THE NAVIGATION SYSTEM OF THE JPL ROBOT*

Alan M. Thompson
Jet Propulsion Laboratory
Pasadena, California

ABSTRACT

The control structure of the JPL research
robot and the operations of the navigation subsys-
tem are discussed. The robot functions as a
network of interacting concurrent processes dis-
tributed among several computers and coordinated
by a central executive. The results of scene
analysis are used to create a segmented terrain
model in which surface regions are classified by
traversibility. The model is used by a path-
planning algorithm, PATH*, which uses tree search
methods to find the optimal path to a goal. In
PATH*, the search space is defined dynamically as
a consequence of node testing. Maze-solving and
the use of an associative data base for context-
dependent node generation are also discussed.
Execution of a planned path is accomplished by a
feedback guidance process with automatic error
recovery.

1. Introduction

Figure 1. JPL Research Robot

The Robotics Research Program at the Jet

Propulsion Laboratory is aimed at developing the A terrain model was chosen for the robot that
capabilities in machine intelligence systems simplifies the task of path planning while simul-
required for a semi-autonomous vehicle to be used taneously providing a means of representing large
in remote planetary exploration. To achieve this areas of terrain in a compact, segmented, hier-
end, a "breadboard" robot has been constructed archical structure that is easily updated or
*(Fig. 1) to serve as test bed and demonstration extended. Having a numeric description of the
tool for the programs and hardware. Research is location and shape of obstacles allows the path
being conducted in the areas of robot vision, planner to accurately model the characteristics of
problem-solving and learning, hardware and system the vehicle while conducting the optimal path
architecture, motor-function control in manipula- search, so that the resulting path is in a form
tion and locomotion, as well as the terrain that is readily executable by the guidance programs
modeling and navigation tasks described herein. to within a known error tolerance.

In the JPL experiments, the robot is deposited 2. Robot System Structure
in an unknown laboratory environment consisting of
many arbitrary obstacles (rocks, walls, and The JPL robot operates as a hierarchy of
other objects) and is given tasks such as finding separate concurrent processes which are distributed
and collecting selected rock samples. As a robot among three computers. The main control structure
subsystem, the navigation system has the responsi- (Fig. 2) consists of a Robot Executive (REX) which
bility of finding an unobstructed path to a communicates with the operator via the "ground
designated goal and then controlling the vehicle's system." Other processes, whose functioning is
movement along the path. To do this, it must coordinated by the executive (though not neces-
maintain an internal representation of its environ- sarily determined by it), perform the tasks of
ment from sensory input for use in the planning vision, manipulation, and navigation. The control
phase and then use additional sensory input to hierarchy is not strictly enforced, however, as
monitor execution of movement. The environment is processes may interact freely in such functions as
initially completely unknown, and the path planner hand-eye coordination, etc. Recent additions to
requests updates to the terrain model as needed the system include processes for error recovery
for planning. and problem-solving, which will be the nucleus of

This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics
and Space Administration.

Keywords: optimal path planning, terrain modeling, parent backup, subgoal stacking, and maze-solving.

Robotics-2: Thompson
749



GRAPHICS

CONTROL Ef_]/'

'"GROUND
SYSTEM"

PROGLEM-

EXECUTIVE

SOLVER

/

O

NAVIGATION PATH
VISION MANIPULATOR
PROCESS PROCESS PROCESS PG
VEMICLE MAP
SUB-PROCESS SUB-PROCESS GUIDANCE FILES
MODULE
e ™ L f__"h_-_"-'_‘\
TV CAMERAS MARIPYL ATOR VEMICLE
LASER RANGE PROX SENSORS STEERING
PAN-TILT TOUCH SENSORS DRIVE MOTORS

GYRO-COMPASS
ODOME TERS

Flgure 2. JPL Robot Centrol Structure

a system for automatic planning, error correction
and learning. The sensory-motor processes have
sub-processes on the minicomputer containing the
actual vehicle interfaces. Processes suspend
themselves when not needed.

