Program Inference from Traces
using Multiple Knowledge Source*

Jorge V. Phillips

Artificial Intelligence Laboratory
Stanford University
Stanford, California 94S05

ABSTRACT: This paper presents an overview of a
framework for the synthesis of high-level program descriptions
from traces and example pairs in an automatic programming
system. The framework is described in terms of a methodology
and a rule base for generating control and data structure
specifications for the program to be synthesized, in a format
suitable for transformation into program code in a given target
language.

KEYWORDS: Automatic Programming,
Informal Program Specifications

Program Inference,

One of the ways to specify a program is by the use of traces and
example pairs of the program's behavior. A trace is basically a
mixed sequence of operator applications, information structure
states, and holdings of relations between these. Example
pairs are a particular instance of traces, in which the only
information present is states of program data structures. A
methodology for the synthesis of programs from such
descriptions must provide a means for the transformation
of such descriptions into actual program code. In the past
proposed methodologies have been closely tied to the coding
rocess and have had no programming domain support
Bauer-75, Shaw-75]. In an automatic programming system,
such as the PSI system being developed at Stanford [Green-761
it is highly undesirable to transform directy a program
specification into code for several reasons: it is hard for the
system to explain the reasoning that leads to the target program
and hard for the user to verify that the system really understood
the program description. It is also imperative to use some
domain support to disambiguate the users intentions. A
framework has been devised for the synthesis of programs
from traces and examples that copes with these constraints by
using information about the target program's domain and by
being totally decoupled from the coding process. TX, a
program embodying this framework, has been implemented in
INTER LISP, and is currently one of the constituent modules of
the PSI system.

TX transforms input traces into partial loose descriptions
(called fragments) which in turn are transformed by PSI's
Model Builder [McCune-77] into a consistent and complete
high-level program description. This description is suitable
for use by PSI's Coder [Barstow-77] to produce LISP or
SAIL code. The process of transformation of input traces
into fragments is accomplished in several stages. The input
trace components are classified and mapped into an internal
trace representation using domain knowledge. This
representation is a linear sequence of instantiated templates that
describe interactions between the target program and its
environment, transformation of data objects by the program
and conditions arising in the interaction of program
components. Control structure loops and tests are formed by a
set of rules that detect possible iterations and associate holdings
of conditions with activation of operators, using a combination

of matching, wunification and other inductive inference
techniques. Data structures are obtained from example
instances based on the syntax of the example itself and

Specialized Systens-2:

812

domain information, by a process of description, unification and
generalization, that goes from the primitive components of the
data structure to its top level description. Rules are currently
available for the inference of arbitrarily complex
compositions of sets, tuples, multisets correspondences
and plexes, and primitive objects (strings, atoms, numbers).
These partial control and data descriptions are the input to the
synthesis phase of the PSI system.

Currently TX has synthesized several different classes of
simple learning programs and set manipulation programs. A
facility is being added to use PSI's natural language parser
[Cinsparg-77] as the front end of TX to enable the user to
mix freely natural language dialogues and traces. Research is
being directed towards isolating a base of programming
knowledge about traces and examples and attempting the
synthesis of more complex and sophisticated programs. The
possibility of using the structure of such a system for the
acquisition of domain knowledge is under study. For further
details the reader is referred to [Phillips-77]

References

Barstow-77 Barstow, David R, A Knowledge Based System for
Automatic Program Construction to be presented at the 5th
International Joint Conference on Artificial Intelligence,
Cambridge, Mass. August 1977.

Bauer-75 Bauer, Michael A Basis for the Acquisition of
Procedures from Protocols in Advance Papers of the IV
International Joint Conference in Atrtificial Intelligence, Tbilisi,
Georgia USSR, 1975

Cinsparg-77 Ginsparg, Jerrold, A Parser for English and lts
Application in an Automatic Programming System, Ph.D. thesis,
Al Memo, Artificial Intelligence Laboratory, CS Report,
Computer Science Department, Stanford University, Stanford,
California, forthcoming.

