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Abstract

The SPADE theory uses linguistic formalisms to model the
program planning and debugging processes. The theory begins with a
taxonomy of basic planning concepts covering strategies for
identification, decomposition and reformulation. A handle is provided
for recognizing interactions between goals and deriving a lincnr

solution. A complementary taxonomy of rational bugs and associated
repair techniques is also provided. SPAOK. introduces a new data
structure to facilitate debugging -- the derivation tree of the
program.

SPADE generalizes recent work in Artificial Intelligence by
Suasman and Sacerdoti on automatic programming, and extends The
theory of program design developed by the Structured Programming
movement. It provides a more structured information processing
model of human problem solving than the production systems of
Newell and Simon, and articulates the type of problem solving
curriculum advocated by Papert's Logo Project.

1. A Multi-Faceted Approach

The SPADE theory is being developed in three contexts:

1. Education: an editor called SPADEE-0 has bern implemented
that encourages students to define and debug programs in terms of
explicit SPADE design choices, thereby providing a highly structured
programming environment.

2. Al: an automatic programmer called PATN has been
designed using an augmented transition network embodiment of the
SPADE theory. This results in a framework which unifies recent
work on planning and debugging by Sacerdoti [75] and Sussrnan [75].

3. Psychology: a parser called PAZATN has been designed that
applies the SPADE theory to the analysis of programming protocols.
PAZATN produces a parse of the protocol that delineates the
planning and debugging strategics employed by the problem solver.
PAZATN extends the series of automatic protocol analysers developed
at Carnegie-Mellon University [Waterman & Newell 72, 73; Bhaskar &
Simon 76].

Hand-simulations of PATN and PAZATN on elementary
programming problems and informal experiments with the SPADEE-0
editor attest to the theory's cogency in accounting for a wide range of
planning and debugging techniques [Goldstein & Miller 76a,b;
Miller & Goldstein 76b,c,d].

2. A Linguistic Analogy

In developing a representation for problem solving techniques,
we have been guided by an analogy to computational linguistics, for
three reasons.

1. Thc concepts and algorithms of computational linguistics,
though originally intended to explain the nature of language per se,
supply perspicuous yet powerful descriptions of complex compulations
in general.

2. Computational linguistics decomposes computations into
syntactic, semantic, and pragmatic components. This decomposition
clarifies the explanation of complex processes when viewed in the
following manner: syntax formalizes the range of possible decisions;
semantics the problem description, and pragmatics the. procedural
relationship between the two.

3. Computational linguistics has undergone an evolution of
procedural formalisms, beginning with finite state automata, later
employing recursive transition networks (context free grammars), next
moving on to augmented transition networks, and culminating in the
current set of theories involving frames [Minsky 75, Winograd 75,
Schank 75]. Each phase captured some properties of language, but
was incomplete and required generalisation to more powerful and
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elaborate formalism*. Following this evolutionary sequence
illuminates the complexity of language theory. We have pursued a
similar evolutionary approach to clarify the complexity of prohlrm
solving processes.

» To date, our theory of program design has evolved as follows:
we first explored context free grammars for planning and debugging,
and subsequently their generalisation to ATN's; we then examined
the metaphor of protocol analysis as parsing, initially using the
planning and debugging grammars to reveal the constituent structure
of protocols and later using the derivations produced by the ATN
formalism; and, most recently, we have studied the use of a
chart-based parser to discover these analyses.

3. A Grammatical Theery of Planning

The basin for SPADE in 2 taxonomy of (requently obrerved
planning concepts (fig. 1). We arcived at thin taxonomy hy
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TAXONOMY OF PLANWING CONCEPTS

introspection, by examining problem solving protocols [Miller &
Goldstein 76b], by studying the literature on problem solving
[Pglya 57, 65, 68; Newell & Simon 72; Sussman 75; Saecrdoli 75], and
by enumerating techniques for finding procedural solutions to
problems expressed at predicate calculus formulae [Emden &
Kowalski 76] This last criterion demonstrates that the taxonomy is
currently incomplete -- for example, techniques for handling
disjunctions have not yet been analysed thoroughly enough to warrant
inclusion. However, the taxonomy is adequate for a wide range of
elementary programming problems.