Communication between the processes is
handled by a shared program segment "mailbox"
method, similar to that of the Stanford Hand-Eye
System (FS1). Messages passed within one computer
are merely stored in the appropriate slot in the
shared segment, whereas inter-computer messages
are transmitted by a separate communications
process to the appropriate machine and then deposi-
ted. This structure is extensible to multiple
processors. A process need not know on which CPU
another process runs. At present, three CPU's
are connected: a DEC PDP-10, a GA SPC-16 mini-
computer, and an IMLAC PDS-1D graphics system.

The "high-level" processes run on the PDP-10, and
are implemented in the SAIL language and, recently,
in LISP. In the minicomputer, FORTRAN and assem-
bly code are used. All interfaces to the vehicle
hardware are currently contained in the mini, but
since it has limited capacity for parallel proces-
ses, the use of a microcomputer network is being
investigated.

The navigation system runs as three concurrent
processes: the navigation executive (NEX), the
path planner module (PPM), and the vehicle guidance
module (VGM). Both NEX and PPM access the terrain
model files. NEX is the controlling process for
all navigation functions. It contains the command
interface to the robot executive which translates
acceptable commands into the appropriate action.
The NEX process invokes the path planner upon
request and processes map update requests generated
by PPM. Map requests are forwarded to the vision
system, and replies from the vision system are

processed by NEX procedures

into the terrain model

format and added to the data base. The required
transformations will be discussed below. NEX also
invokes the VGM either to move the vehicle along
planned paths or to execute movement primitives.

3. The Terrain Model

In order to perform path planning, the navi-
gation system must maintain a model of the robot's
in which features that would affect the
vehicle's movement are represented. Since the area
explored by the robot may be large, and many such

environment

obstructions

encountered,

is desirable to have a

terrain model that is partitioned into segments of

a convenient size,

within which the features have

a compact numerical representation. The map
segments should normally
should have an access structure that allows rapid

loading when needed.

reside in bulk storage and

The model used in the navi-

gation system was designed to meet these require-

ments. In addition,

since the testing of proposed

path links is the major computational expense of

path-planning,
this purpose.
hierarchy for accessing

and, as discussed below,
descriptions was chosen to facilitate the process
of path search.

The territory represented

the representation is optimized for
The segments, when loaded, form a
the barrier descriptions
the structure of the

in the terrain model

is partitioned into map sectors by a fixed lattice

of grid lines.

to the axes

to the origin.

The grid lines are drawn parallel

of the robot's absolute (lab-based)
coordinate system and are equally spaced, so that
the sectors are square and may be numbered relative

The sector number may thus be used

to compute the absolute coordinates of the sector.
The map sector is defined by providing to the model
a file containing the terrain description for the

Robotlrs-2: Thompson

750



area covered; the resultant directory of sectors
is thus analogous to a catalog of charts. At
present, a three-meter grid spacing is used for
within the lab.

The primary source of input to the model is
the vision system. When a description of a
sector is requested by NEX for use by the planner,
the request is sent to the vision system, which
perforins the required terrain analysis. Here
the perceptual problem is that of producing from
stereo TV and laser rangefinder inputs a segmen-
tation of the area covered by the requested sector
into regions described as traversible, obstructed
(non-traversible) or unknown (YCI, YC2). The
information available from a new viewpoint must
be combined with that already in the model to
produce a new sector description. This map
maintenance process is subject to errors which
will be discussed later.

It is of interest to note that what is
described in the map is the traversibility of the
terrain surface. This is adequate for the
purposes of path-planning and allows a two-
dimensional representation for all types of
obstructions, as shown in Fig. 3. As a greater
variety of terrain descriptors are added to the
model, such as slope and altitude, information
pertaining to the third dimension may influence
the cost of a path on the. goals of the robot.
Should it become necessary to describe multi-
level structures, new description types may
easily be added to the model.

Within a map sector, terrain regions are
described by polygonal boundaries which are
represented as lists of the vertices (corners) of
the polygon. At present, regions are classified
either as obstacle (non-travers ible) or unknown.
All else is presumed clear and traversible. Some
generality is lost by dividing barriers that
overlap a sector boundary between the adjacent
sectors, but the path planner detects this case
and regards the parts as a single obstacle.

There is also a capability for a region at sector
level to represent a cluster of objects, in which
case the description contains a list of other
boundary or cluster descriptors. When loaded
into memory, the descriptors for regions within
a sector become the "datums" of SAIL "items," so
that the associative search features of SAIL may
be used in the path-planning process (VL1).