Green-76. Green, C. Cordell, The PSI Program Synthesis
System: An Overview Proceedings of the Second International
Software Engineering Conference, Computer Society, Institute of
Electrical and Electronic Engineers, Inc. Long Beach, California,
October 1976, pp 4-18

McCune-77 McCune, Brian P. The PSI Algorithm Model
Builder: A System Which Synthesizes Very High-Level
Algorithms, to be presented at the ACM SIGART-SIGPLAN
Symposium on Artificial Inteligence and Programming
Languages, Rochester, New York, August 1977

Phillips-77 Phillips, Jorge V. Program Inference from Traces
using Multiple Knowledge Sources Al Memo, Artificial
Intelligence Laboratory, Stanford University (in preparation)

Shaw-75 Shaw, Swartout and Green, Inferring LISP Functions
from Examples Advance Papers of the IV International Joint
Conference in Artificial Intelligence, Thbilisi, Georgia USSR
1975

Phillips

Delayed Interpretation using Processing Notes

Christopher K. Riesbeck
Yale University
New Haven, CT 06511

Descriptive Keywords and Phrases

semantic repre-
knowledge

natural
sentation
structures -

language understanding -
memory and inference -
memory models

Background
ELI

natural
Intelligence

(English
Language analyzer
project at Yale
Schank, 1976, Schank, 1976),
Dependency (CD) forms (Schank,
Its semantic interpretations of
including in the CD for.us special elements,
called processing notes, ELI can indicate what
parts of the CD form later inferencing programs
must complete. Three different notes have been
developed so far.

Language Interpreter), the
used by the Artificial

(Riesbeck and
builds Conceptual
1975) to represent
input texts. By

The KEF note

ELI
tiation

uses the KEF note to guide the instan-
of noun phrases into memory tokens. For
example, "he" is analyzed into "(PERSON CENDER
MALE REF DEF)" and ‘"soinone is analyzed into
"(PERSON GENDER MALE REF IN'DEF)". "REF DEF" in-
dicates that existing memory tokens should be
looked at. "REF INDEF" indicates that a new to-
ken is needed.

The SPECIFY note

the SPECIFY note to indicate a hole
be filled in. For example, the
is he?" is represented as "l want
that he is in location SPECIFY."

ELI uses
needs to
question "Where
you to tell me
In CD this is:

that

(CON (ACTOR HEARER <=> IITRANS TO SPEAKER

MOBJECT (ACTOR (PERSON REF DEF)
IS (LOC VAL SPECIFY)))
LEADTO (ACTOR SPEAKER TOWARD JOY INC 2))

The EQUIV note

ELI uses the EQUIV note to say that an ob-
ject can be described with several different CDs.
For example, "Mary is the one who went to Boston"
is represented as "the person named Mary is EQUIV
to the person who went to Boston." In CD this is:

*This work was supported in part by the Advanced
Research Projects Agency of the Department of
Defense and monitored under the Office of Naval
Research under contract N00014-75-C-1111.

Specialize Systems-2:

813

(ACTOR (PERSON NAME MARY)
EQUIV (PERSON REL (ACTOR PERSON <=> PTRANS
TO (CITY NAME BOSTON)))

A more complex EQUIV note is used for sen-
tences of the form "Si but S2" where S| is an
action from a knowledge structure (KS) such as a
script or a plan (Schank and Abelson, in press).
"But" in these sentences means that S2 is con-
trary to the intentions of the KS. The inten-
tions of a KS are the goals associated with that
KS, plus the actions that the KS says will lead
to those goals.

The sentence frame "SI but S2" is repre-
sented as "S2 is not EQUIV to any event leading
to an event that is a goal of the KS in SI." In
CD this is:

((CON S2

EQUIV (SPECIFY |
REL (CON SPECIFY1
LEADTO (SPECIFY2
REL (KS
GOAL SPECIFYZ2)))))
MODE NEC)

Conclusion

The addition of processing notes like REF,

SPECIFY, and EQUIV allows not only better commu-

nication between ELI and the inference programs,

but also allows wus to represent the meaning of
words like "but" which make meta-coimnents about
the texts in which they appear.

References

Riesbeck, C. and Schank, R. C. (1976) Compre-
hension by Computer: Expectation-based
Analysis of Sentences in Context. Yale Uni-
versity, Department of Computer Science Re-
search Report 78.

Schank, R. C. (1975). Conceptual dependency:
A theory of natural language understanding.
Cognitive Psychology 3(4), 552-631.

Schank, R. C. (1976). Research at Yale in
Natural Language Processing. Yale Univer-
sity, Department of Computer Science Research
Report 84.

Schank, R. C. and Abelson, R. P. (in press).
Knowledge Structures. Lawrence Erlbaum
Press, Hitlisdale, ~N. J.

Riesheck