There are three major classes of plans in the taxonomy:
identification, decomposition, and reformulation. Identification means
recognizing a problem at previously solved. Decomposition refers to
strategics for dividing a problem into simpler sub-problems.
Reformulation plans alter the problem description, seeking a
representation which is more amenable to identification or
decomposition. The figure indicates how these classes of plans are
further subdivided in the SPADE theory.

Planning, according to the theory, is a process in which the
problem solver sclccis the appropriate plan type, and then carries nut
the subgoals defined by that plan applied to the current problem.
From this viewpoint, the planning taxonomy represents a decision tree
of alternative plans. The decision process can be modeled by the
context free grammar given below. The grammar explicitly stairs
which planning rules involve recursive application of solution
techniques to subgoals: setup, interface, mainstep, cleanup, and
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parallel.

The gremmer is written using the following syntex "I" is disjunction, V is
ordered conjunction, "&" is unordered conjunction, "<..>'"" is iterstton, [,] is
optionality, end a lower csse phrese in quotation msrks (eg, "repest step"/
describes $ lexicel ltem which is not further expended in the grsmmsr.

PLAN > IOENTIFY | CEOOMFOSE | REFORVULATE

IDENTIFY -> PRIMITIVE | DEFINED

DEFINED -> "call user subprocedure" & PLAN

DECOMPOSE -> CONJUNCTION | REPETITION

CONJUNCTION -> SEQUENTIAL | PARALLEL

SEQUENTIAL -> [SETUP] + (MAINSTE-P + [INTERFACE])* + [CLEANUP]
PARALLEL -> <PLAN>*

SETUP -> PLAN

MAINSTEP -> PLAN

INTERFACE > PLAN

CLEANUP -> PLAN

REPETITION -> ROUMND | RECURSION

ROUND -> ITER-PLAN | TAIL-RECUR

ITER-PLAN -> repeat step" + SEQUENTIAL

TAIL-RECUR -> "itop step" + SEQUENTIAL + "recur step"

The SPADE theory is not restricted to any particular domain
However, to provide concrete examples, we have concentrated on
problems from elementary Logo graphic* programming [Papert 71].
This domain was chosen because of the availability of extensive
student performance data. The grammar rules for primitives in this

domain arc:

PRIMITIVE -> VECTOR | ROTATION | PENSTATE
VECTOR > FCRAARD | BACK) + "number”
ROTATION -> (LEFT | RIGHT) + "numbtr"
PENSTATE > FENUP | FENDOAN

A typical task undertaken by beginners [

in the Logo environment is to draw a 1
wishingwell picture using the computer

(fig. 2). Fig. 3 illustrates a solution to

the wishingwell problem with its hier- FIGURE 2

archical annotation according to our
planning grammar.

The grammar characterizes the decision process involved in
selecting plans from the taxonomy. We illustrate its utility in the
next two sections by constructing an editor that embodies the
grammar and analyzing debugging in terms of the grammar. Then we
show how the grammar can be augmented to include not only the
syntax of plans, but their semantics and pragmatic* a* well.

4. SPADEE-0. A Planning Assistant

One reason for calling our theory of planning and debugging
structured is to emphasise the link between our research and the
Structured Programming movement. Dahl, Dijkstra, and Hoare [72]
call for a style of programming which reflects coherently structured
problem solving; but a detailed formalization of what this style
entails is lacking. Our efforts in this direction, therefore, supplement
the work of Dijkstra and others. How can we judge, though, whether
a particular gremmer of plans captures the planning dceisions
involved in solving problems for some domain? One methodology is to
incorporate the grammar into an editor (SPADEE-0) whose purpose is
to augment and direct the capabilities of a human user. The critical
question then becomes the extent to which the editing system aids or
hinders the user.