In new map sector descriptions provided by
the vision system, the borders of the terrain
regions are represented by lists of predefined
unit vectors, in which consecutive vectors
describe (15 cm) unit steps along the boundary.
The navigation system must translate this repre-
sentation into the polygon vertex list used in
the map. The translation procedure locates the
minimum number of corners necessary to describe
the boundary to within a known tolerance.

The operations include smoothing, elimination of
inaccessible regions in the interior of closed
boundaries and finally, an iterative polygon
approximation to the boundary. The resulting

Robotics-2:
751

3 NON-TRAVERSIBLE

3 unknows

Figure 3. A Terrain Map Sector

description is a list of corners in order of
their connection, plus a centroid and clearance
radius used to simplify the path testing process
(TI, FI).

In the normal mode of operation, when the PPM
is assigned a planning task, its first operation is
to determine which map sectors lie along the
straight line path from start to goal. Queries
for the indicated sectors are sent to the vision
system, which then determines if a map update is
possible for any requested sector. Each sector
update is dated, so that if the vehicle has moved
since the last update, additional information may
be available from the new point of view. In the
latter case, the vision system would provide
a new sector update; otherwise it would indicate
that the planner should use the existing model.
As the queries are answered the corresponding
sector maps are loaded into memory for use by the
path-planning process. The boundary between the
loaded and not-loaded sectors is represented in
the map as a special obstacle. [If, during the
course of planning, the map border is encountered,
the map must be expanded by adding additional
sectors. The appropriate queries are then genera-
ted and the process is suspended until the replies
are received. Thus, the sector loading mechanism
forms a sort of "virtual memory" for the segmented
map. The system is structured so that the map

Thompson



updating process of the vision system may operate
freely in parallel with the navigation process,
collecting terrain data available from the
current viewpoint, even though the updates may
not be needed immediately.

4. The Path-Planning Process

The task of using the terrain model to find
an unobstructed path to a selected goal is
performed by the path planning module. Naturally,
there may be many alternative routes to a goal,
so a measure of path cost is introduced to define
a selection criterion for optimal path search.

At present, the cost of a path is the distance
along it, but other measures, such as time or
energy, may be used in the future. The cost
metric could also be redefined by the system from
one path search to the next to solve specific
problems.

True optimal search is possible only when
all obstructions in the area encountered by the
search are known. The planner, however, has
access only to terrain information represented in
the map at the time of planning plus those fea-
tures observable from the robot's current location.
From the robot's initial point of view, much of
the terrain may be obscured (by occlusion or
distance), but since the obscured terrain is also
represented in the model by unknown regions, the
planner can detect the case where a proposed
traverse intersects the unknown and may terminate
the search at that point. An optimistic executive
could move the robot to that point (or near enough
to classify the unknown area), update the map,
and plan a new path to the original goal. A
pessimistic executive could regard unknown
terrain the same as an obstruction and look for a
(possibly) longer path. The planning algorithm
is capable of functioning in the latter mode, and
may be told to switch to this mode after detecting
(and remembering) the first (possibly optimal)
partial path.

With the selection of a cost metric and a
function for defining nodes in the search space,
traditional methods of optimal path search may be
used (HNR1). The decision to use the energy
required for the traverse (which in a zero slope
lab environment translates to distance) as a metric
was motivated by the need to demonstrate a system
suitable for application in an actual robot plane-
tary exploration vehicle, as compared to, for
example, SRI's robot, SHAKEY, which simply used
search depth as the cost, resulting in a path with
the fewest number of links (RI). Although, as one
would expect, the strategy of avoiding an obstruc-
tion by generating candidate paths to either side
of it is a feature common to previous path plan-
ners, the minimum distance requirement, as shown
below, demands a more complex node generation
scheme than that required for simpler cost
measures. Also, proper choice of successor nodes,
combined with pruning, keeps the problem one of
tree search rather than graph search.

