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We describe a learning paradigm designed to
improve the performance of a robot in a partially
unpredictable environment. The paradigm was suggest-
ed by phenomena observed in animal behavior and it
models aspects of that behavior. (See FI for
details.) An implementation as a working program
is under way, intended for incorporation in the now
operational JPL robot. Rieger's CSA system is the
implementation language and includes a plan synthe-
sizer (RIl). A brief overview of the robot's exist-
ing system organization is given in Thompson's paper
on robot navigation in these proceedings (TI)e

The paradigm includes these components:

(1) A pattern interpretation discrimination net.
The terminations of this net are pointers to
pre-defined recognizable states. A subset of the
nodes called default nodes, are initially empty,
but a default branch defines a path to a selected
termination for this case.
(2) A group of outcome discrimination nets, one
for each "action" of the robot's behavior repertoire.
Each termination of a given outcome net
includes a set of measurable attributes that define
a recognizable state. All the states of that net
are the foreseeable outcomes of the corresponding
action. For example, the outcomes of the action
"grasp" may lead to states measured by attribute
sets like "touch sensors on" and "finger spread d"
for a successful grasp. The outcome net termina-
tions also contain advice to an execution monitor
such as "abort action," "alter action parameter.”
(3) A packet of demons, one for each outcome net.
There is a demon for each termination in the
outcome net looking for the corresponding attributes
in the sensory input stream.

The learning paradigm depends on an environment
already functional in the JPL robot. For example,
the scene analysis subsystem is capable of segment-
ing an input image of the environment into objects
with measurable attributes such as size, shape, etc.
The paradigm also assumes that plans are available
to an execution monitor before the actions are exe-
cuted via prestored plans or a plan synthesizer.

During plan execution, first the interpretation
net is traversed during information gathering, and
an interpretive termination is selected. The execu-
tion monitor looks ahead to find the next action to
be executed and activates the outcome net and demon
packet corresponding to that action. The outcome
net uses the feature provided by the interpretation
net to select an expected outcome. The execution
monitor looks in the selected termination for advice
to modify the action about to be executed. When that
action is executed, the demon triggered by the actual
outcome is compared with the expected outcome. The
experienced outcome also provides a back pointer to
a corresponding termination in the interpretation
net. The execution monitor then starts a backward
chaining or reverse search operation up the interpre-
tation net starting from this termination. First,
the execution monitor requests the attribute set
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describing the target of the action executed.

If the experienced outcome was the expected default
choice, the attribute set describing target appear-
ance is placed in all the default nodes in the list
pointing to the default path. If the experienced
outcome was not the expected choice, the reverse
search determines the last default node common to
the path leading to the experienced termination and
the path to the selected termination. The monitor
places the object attribute set at this node in the
list pointing in the direction of the experienced
termination.

Many things can go wrong with this process:

(1) Some measured attributes may not be germane.
The attribute sets retained may be refined by
repetition of similar experiences. Depending on
whether the expectation is confirmed or refuted by
experience, a partial match of the attribute set
already resident at the node may seek for a set of
similar or differing attributes and eliminate
attributes not found to be relevant. (See HR1, Fl).
(2) The appearance of the object is not related to
the intrinsic property sensed by the outcome experi-

ence. Partial matching may eliminate all stored
attributes.
(3) Several intrinsic properties that correspond to

recognizable states may be present jointly, and the
proper course of execution may not be clear.

(4) Objects with similar appearances may have
opposing properties (like "dangerous" and "safe").
Depending on the context, a choice in favor of one
path or the other may be indicated, although this
may permanently exclude some favorable outcomes (FlI).
(5) The outcome pattern experienced may not
correspond to any activated demon.

As we implement this paradigm and gain experi-
ence with its performance, we shall attempt to deal
with these weaknesses and the others that no doubt
will be encountered.

Error correction here refers to the ultimate
achievement of a goal state after an initial execu-
tion failure. Learning refers to avoiding the
failure in subsequent attempts to achieve similar
goals. Errors may be detected with outcome nets.
An investigation of error correction techniques
for execution failures of the robot has been made
(S1). These techniques, involving Failure Reason
Analysis and Multiple Outcome Analysis will be
incorporated as an integral part of the robot
learning system.
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