Suppose a problem solver is defining a Logo program for
drawing the wishingwell shown earlier. In SPADEE-0, this is
accomplished by applying the planning.grammar in generative mode:

la. What 1s the name of your procedural
Ib. W

2a. Tht rule is:
What now?
2b. >DECOMPOSE

PWK -> IDENTIFY | DECOMPOSE | REFORMULATE
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Ja. The ruly 13: DECOMPDSE -)> COMJUNCTION | REPETITION,
3. YCONJUNCTION

CONJUNCTION -> SEQUENTIAL

-> [SETUP] + <MAINSTEP+[INTERFACE]>* + [CLEANUP].
Oo you want to defint the optional SETUP?

4b. >Latar

4a. The rule is:

SPADEE-0 thus encourages users to articulate their design
decisions in top-down order. At the same time, the system allows the
user to escape from this strict discipline if an alternative solution
order seems preferable. This was illustrated by the user's "later"
instruction, which suspends the current goal for subsequent solution.

SPADEE-0 was implemented by assigning an interpretive
procedure to each grammatical operator. In essence, the editor is a
bookkeeper for the user's goal tree. Though simple, the editor serves
three useful purposes.

1. From an educational standpoint, the editor encourages
students to articulate their problem solving strategies. The
fundamental hypothesis of the Logo Project, as presented by Paperl
[71], is that such articulate problem solving is beneficial to the
learner. SPADEE-0, with its extreme form of articulation, provides
an experimental vehicle for evaluating Papert's claim. Our experiment
will he to test whether students exposed to SPADEE-0 learn Logo
faster than controls whose problem solving is more tacit.

2. From an Al standpoint, its use will indicate whether the
planning grammar is adequate, or whether certain plans are not
present that competent problem solvers feel arc necessary,

3. From a psychological standpoint, we will collect transcripts of
individuals using the editor and formulate pernonal grnmmars based
on the particular rules usually employed by each user. The personal
grammar will model the problem solving skills of that individual. In
the past we have manually analysed protocols from standard Logo.
SPADEE-0 protocols, with their explicit planning choices, should be
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far more revealing.

5. RAID, A Debugging Assistant

SPADE ineludcs a theory of debugging. Sueh a theory is
essential, since problem solvers must often formulate plans in the fare
of imperfect knowledge and limited resources. Under such
circumstances, even carefully reasoned judgments may be mistaken.

Given a grammatical theory of planning, debugging can be
analyzed as the localixation and repair of errors in applying grammar
rules during planning. Since our planning rules were constructed
from operators for conjunction, disjunction, and oplionality, three
basic classes of errors arise:

1. syntactic bugs, in which the basic grammar is violated, such
as when a required conjunct is missing;

2. semantic bugs, in which a Romantic constraint arising from
the particular problem is violated, such as when a syntactically
optional constituent, needed because of the semantics of the
particular problem, is missing;

3. pragmatic bugs, in which an inappropriate selection from a
set of mutually exclusive disjuncts is made.

Fig. 4 exemplifies these bug types. Although additional
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to make this taxonomy of bugs complete, these classes are adequate lo
characterize many examples which arise in elementary programming.

RAID is a debugging assistant for SPADKK-0 implemented on
the basis of this taxonomy of errors. As SPADKK-0 prompts the user
through the planning process, those choices which might lead to
syntactic, semantic, or pragmatic bugs arc recorded by the system. In
subsequent debugging episodes, RAID alerts the user to the relevant
bug warnings, thereby aiding in diagnosis. Moreover, the SPADKK-0
planning editor can then be reinvoked to guide repair of the bug by
resuming planning in the context of the culpable decision. An
interaction with RAID that would arise from premature execution of
a program is illustrated below:

Snecialf7<»H Systems-1:
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The user has continued defining the wishingwell program begun
earlier, with iti current definiton as shown in fig. 4b.  Although
an initial SETUP and an INTERFACE have not yet been supplied,
the user requests execution of the program.