Robot ics-2:
752

Path Planning Defined

For the purposes of this discussion, path
planning will be defined for a point vehicle and
then elaborated for the finite case. The map will
be defined in terms of a set of vertices, _V, and
a set of non-traversible walls, W, where

W -{ ABise A B i ALB €V, and the
aegment Alﬂi 1s part of
some closed polygon}.

The set of vertices, with the addition of two

points defining the start and the goal, define
P, the set of all points in the map. Then for
each point P; in P we define a set L;. , where

Li -{Pin; i41, PLPJ €W, or
PJ € V and Pin cuts no polygon

in the map}.

link set of P.
(if P.

L;. is called the and is composed of

the walls adjacent to P. is a vertex) plus

all line-of-sight links from P. to other members
of P. A path from the start to some point Q E P
is a list of links
(¢, P, ,B, P, ,...P P,
kp kg kg’ kg Ky
where P

= start, P = (3, and P, P IS . 2teC.
k, K, ke O

Path search may be defined in these terms.
We define a successful node in the search as a
point (in P) to which there is a known path. The
link of a node is the path segment from the parent
node to the given node. Similarly, successor
links go from a node to successor nodes. A goal
link is the link from a node to the goal. For
each node P, in the search, we select successor
links from L until the (optimal) path is found.
In our map definition, however, the link sets must
be derived, since only the walls are represented.
By deriving the link set as needed, we avoid the
combinational explosion that would result from
representing the link set of each point in the
map. lhe link set from a node is found by pro-
posing candidate links to be tested for membership
in the set. Normally, the first candidate is the
goal link from the node. A candidate link P, P.

is tested by examining the set W for intersections.
If PkPx' £ W, the membership assertion is true.

If Pitk'

Py becomes a node in the search with P,

cuts no wall, the assertion is true, and

as its

Thompson



*

parent and (typically) the goal link from Py as

its successor candidate.
intersection with some A.B.

However, if there is an
in ]JW the assertion is

false, and lines P'kAi and PkB’l then become candi-

date links for future testing. Note also that
lines PA, and P;B;, j=I ,2,...k-1, may also be

candidates for their own link sets, but, in an
optimal path search, all but one of the successor
candidates to A, or to B, may be pruned as

discussed below.

With the goal of finding the minimum cost
path from start to finish, the A* algorithm (HNRI)
may be applied, with modifications, to perform
optimal path search in the space defined above.
Given a node generating function, r, and an
admissible node cost criterion, the A* method is
guaranteed to find the lowest cost path through
the space defined by T, if it exists. In PATH*,
the algorithm used in the JPL robot, a node in
the search space is actually what is described
here as a path link, since it is the link record
that is tested for success or failure. Also, the
notions of parent and successor are different
from those of A*. After a path link is tested,
PATH* may select one or more points in the map as
destinations for candidate links, but, by a
procedure discussed below, the search tree is
traced back to find the optimal parent for each
chosen destination. The destination then becomes
a candidate for the link set of that parent. New
candidate links generated as a consequence of the
failure of a link are said to be "engendered" by
the failed link and are associated with it for
possible use in subgoal generation. The algorithm
uses these and other relations between links to
form an associative data base describing the
search context for use in node generation and

pruning. These techniques will be illustrated in
the examples below.
The cost function for a link is the actual

distance along the (unique) path from the start
to its endpoint plus the straight line distance
remaining to the goal. Since the straight-line
distance from the endpoint to the goal is the
lower bound on the actual path cost of reaching
the goal, this heuristic estimate satisfies the
admissibility requirement of A*. In certain
maze-like configurations, this heuristic estimate
may be increased to improve search efficiency.
As in A*, untested candidate links are kept in a
list ordered by this cost estimate, so that the
main loop may always select the least-cost link
for the next test.

