUCH-THAT (PARTLY (F ITS- IN PEG HOLE)))

(HATE : (HATE PEG HOLE)
SUCH-THAT (ALIGNED- PEG HOLE))

(INSERT : (PUSH-INTO PEG HOLE)
SUCH-THAT (F ITS - IN PEG HOLE)))

(STRATEGY
DROP-INTO (PEG HOLE)
(ROTATE : (CHANGE R BY 0 . 1)

SUCH-THAT (ALMOST (ALIGNED- PEG HOLE) 0 . 1))
(SHIFT : (CHANGE Y)

SUCH-THAT (LEFT-OF (PEG CENTER) (HOLE CENTER)))
(LANDING : (CHANGE X)

SUCH-THAT (CONTACT (PEG FRONT) (HOLE FRONT))))

(STRATEGY
MATE (PEG HOLE)
(EDGE+ : (CHANGE Z)

SUCH-THAT (AND (ABOVE (PEG CENTER) (HOLE CENTER))
(CONTACT PEG (HOLE S I D E))))

(SAVE1 : (SETQ Zl ZPOS))
(EDGE- : (CHANGE Z)

SUCH-THAT (AND (BELOW (PEG CENTER) (HOLE CENTER))
(CONTACT PEG (HOLE S I D E))))

(SAVEZ : (SETQ Z2 ZPOS))
(CENTER : (HOVE Z)

SUCH-THAT (BETWEEN (PEG CENTER) Zl Z 2))
(CONTACT : (CHANGE Y)

SUCH-THAT (CONTACT PEG (HOLE S IDE)))
(HATE : (CHANGE R WITH

(AND (ZFORCE = 0 .)
(YFORCE = "NAINTAIN-CONTACT"))

SUCH-THAT (ALIGNED- PEG HOLE)))

(STRATEGY
PUSH-INTO (PEG HOLE)
(PUSH : (CHANGE X WITH (AND (YFORCE = 0.)

(ZFORCE = 0 .)))
SUCH-THAT (FITS-IN PEG HOLE)))

Figure 8. - Peg-in-hole strategy. The representation of Inoue's
peg-in-hole insertion strategy in LAMA. Figure 10. - DROP-INTO strategy and its expansion into LAMA.

The text in italics indicates the parts generated by the
Feedback Strategy phase

R o b o t i c s - 1 : Lozano-Perez
716