Ib. >RUN WISHNGWELL

2a. OK. (Fig. 4b shows the result) What now?
2b. >Diagnose

3a. The rule 1s: DIAGNOSE -> (PARSE|CODE|HOOELI PROCESS)*.
Which typt of diagnosis do you want to use?
3b. >Parsa

4a. The rule 1i: PARSE -> SYNTAX|SEMANTICSIPRAGMATICS.
Which bug type do you want to consider?
4a. >Semantici

5a. The following optional steps are missing:
The SETUP and the WELL-POLE INTERFACE.
5b. >Repailr

6a. The rule 1s: REPAR -> COMPLETE | REPLACE.
6b. >Complete Intarface between well and pole.

7a. The rule is: COVAEIE -> PLAN -> IDENTIFY |

In this example, the interaction with SPADKK-0 was again
guided by a grammar; this debugging grammar is given below.

DIAGNOSE > <PARSE | QOXE | MOCH. | PROCESSY
PROCESS -> <ASK | TRACE>*

QCCE -> "print definition"

MODEL -> RUN

PARSE -> SYNTAX | SEMANTICS | PRAGMATICS

SYNTAX -> ‘"review conjunctive choices 1n plan"
SEMANTICS -> "review optionel choices 1n plen"
PRAGMATICS -> "review disjunctive choices in plen"
REPAIR w=> COMPLETE | CORRECT

COMPLETE -> "solve for missing conjunct"
CORRECT -> "choose alternative disjunct"

RUN -> "run code line" + ["error msg"] + [DEBUG]

ASK -> "print definition" | "print value"
TRACE -> [SELF-DOC*] + RUN*
SELF-DOC -> "add break" | "add print" | "add trace"

The grammar is intended to include the traditional debugging
strategics employed by programmers as well as the PARSK-bascd
strategies made possible by the derivation tree.

For more complex programs, there will be too many potential
bug locations for RAID's undirected advice to be helpful. Hence,
following SPADKK-QO's structured bookkeeping philosophy, we allow
the user to set caveats during planning regarding those decisions
which appear to be potential trouble spots. In this fashion,
SPADKK-0 permits an exploratory style of problem solving, as
illustrated below.

Suppose the wishingwell program is part of n large project. Then
the number of optional constituents that have not been defined
will he large. The user will probably have some insight into which
of these is actually needed. To facilitate debugging, the user is
encouraged to place caveats at those decisions he suspects may
require later debugging.

6a. Do you want to define the optlonel SETUP?
6b. >No.

7a. Do you wish to record a caveat here?
7b. >Yes.

6a. OK. ROOF, POLE, and WHL are pending...

Another mechanism to make SPADEE's and RAID's advice more
directed it to supply the semantics for problems. This it the topic of
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the next section.

6. PATN - An ATN for Planning

While context free grammar* can represent a useful abstraction
of planning decisions, they have limitations which prevent them from
providing a complete theory. They provide no representation for the
semantics of the prohlem nor for the pragmatics involved in choosing
one plan over another. For this reason, we have designed and arc
currently implementing PATN, an augmented transition network
(ATN) problem solver. We have adopted the ATN formalism for the
same reasons that led Woods [70] to introduce it into computational
linguistics: the semantic and pragmatic limitations of contest free
grammars.

Fig. 5 provides a global view of PATN [Goldstein & Miller 76b]
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The topology of the network embodies the planning grammar.
Registers contain descriptions of the problem, the solution, and
various temporary constructs built during planning. Arc predicates
supply pragmatic guidance by examining the registers and
appropriately directing the planning process. For example, an
identification plan cannot proceed if the problem description cannot be
found in the answer library. PATN has been successfully
hand-simulated on elementary Logo and Blocks World problems.