The question remains, of course, whether the
successor generation procedure described above is
capable of covering the link set from a node or,
in the case of optimal search, of generating that
member of the link set that lies on the optimal
path from the given node. This turns out to be
the heart of the planning problem, because there
are maze-like configurations of concave barriers
where the search must move away from the goal in

Robotics

-2:
753

order to reach it. Barriers with concave bound-
aries must be avoided on the edge-by-edge (wall
following) basis discussed above, rather than by
generating links to the extreme tangent points of
the barrier (which is adequate for convex
barriers). Also, as will be shown, it is often
necessary to choose as the successor candidate
link from a new node some link other than the goal
link. This alternative to the goal link is called
a subgoal link, whose end node (the subgoal)

is the end node of the link whose failure (obstruc-

tion) led to the generation of the given (success-
ful) link.
To illustrate these principles, consider the

search space shown in Fig. 4a. The straight path
from start to goal is obstructed by wall CD.
Candidates SC and SD are generated. In the search
tree notation shown in Fig. 4b, the line cutting
the tree link from parent to node implies an
obstruction of the physical link, as well as
indicating that the successor nodes have the

same parent as the failed link. The parent node
is mentioned in the box for the successor for
convenience, and also illustrates the interchange-
ability of the notions of node and physical link.

The successors would be tested in order by
but for the purpose of discussion we will
consider a more depth-first approach. Link SD is
unobstructed, so the goal link is generated. This
link is in turn obstructed by wall FH. Note that
the successor H is to the right of the parent link
SD, and that SD is avoiding wall CD on the right.
This implies that H may be reached from the parent
of D (in this case the start point S) and is
guaranteed to avoid CD on the right, so the link
SH is generated instead of DH. In practice the
successor generator function will trace back
perhaps several generations to find the oldest
ancestor that does not satisfy the "parent-backup”
condition, thus selecting the parent with the
shortest path to the successor that will avoid

on the same side those same walls avoided by the
intervening links. Of course, the new link from
the backed-up parent is not guaranteed to be
unobstructed, just that it will not hit those
walls avoided by the intervening links. If the
shortest path to the successor lies on the opposite
side of one of the intervening walls, it would be
found by the normal search process proceeding
from the nodes on the opposite ends of the walls.

cost,

Continuing with the example, the new link SH
is obstructed by wall IJ. The links SJ and S| are
generated as usual. However, note that link Sl
hits the wall near D again. This repetition is
detected by an associative mechanism (discussed
below) , and since SD was previously found to be
successful, the link DI may be generated at once.

Returning to consider link SC, other features
of the algorithm may be shown. SC fails, suggest-
ing SB as a candidate avoiding B on the right.

SB succeeds, but note that now the goal is on the
right of the line containing SB. This state would
normally indicate parent backup, but since the

Tbomoson



Lh?

{¢)

)

Figure 4, Path Search Examples

Robotics-2:
754

goal link from any parent would have already been
considered, the destination of the failed link
that engendered SB is proposed, in this case C, so
BC is generated to avoid CD on the left. This
remembering of subgpals is accomplished by associ-
ating with the successor links the link whose
failure led to their generation. |In this case,
the failed link SC is associated with both links
SA and SB. Note that SB could be obstructed as
well, and new links from S would be engendered
with B as the subgoal. Such an occurrence would
represent the "pushing" of a new level of subgoal
onto an implied "stack". In general, once a node
is successfully reached and if the successor link
is generated to a subgoal (instead of the goal) ,
the subgoal of the link associated with the
successful link is then passed along (associated)
to the successor, i.e., if the successor is a
subgoal, it inherits the subgoal of that subgoal.
This represents a "pop" of the implied subgoal
stack.

Pruning The Search Space

One of the advantages of performing optimal
cost-directed search is that the first path found
to a node is the optimum (HNR1). This allows a
node marked as having been successfully visited to
be used for pruning the search. No different path
to that node need be considered later in the
search. This eliminates the need for a graph
search process in which a lower cost to a node may
be discovered later in the search, requiring
updating of all successor node costs. Thus, for
example, when the goal link from A hits wal] CD in
the figure, neither AC nor AD should be generated.
Pruning is indicated in the tree of Fig. 4b by a
dot in place of the successor. The requirement
for barriers to be closed polygons Is dictated by
this pruning consideration, since If the same
vertex could be reached from both sides of a
barrier it would be necessary, when testing a
candidate for pruning, to determine if the candi-
date is on the same side of the wall as the
successful link. That would not always be a
simple test, so considerable time is saved by the
requirement that barriers have "thickness".