PATN allows us to elaborate our notion of a completed plan by
defining an annotated derivation tree.. Associated with each node of
the plan derivation is a snapshot of the values of the ATN registers
at the point in the planning process when that node was created. A
derivation tree reveals the constituent structure of the plan; these
semantic variables reveal the semantic intent. A set of pragmatic
assertions at each node, derived as instances of PATN's arc
predicates, reveal the reasons for preferring a given plan over its
competitors. Fig. 6 shows the annotated derivation tree for the
wishingwell program given earlier.
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An intended application of PATN ix as a module of 1he
SPADFE editor Tor providing the user with additionsl sdvier. The
following hypotheticel dialogue with SPADEF-V (the SPADEE-0
editer augmented by PATN) illuxtrates thie
2a. Would you like to define <« model?
2b. >WISHINGWELL

3a. OK. WISHINGWELL found 1n Modal Library.
PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE
What now?

3b. >ROOF POLE WELL

4a. Ara thasa subgoals for LINEAR DECOMPOSITION?
4b. >YES

5a. The pending mainittpi ara ROOF, POLE, WELL.
5b. >ROOF

6a. In tht model ROOF 1s deierlbed as a triangle.
TRIANGLE 1s a procedure 1n the answer library.
Would you Uka to use 1t?

6b. >YES

7e. OK. The ROOF 1s complete. Pending goals are:
POLE, WELL, and the preparatory steps...

PATN's Linearisation Loop provides a superstruclure for
handling dependent, interacting subgoals. The approach is to view a
non-linearity as a property of the problem description. That is, even
though one description of the problem leads to an unsuccessful
refinement process because of interactions between subgoals, another
description can succeed by making the dependent constraints explicit.
For example, consider the SQUARE-INSIDK-TRIANCLE of fig. 4C
If the problem description is:
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SQUARE  X;

TRIANGLE Y;

INSIDE X Y;
then a decomposition that draws the square and triangle independently
and then attempts to fit them together lo achieve the inside relation
will fail. However, a problem description of the following form allow*
a successful decomposition:

SQUARE X, WITH SIDE * 100;

TRIANGLE Y, WITH SIOE - 300;

CENTER OF X m CENTER OF Y.

The INTKRACTIONS predicate is a conjunction of tests on the
model register. Kach test is responsible for detecting a given
non-linearity. A corresponding action modifies the model, adding new
statements lo make the interaction explicit. The REFINKMKNT loop
is the repository for what Sussman [75] calls the Critics Gallery. Thr
theoretical progress of PATN is lo integrate the Critics Gallery
concept into a theory of planning. In Sussman's HACKER, the critics
gallery and library of programming techniques were separate modules:
there was no integrated theory.

Of course, at any point in time the system may be unaware of a

given type of non-linearity. In such cases, the absence of an
interaction test will lead to a sequential decomposition that ultimately
fails. The design of a program for debugging such failures is the
subject of the next section.
7. DAPR — An ATN for Debugging
PATN can make mistakes. That is, PATN will sometimes
introduce what we term rational hug* into its plans, due to making

arc transitions with imperfect knowledge of subtleties or interactions
in the Hence, PATN must be equipped with a
complementary debugging module, DAPR (fig. 7).
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§

[+

3.

5T

ZE

-

e

= -
58 E
“éEr\ ¥
ax o
i :
gufs g
wajm
sE2 p
ax iy 2
[ = o
Ko S
LH
£
z
g, 2

+C0DE (MODEL)

TAND (OPTIORAL STEP)
(MISSING STEP (:PLAS LOC|)})

(LXISTS {STEP LOC)
YIOLATIOKS - { INTERPRET

DAPR's task it easier than that of RAID: DAPR must analyze
the closed set of bug types to which PATN is subject, whereas RAID
is intended to assist human programmers in finding and correcting a
wide assortment of buys. DAPR employs three diagnostic techniques:
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model, is the basic
technique.
a formal description of its goals, to determine if, and in what fashion,
the plan has failed. Another DAPR technique, based on Susctnan's
HACKKR [75], is examining the state of the process at the time of
the error manifestation. Plan diagnosis, a DAPR first, involves
examining the caveat* left by the planner as various nodes were
constructed.

DAPR will also be used to provide additional guidance to RAID.
This illustrates the synergism possible when educational, psychological
and Al facets of a cognitive theory are studied in an integrated
fashion. This integration is further exemplified in the next section
when we apply the SPADK theory to protocol analysis.

process, and plan diagnosis. Model diagnosis
It amounts to comparing the effects of executing a plan to

8. PAZATN, a Protocol Analyser

As soon as one has an heurislically adequate theory of program
design, it is natural to ask, "Can the theory provide an account of
how people design programs?". An experimental technique we employ
for answering this question is the analysis of protocols collected
during problem solving sessions. By adopting this methodology we
follow the precedent established in seminal studies conducted at
Carnegie Mellon University [Newell & Simon 72; Waterman &
Newell 72, 73; Rhaskar & Simon 76]. Our work extends their approach
along three dimensions.

1. With the exception of the recent Rhaskar & Simon effort, the
CMU studies have been restricted lo very limited domains such as
cryplarithmelic Rather than limiting the task domain, thr
range of responses. Typically protocols are transcriptions of
think-aloud verbalisations; we focus on the more restricted
interactions arising from a problem solving session at a computer
The analysis task in this setting is lo interpret user actions
— in terms of the SPADK theory

we limit

console.
— editing, executing, tracing, etc.
of planning and debugging.

2. The CMU theory centers on
Although productions arc Turing universal, they encourage a less
hierarchical, less local program organization than the linguistic
formalisms of the SPADK theory. In PATN, each arc transition,
consisting of a predicate and an action, can be thought of as a
production. However, PATN organizes these productions into local
contexts, each of which consists of the arcs exiting from a given node.
Not all of the arc productions arc present at any moment in time; an
arc is present only when the problem solver is at the relevant node.
In the production systems discussed in Human Problem Solving
[Newell & Simon 72], all of the productions are always present and are
tested in serial order.

3. CMU
Pursuing an analogy
interpretation of a protocol

the production systemn model.

analyses are based on the problem behavior graph.
to computational linguistics, we define an
to be a parte tree supplemented by
semantic and pragmatic annotation. The parse tree characterizes the
constituent structure of the protocol. Semantic and pragmatic
annotation — variables and assertions attached to nodes of the parse
tree formalize the problem description and the rationale for
particular planning choices. Annotated parse trees closely reflect the
local structure of PATN's linguistic problem solving machinery,
leading more directly to inferences regarding individual differences
than is evident from problem behavior graphs.

Ruvcen [75] applied the CMU approach the
programming domain, developing a model of coding -- the translation
of high level programming
language — and testing the model by analyzing protocols. His model
rules whose conditions match the patterns of
Protocols

Brooks lo

plans into the statements of a particular

is a set of production
plan elements and whose actions generate code statements.
are analyzed manually, with the experimenter attempting to infer the
plan which is then expanded by the production system into code
paralleling that of the protocol. The processes of understanding the
problem, generating the plan, and debugging arc not formalized.
SPADE goes beyond this in that it can be used to parse protocols and
that the parse constitutes a formal hypothesis regarding not only the
coding knowledge but also the planning and debugging strategies
employed by the problem solver.

[Miller & Goldstein 76b] provides an example of such analysis
being performed by hand. The example is a segment from a protocol
several hundred lines long in which a high school student uses Logo
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to draw the letters of his name. By examining the grammar rules
present in the derivation, we can observe various properties of the
student's problem solving such as: reliance on certain planning
choices to the exclusion of others (e.g., the student employed iteration,
but aever recursion); the misuse of certain optional constituents (e.g.,
a setup was usually included in each procedure even when it was
unnecessary); and certain situations where his problem solving
violates the grammar and hence is susceptible to syntactic errors (e.g.,
programs were often executed before their subprocedures had been
defined).