The other category of pruning deals with the
detection of duplicate links with the same parent,
which can occur as a consequence of repetitive
failure configurations, or due to parent backup
(as shown above) , or in cases where the search
originates within a concave barrier. Whenever a
new link is to be proposed, the destination of the
link is compared with that of every other link
proposed from the parent. The parent-successor
associations are used to derive this set. If no
match is found, the proposed link may be generated.
However, if the link had been previously generated
(i.e., a match is found), the link could be either
unobstructed, obstructed, or not yet tested.

For each of these cases, action is taken that
results in the generation of the appropriate link
required to guarantee continuation of the optimal
search. Required subgoals may be associated with
untested nodes, or, as in the example, the tree
below the parent may be examined for the proper

Thompson



node from which to generate a link to the

subgoal. Also, the repetition detection will
recognize those barrier configurations in which a
gap is too narrow for a finite-sized vehicle. In

Fig. 4c the circles around the vertices A and B
indicate the radius by which the (finite-sized)
vehicle must avoid the corner. When link SA
attempts to avoid A on the right it encounters
the wall at B. Then when SB attempts to avoid B
on the left, A is encountered again, but this is
detected, and since SA engendered SB, the repeti-
tion is suppressed, effectively treating the gap
as closed.

Maze-Solving

Another case that requires special treatment
is that of maze-solving, where wall-foilowing is
needed if the shortest (or even the only) path is
to be found. In Fig. 4d the starting point is
contained within a concave polygon. From the
vertex B, the goal link is generated, but is
obstructed by wall CD. Since there is no path to
the right of D, the search would proceed to the
left of C, perhaps indefinitely, if there were no
other rule. However, as mentioned in the defini-
tion of the search space, the walls connected to
vertex B are contained in the link set of B, and
in this case the shortest path is along the wall
AB. It should be noted that unless an adjacent
wall is encountered by the normal search that
always proceeds toward the goal, wall-following
is needed only if it becomes necessary to circle
back around the starting point of the search.
This allows the normal heuristic estimate of the
remaining distance to the goal (used in computing
the node cost that determines the order of
testing) to be increased by the straight-line
distance from the start to the node in question,
since that is a lower bound on the path length
back around the enclosing obstruction. This
increase in total node cost results in fewer
unnecessary tests. Thus, when a new successful
node is found, its total cost is increased by the
defined amount and then reinserted in the list of
untested nodes as a candidate for wall-following
which would not be tested unless the observed
search cost reached its new cost estimate.

the search will continue
until a terminating state is reached. |If a
successful goal link is found, or if an obstruct-
ing wall is the border of an unknown region,
normal termination occurs. If the goal is
enclosed within a barrier, or if the list of
untested nodes is exhausted due to repetition
pruning, the goal is declared inaccessible.
Also, the search could run out of memory, in
which case, the path to the successful node
nearest the goal is returned.

Using these rules,

Real-World Considerations

It is useful for the path planner to conduct
the path search in accordance with the actual
vehicle size and maneuvering constraints. The
size and shape of the vehicle must of course be
considered in detecting collisions, and modelling

Robotics-2 :
755

the vehicle turning capability during path search
eliminates the need for adjusting and re-testing
the planned path. Modelling the vehicle's turning
geometry is easily done in the path link generator
by storing in each link record the center of a
turning circle at (or near) the subgoal and the
straight line path that is the tangent between
that circle and the turning circle at the parent
link endpoint (Fig. 5a). A link is then defined
as a turn from the parent's endpoint to the link
heading followed by a straight traverse ending at
the tangent point of the subgoal turning circle.
The sign of a turn, indicating left or right, is
dictated by which side of an obstructing edge the
link is avoiding, i.e., if the parent link ends on
the left of an edge, its successors will begin
with a right turn about the vertex, etc. The
turning center at a vertex need not be located on
the vertex. As shown in Fig. 5b, the tangent is
found between the turning circle at the parent
node and the avoidance circle (of radius r )

is obtained
problem
is the sign

centered on the vertex. The solution
by solving the geometrically equivalent
for the right triangle shown, where S

of the turn at the parent node and S is the
desired side of the destination vertex. (Sv=0
v

indicates r, = 0.) The endpoint and direction

of the link then determine the location of the new
turning center near the vertex. Turns in reverse
may be represented for those situations where a
shorter path may be obtained by backing up (initial
or terminal heading constraints) or where normal
forward movement is restricted (Fig. 5c). The
vehicle's length and width must also be considered
by the link-testing procedure which searches the
map for the first obstructing wall (if any)
encountered by either the turn toward the link
heading or the straight part of the link. The
testing procedure is discussed in the appendix.