Just as a context free grammar is incomplete as a theory .of
planning, likewise a parse is only a partial analysis of a protocol. The
theory of annotation developed in the PATN work led us from
describing only the syntactic structure lo more complete analyses of
protocols: an interpretation of a protocol is the selection of a
particular annotated PATN plan derivation. Fig. 8 shows such an
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analysis of a simplified protocol in which a wishingwell program is
defined, executed and debugged.

PAZATN is a chart-based parser [Kay 73; Kaplan 73] being
implemented to interpret protocols in terms of PATN's annotated plan
derivations [Milter & Coldstein 76d]. It will operate by causing
PATN to deviate from its preferred approach in response to
bottom-up evidence (fig. 9). By taking advantage of parsing
strategies developed in research on speech understanding
[Lesser ct al. 75; Paxton A Robinson 75], as well as the economical
chart representation of ambiguities, PAZATN has been successfully
band-simulated on ten 1/Ogo protocols.

PAZATN will operate by matching PATN-generated plans with
protocol data. Two charts.will be used to represent alternative
interpretations. The PLANCHART keeps track of the set of plausible
subgoals which have been proposed by PATN. Kig. 10 shows a
planchart for a wishingwell in which PATN has proposed two
alternative decompositions. The structure is a chart because it shares
substructures, as exemplified by the common solution to the WELL
subgoal pointed to by both wishingwell decompositions'. The
DATACHART records the state of partially completed interpretations.
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FIG. 10 PARTIAL PLANCHART OF ALTERNATIVES FOR WWwW
Fig. 11 shows how the datachart links events into the planrhart for a
PAZATN interpretation of the wishingwell protocol given earlier.

These charts are grown as follows. First PAZATN requests
PATN to generate its most plausible plan. This plan is inserted into
the PLANCHART. Then protocol events are analyzed one hy one, and
matched with subgoals in the PATN plan. The match is recorded in
the DATACHART. If no plausible matches are found, PATN is asked
to generate the next most plausible plan. The PLANCHART is
thereby extended. Common subgoals share the same structure in the
chart.

At first, PAZATN will be implemented interactively, with the
user -- a psychologist analyzing a protocol — directing PAZATN to
select different PATN plans. This follows the incremental
implementation strategy used in two of the CMI) protocol analyzers
[Waterman & Newell 72; Rhaskar & Simon 76]. PAZATN, even in its
early interactive stages, should provide strong evidence regarding
PATN's adequacy as a cognitive theory.

PAZATN will also be tested in the SPADEE. contest.
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a hypothetical dialogue with SPADEE-2, representing the original
'SPADEE-O augmented by both PATN and PAZATN.

la. Solving for WISHINGVEIL. Pending subgoais ara:
ROOF, POLE. WELL, interfaces. What now?

Ib. >SQUARE

2a. OK. WELL has baen solvad by a call to SQUARE.

SQUARE has already btan solved. What now? -

PAZATN will increase the editor's flexibility in handling
ambiguous events, and in alleviating what might seem to some users

to be an executive allocation of time and effort to the planning phase
9. Conclusions

The use of tools from computational linguistics — grammars,
ATN's, derivation trees, parsing algorithms, charts -- has led to a
perspicuous representation for a theory of planning and debugging.
Computational linguistics is also responsible for suggesting the
propitious decomposition of problem solving processes into components
involving syntactic, semantic and pragmatic knowledge.

Our multi-faceted approach — studying problem solving in the
three distinct contexts of Al, education, and psychology -- holds out
the possibility of a synergistic effect. Rut proof of this must await
further experimentation. Although all of the programs have been
designed and hand-simulated, as of this writing only the SPADKK-0
editor has been implemented. Furthermore, the theory has not yet
been exercised in enough contexts to prove its generality. However,
at least for the three domains in which the theory has been explored
— Logo, the Blocks World, and elementary calculus — it has provided
a unified treatment of plans and bugs, a significant stride for a
theory of program design.
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