PATH* also has several special purpose move
generators for such cases as confined spaces
requiring complicated maneuvers or for special
goal categories. A goal may be specified as a
requirement that the robot's manipulator be
positioned near enough to a selected object to
reach it, etc. Also, goals near an edge may
impose heading constraints on the vehicle at the

goal. The use of tree search methods and state-
space representation by node records is an improve-
ment over recursive reduction in this domain. In

fact, examples may be constructed in which the
success of the search depends upon the ability of
PATH* to abandon attempts to reach an inaccessible
subgoal in favor of proceeding toward the goal
directly from some intermediate node. A recursive
algorithm that required reaching the subgoal would
fall. In PATH*, the search tree and the other
associations become a data base for a variety of
operators with all levels accessible through

the parent-successor and other relations.

5. Planned Path Execution and Error Recovery

Upon command to execute a planned path, NEX
invokes the VGM and sends it the path links in

Thomnson



TYPICAL PATH

LINK:
POINTS AB,C.E AND V'
ALSO 5,5, AND COST

tal
— TURNING RADIUS '

EXAMPLES:

th

REVERSE TURN

Figure 5. Path Link Examples
succession. The VGV has a system of feedback
control loops for translating the movement
commands sent by NEX into vehicle steering and
drive signals. Vehicle odometer and gyro-compass
heading feedback is used to maintain an estimate
of the vehicle's current location, which is then
used in the guidance loops to keep the vehicle on
the planned path. Front and rear wheels steer in
opposite directions, placing the turning radius
through the vehicle center. It is desirable to
make heading changes without stopping the vehicle,
and since the rolling turn is not a circle due to
the finite steering rate, this creates a systema-
tic tracking error. 'The path planner requires

a clearance along the planned path that is
actually larger than the vehicle width, so that
this error is tolerable.

The vehicle will be equipped with proximity
and tilt sensors and already possesses a scanning
laser rangefinder to aid in the detection of
unexpected obstacles. Limited evasive maneuvers

Robotics

-2

756

by the VGM are allowed, but if avoidance of the

obstructing region requires substantial deviation
from the planned route, the path is aborted, and
error recovery procedures are invoked.

There are numerpus error sources having direct
impact on the robot's performance. The uncertainty
in vehicle position as determined by dead
reckoning grows with distance from a known
location and may be reduced only by external
references such as landmarks. The sensory limita-
tions of the vision system result in uncertainty
in the relative position of terrain features
which at present are added to the map by using the
vehicle's location as an absolute reference point,
thus increasing error. Terrain classifications
are themselves probabilistic in nature, and in an
unstructured environment, mistakes will be made.
The end result is that the robot will eventually
encounter a rock it never saw, and update the map
by remembering the rock in the wrong location
relative to a lost robot! After an intervening
sojourn it may even repeat the process on the same
rock. Of course, laser and proximity sensors
should prevent actual collision, but both the
position and map errors remain.

Landmark navigation, when perfected, will
allow the system to reduce the robot's positional
uncertainty below some upper bound. The map
updating process provides another opportunity for
error reduction. Knowing the sensory uncertain-
ties, the position of perceived terrain features,
and given the locations of previously detected
features, the new perspective may be matched
against the old by varying the estimated vehicle
position (within the error bounds) until the best
fit is found. Data structures have been proposed
(MI) that record a robot's perceptual history and
associated uncertainties, so as to facilitate such
a process.

Until such features are implemented, error
recovery will consist of a simple map update from
the current estimated position, followed by
execution of a replanned path.

6. Future Work
It is expected that the navigation capabili-

ties of the robot will be expanded in the follow-
ing areas, more or less in order:

1. In confined quarters it is necessary for
the path planner to generate moves that
simultaneously avoid several obstacles
and that make heading changes by a com-
bination of forward and reverse turns or
movements. In some situations reverse
search is useful. Such features will be
provided either as an improvement to the
current algorithm or else be integrated
with the general problem solver.

2. A landmark location function, to be
provided as part of the vision system,
will be used to reduce position uncer-
tainty either when error estimates in

Thompson



the dead-reckoning position exceed

a maximum or else continuously by
landmark tracking feedback during
vehicle motion. Similarly, real-time
visual feedback would be used to assist
obstacle avoidance.

3. The terrain model will be expanded to
categorize areas by slope, texture,
etc. Objects may be given functional
properties such as "pushable," or
"fuel-source," etc. to be used in
conjunction with "high-level" planning.
Previously executed paths may be

remembered, forming a sort of "road
map."
Appendix. Collision Testing in the
Terrain Map
The vehicle is approximated as a rectangle,
with variables VL2 and RS representing half the
length and width respectively. The value RS

defines a "safety radius" on either side of the
path. The actual coordinates of path endpoints,
etc. contained in a path link record refer to the
position of the vehicle center point, so that
actual collision testing is performed relative to
that point. The test consists of detecting whether
any edge of an obstacle intersects the area swept
out by the vehicle along the path (Fig. 6). Turns
are tested by testing successive 0.5 radian chord
lines until the turn is completed.

When a path line is to be tested, the endpoint
is extended VL2 units along the path and used to
locate the vehicle front edge line as shown. Col-
lision with an obstacle is detected if either of
the following tests is true:

7 WY EXTENOED
AN pATHEE

X
.y X
,i \ x 5
SECTIONS
1 Xo#X iy
TESTED IN

ESSION
COLLISION CATEGORIES: suee

1
— RS ,
1

VERTEX
WITHIK RS

INTERSECTION

INTERSECTION
WITH FRONT EDGE

BARRIER SCREENING:
ONLY BARRIER C WiLL BE TESTED

Figure 6, Collision Testing

a) Any vertex is < RS units from the
extended path-line.

b) Any edge intersects either the path line

or the vehicle front edge.

The nearest collision to the start of the path is
found, and the left and right (of path) vertices
of the obstructing edge are offered as possible

subgoals.

It is useful to limit the search to only those
obstacles that lie near the path line to avoid
performing the detailed search of every obstacle
in the map. Included in the obstacle record is a
centroid and clearance radius (RC, the radius of
the superscribed circle about the centroid).
Barriers within the map sectors that contain the
path are tested to see if the distance from the
centroid to the path-line is < RC + VL2. If so,
then the detailed test is performed.

References

Fl Freeman, H., Computer Processing of Line-
Drawing Images, Computing Surveys, Vol. 6,
No. 1, March 1974.

FS1 Feldman, J.A., and Sproull, R.F., System
Support for the Stanford Hand-Eye System.
2nd International Joint Conference on
Artificial Intelligence, 1971.

HNR1 Hart, P.E., Nilsson, N.J,, and Raphael, R.,
"A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths," IEEE Transac-
tions on Systems Science and Cybernetics,

July 1968.
Ml Merriam, E.W., Robot'Computer Problem Solving
System. Bolt Beranek and Newman Inc.,

Cambridge, Mass.,
publication).

Progress Report (in

RI Raphael, et al.,
Artificial Intelligence,
Project 8973, Dec. 1971.

Research and Applications -
Report on SRI

TI Thompson, A.M., The Navigation System of the
JPL Robot, JPL Pub. No. 77-20, (May 1977).

VL1 Van Lehn, K.A. (Ed.), SAIL User Manual.
Stanford Artificial Intelligence Laboratory

Memo AIM-204, Stanford University, Stanford,
Ca. (July 1973).

Yakimovsky, Y. and Cunningham, R., Data Base
for Image Analysis with Non-Deterministic
Inference Capability. Jet Propulsion
Laboratory Technical Memorandum TM 33-733
(FEB. 1976). (Also printed in Pattern
Recognition and Artificial Intelligence,
C.H. Chen, ed., Academic Press, N.Y., 1976.

Yakimovsky, Y. and Cunningham, R., A System
for Extracting 3-D Measurements from a
Stereo Pair of T.V. Cameras. JPL TM 33-769
(March 1976).

YC1

YC2

Pobotics-2: Thompson
757



